各种化学仪器的原理使用

化学专业学生必备:各种仪器分析的基本原理及谱图表示方法!!

紫外吸收光谱 UV

分析原理:吸收紫外光能量,引起分子中电子能级的跃迁

谱图的表示方法:相对吸收光能量随吸收光波长的变化

提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息

荧光光谱法 FS

分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化

提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息

红外吸收光谱法 IR

分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁

谱图的表示方法:相对透射光能量随透射光频率变化

提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法 Ram

分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化

提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法 NMR

分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁

谱图的表示方法:吸收光能量随化学位移的变化

提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息

电子顺磁共振波谱法 ESR

分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁

谱图的表示方法:吸收光能量或微分能量随磁场强度变化

提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息

质谱分析法 MS

分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离

谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化

提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息

气相色谱法 GC

分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离

谱图的表示方法:柱后流出物浓度随保留值的变化

提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关

反气相色谱法 IGC

分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力

谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线 提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数 裂解气相色谱法 PGC

分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片 谱图的表示方法:柱后流出物浓度随保留值的变化

提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型

凝胶色谱法 GPC

分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出

谱图的表示方法:柱后流出物浓度随保留值的变化

提供的信息:高聚物的平均分子量及其分布

热重法 TG

分析原理:在控温环境中,样品重量随温度或时间变化

谱图的表示方法:样品的重量分数随温度或时间的变化曲线

提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区 热差分析 DTA

分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化

谱图的表示方法:温差随环境温度或时间的变化曲线

提供的信息:提供聚合物热转变温度及各种热效应的信息

TG-DTA 图

示差扫描量热分析 DSC

分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化

谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线 提供的信息:提供聚合物热转变温度及各种热效应的信息

静态热―力分析 TMA

分析原理:样品在恒力作用下产生的形变随温度或时间变化

谱图的表示方法:样品形变值随温度或时间变化曲线

提供的信息:热转变温度和力学状态

动态热―力分析 DMA

分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化 谱图的表示方法:模量或tg δ随温度变化曲线

提供的信息:热转变温度模量和tg δ

透射电子显微术 TEM

分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象

谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象

提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等

扫描电子显微术 SEM

分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X 射线等并放大成象

谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等

提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等

原子吸收 AAS

原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。

(Inductive coupling high frequency plasma)电感耦合高频等离子体 ICP 原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。

X-ray diffraction ,x射线衍射即XRD

X 射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X 射线和特征X 射线两种。晶体可被用作X 光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X 射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X 射线的衍射线。

满足衍射条件,可应用布拉格公式:2dsin θ=λ

应用已知波长的X 射线来测量θ角,从而计算出晶面间距d ,这是用于X 射线结构分析;另一个是应用已知d 的晶体来测量θ角,从而计算出特征X 射线的波长,进而可在已有资料查出试样中所含的元素。

高效毛细管电泳(high performance capillary electrophoresis,HPCE ) CZE 的基本原理

HPLC 选用的毛细管一般内径约为50μm(20~200μm),外径为375μm,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC 进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象;电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组

份依次通过检测器。

MECC 的基本原理

MECC 是在CZE 基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC 是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。

扫描隧道显微镜(STM )

扫描隧道显微镜(STM )的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm ),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。

原子力显微镜(Atomic Force Microscopy ,简称AFM)

原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。

俄歇电子能谱学(Auger electron spectroscopy),j 简称AES

俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X 光的形式放出,即产生特征X 射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说, 激发态原子在释放能量时只能进行一种发射:特征X 射线或俄歇电子。原子序数大的元素,特征X 射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。

化学专业学生必备:各种仪器分析的基本原理及谱图表示方法!!

紫外吸收光谱 UV

分析原理:吸收紫外光能量,引起分子中电子能级的跃迁

谱图的表示方法:相对吸收光能量随吸收光波长的变化

提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息

荧光光谱法 FS

分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化

提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息

红外吸收光谱法 IR

分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁

谱图的表示方法:相对透射光能量随透射光频率变化

提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法 Ram

分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化

提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法 NMR

分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁

谱图的表示方法:吸收光能量随化学位移的变化

提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息

电子顺磁共振波谱法 ESR

分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁

谱图的表示方法:吸收光能量或微分能量随磁场强度变化

提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息

质谱分析法 MS

分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离

谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化

提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息

气相色谱法 GC

分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离

谱图的表示方法:柱后流出物浓度随保留值的变化

提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关

反气相色谱法 IGC

分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力

谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线 提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数 裂解气相色谱法 PGC

分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片 谱图的表示方法:柱后流出物浓度随保留值的变化

提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型

凝胶色谱法 GPC

分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出

谱图的表示方法:柱后流出物浓度随保留值的变化

提供的信息:高聚物的平均分子量及其分布

热重法 TG

分析原理:在控温环境中,样品重量随温度或时间变化

谱图的表示方法:样品的重量分数随温度或时间的变化曲线

提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区 热差分析 DTA

分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化

谱图的表示方法:温差随环境温度或时间的变化曲线

提供的信息:提供聚合物热转变温度及各种热效应的信息

TG-DTA 图

示差扫描量热分析 DSC

分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化

谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线 提供的信息:提供聚合物热转变温度及各种热效应的信息

