软磁铁氧体Q 值的概念和测量

EXPERTS FORUM·

专家论坛

软磁铁氧体 Q 值的概念和测量

The conception and measurement of softmagnetic ferrite Q Value

绵阳开元磁性材料有限公司  张忠仕,汪伟,陈文,李卫  (四川绵阳 621000)

摘    要:从品质因数值的定义出发,推出计算值的各种解析表达式。分析在测量值的过程中,测试绕组本身的电损耗及 

分布电容对测试结果的影响。另外讨论软磁材料的值与其功耗之间的关系。

关键词:材料的值,损耗因数,分布电容

中图分类号:TM27 文献标识码:B 文章编号:1606-7517(2009)01-8-85

1 引言

关于品质因数Q值这一术语是大家都熟悉的。对于电感线圈的Q值也是众所周知的。但对于材料的Q值,从定义到各种表达式就是五花八门,好像随便拉一个Q值的数(a)串联等效电路

(b)并联等效电路

学表达式都可作为Q值的定义,而Q值的物理慨念却被无图 1  电感线圈的等效电路

形中弄得无影无踪了。本文试图从Q值的定义出发引伸出对于串联等效电路,当通以正弦电流时:

各种Q值的数学表达式。对现行某些资料给出的Q值个别i =I mcos(ωt+φ)                                (1)

表达式提出异议。

每个周期内电感L s 储存能量的最大值为:

本文不涉及Q值的测仪器问题,只讨论在测量Q值时                                    (2)

碰到的具体问题。顺便讨论材料Q值与其功耗之间的关系。

本文中所有公式中的各物理量,除特殊说明外均使用每个周期内R s

消耗的能量为:

国际单位制的基本单位,对各公式不再说明单位。

                            (3)

2 电感线圈的品质因数Q 值

根据前一种定义得:

关于电感线圈的品质因数Q值的最早定义为:在给定                       (4)

频率下,每个周期里,线圈储存能量的最大值与总损耗能对于并联等效电路,如果两端所施加的为正弦电压

量之比的2π倍。以后也有人把线圈的Q值定义为无功功u =U m cos(ωt+ψ)                              (5)

率与有功功率之比[1]。

每个周期电感L p 所储存能量的最大值为:

对于任何一个电感线圈,它在储能放能的工作过程中,                     (6)

都不可避免地或多或少的消耗一些能量。因此,可把电感每个周期内R 线圈等效成一个纯电感和一个纯电阻串联或并联。串联等p 消耗的能量为:

效用L                         (7)

s 和R s 表示,并联等效用L p 和R p 表示,如图1所示。

2009.01·

专家论坛·EXPERTS FORUM

根据前种定义得

                      (8)

由以上推导可知,线圈Q值的表达式可以用串联等效电阻和电感表示,也可以用并联等效电感和电阻表示。根据Q值的后一种定义,也同样可推导出Q值的表达式,与从第一种定义出发推导结果是一样的,即用(4)式或(8)式表达Q值。

对正弦信号来说,当频率给定后,电感线圈的串联电路可以用一个并联电路来等效,串联、并联之间的电感电阻互换关系式为:

                              (9)

                             (10)                            (11)                             (12)

3 材料的品质因数Q 值

谈到软磁材料的品质因数Q值,有很多资料是随便拉一个Q的表达式作为Q的定义,例如用损耗角正切的倒数

[2]

来定义Q。我们认为Q的表达式可以有很多,但它的物理意义还是应当有一个明确的概念。那就是软磁材料的品质因数Q值,它应该用“在交变磁场作用下,材料每周储存的最大能量与损耗能量之比的2π倍”来定义。

从材料Q值的定义出发,导出Q的各种表达式,不象推导电感线圈Q值表达式那样简易,必须先对复数磁导率的概念有一了解。

3.1 复数磁导率的引出

假定材料在外磁化场的作用下被均匀磁化,而磁路闭合,不存在退磁场。而交流磁滞回线是个椭圆,这时磁场H 和磁通密度B 都可用时间的正弦函数来描写:

H =H 4

m cos(ωt+φ)=R e (H e jωt

)                         (13)B =B 4m cos(ωt+φ-δ)=R e (B e jωt

)                        (14)

式中:φ代表H 的初相,δ代表B 的相位比H 落后一个δ角。

H 4

=H m e jφ 是H 的相量。                      (15)B 4=B m e j (φ-δ) 是B 的相量。                     (16)

·2009.01

D和H 之间的关系可用相量法计算。B 和H 都可用旋转速度为ω的相量来表示(见图2)。这时磁导率就变成一

4

个复数μ" 。

图 2  B 和H 的相量图

                (17)  

式中:可称为幅度磁导率。 

    

称为弹性磁导率。

                    

            

称为粘性磁导率。

由图2看出,复数磁导率的实部μ'和μ"虚部都代表4

一定的物理意义。我们可以把相量B 分解为两个相互垂直4

的分量,其中与H 同相的分量B m cosδ与μ0H m 之比为μ',

4

它代表可逆磁化的程度。相位比H 落后的分量B m sinδ与μ0H m 之比是μ",它是由损耗引起的滞后分量。

δ称为损耗角。3.2 磁介质中的磁能密度

在静态磁化时,对于各向同性的铁磁介质来说,磁导率μ

为一个实数,这时介质中的磁能密度为:

           (18)

对于动态磁化过程,当磁场为正弦形,磁通密度为落后磁场一个δ角的正弦形时,磁介质中的磁能密度最大值应为:

                  (19)

(19)式中是点乘积

,即

的同相分量与

H m 之积。

EXPERTS FORUM·

专家论坛

3.3 磁介质磁化一周单位体积中消耗的能量

我们知道,磁介质被磁化一周单位体积中消耗的能量在数值上正好等于磁滞回线的面积,即:

                            (20)

B =B m cos(ωt-δ),如果H =H m cosωt,解出B 与H 的关系,(27)式中的L" 是由复数磁导率的虚部μ"引起的,ωL"是个实数,它对阻抗的贡献类似于一个电阻的作用。(27)式像似于一个电阻和一个纯电感串联的阻抗,我们把ωL"用R s 表示,L' 用L s 表示,由磁心引起的阻抗为

4

z =R s +jωLs                                                            (28)

在B 为纵坐标H 为横坐标的直角坐标系中,B  ̄H 曲线正好是一个椭圆,其面积为

S =πHm B m sinδ

所以 

W =πHm B m sinδ (21)

3.4 材料Q 值的表达式

根据材料的品质因数Q值的定义,导出Q的表达式,

即:

                         (22)

上式表明,材料的品质因数Q值等于其损耗角正切的倒数,所以有些文献上直接说材料的损耗角正切的倒数就是Q值。

由(17)