静态热―力分析 TMA

分析原理:样品在恒力作用下产生的形变随温度或时间变化

谱图的表示方法:样品形变值随温度或时间变化曲线

提供的信息:热转变温度和力学状态

动态热―力分析 DMA

分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化 谱图的表示方法:模量或tg δ随温度变化曲线

提供的信息:热转变温度模量和tg δ

透射电子显微术 TEM

分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象

谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象

提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等

扫描电子显微术 SEM

分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X 射线等并放大成象

谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等

提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等

原子吸收 AAS

原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。

(Inductive coupling high frequency plasma)电感耦合高频等离子体 ICP 原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。

X-ray diffraction ,x射线衍射即XRD

X 射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X 射线和特征X 射线两种。晶体可被用作X 光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X 射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X 射线的衍射线。

满足衍射条件,可应用布拉格公式:2dsin θ=λ

应用已知波长的X 射线来测量θ角,从而计算出晶面间距d ,这是用于X 射线结构分析;另一个是应用已知d 的晶体来测量θ角,从而计算出特征X 射线的波长,进而可在已有资料查出试样中所含的元素。

高效毛细管电泳(high performance capillary electrophoresis,HPCE ) CZE 的基本原理

HPLC 选用的毛细管一般内径约为50μm(20~200μm),外径为375μm,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC 进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象;电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组

份依次通过检测器。

MECC 的基本原理

MECC 是在CZE 基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC 是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。

扫描隧道显微镜(STM )

扫描隧道显微镜(STM )的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm ),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。

原子力显微镜(Atomic Force Microscopy ,简称AFM)

原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。

俄歇电子能谱学(Auger electron spectroscopy),j 简称AES

俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X 光的形式放出,即产生特征X 射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说, 激发态原子在释放能量时只能进行一种发射:特征X 射线或俄歇电子。原子序数大的元素,特征X 射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。


相关内容

  • 物理化学实验心得
  • 物理化学实验心得 一.物理化学实验的目的与要求 (一) 物理化学实验教学的目的 物理化学实验是化学实验科学的重要分支,也是研究化学基本理论和问题的重要手段和方法.物理化学实验的特点是利用物理方法研究化学系统变化规律,通过实验的手段,研究物质的物理化学性质及这些性质与化学反应之间的某些重要规律.物理化 ...

  • 无机化学课程
  • 应用化学专业课程简介 无机化学(1) Inorganic chemistry(1) 课程编号:22149901 学分:2 总学时:28学时(2-0周学时× 14 周) 课程性质:专业必修课程.核心课程.理科课程 课程目的:本课程的作用是要使学生系统的学习和掌握无机化学的基本原理和方法,元素化 学的基 ...

  • 检验仪器学教学大纲(检验四年制)
  • <临床检验仪器与技术>教学大纲 课程名称:临床检验仪器和技术 学时与学分:2学分/32学时(其中实验学时: 4学时) 先修课程:物理.基础化学.分析化学.高等数学.计算机基础 适用专业(方向):医学检验技术专业 一.课程性质.目的与任务 本课程围绕培养创新型医学检验人才的目标,使学生通过 ...

  • 有机化学实验教学大纲
  • 有机化学实验教学大纲 课程名称:有机化学实验 课程编码: 111117040 英文名称:The organic chemistry experiment 学 时: 84 学 分:3.5 适用专业:理学院材料化学 课程类别:必修 课程性质: 实验 先修课程:有机化学 参考教材:<基础实验化学(有 ...

  • [基础化学实验](Ⅰ)课程教学大纲
  • <基础化学实验>(Ⅰ) 课程教学大纲 Fundamental Chemical Experiment (Ⅰ) 一.实验总学时: 144学时 学分:6 二.应开实验个数:35个 必开实验个数:22个 选开实验个数: 13个 三.适用专业:化学.材料化学及各类相关专业 四.考核方式及评定标准 ...

  • [物理化学]课程教学大纲
  • <物理化学>课程教学大纲 课程编号:0703316012 课程名称:物理化学 英文名称:Physical Chemistry 课程类型: 专业基础课 总 学 时:64 讲课学时:52 实验学时:12 学 时:64 学 分:4 适用对象:适用于本科环境工程(电厂化学)专业 先修课程:无机化 ...

  • 定量化学分析实验教学大纲
  • 定量化学分析实验实训大纲 专业代码:510111 课程代码:05103 总学时:96学时(其中实验实训40学时) 学 分:6学分 适用专业:11高职农产品质量检测专业 一.课程的性质与任务 <定量化学分析>课程是高职高专院校农产品质量检测专业的一门主干专业课.是在学生学习了<基础化 ...

  • [分析化学]教学大纲
  • <分析化学>教学大纲 课程编码:化-0301-基 适用对象:药学(理科基地)专业 一.前言 <分析化学>是研究物质的化学组成和分析方法的科学.其任务是:鉴定物质的化学组成(或成分),测定各组分的相对含量及确定物质的化学结构.内容分为两部分:第一部分为化学分析,主要讲授经典化学 ...

  • 临床生物化学实验原理.方法及检测
  • 临床生物化学实验原理.分析方法及检测技术 中国中医研究院广安门医院临床检测中心 生物化学实验--是把化学(分析技术) 和生物化学(实验反应原理) 的方法应用于疾病的诊断.治疗.监控的实验分支. 一个生化实验的最后测定结果应包括四大部分来完成. 一. 实验反应原理及分析方法(理论依据) 二. 实验检测 ...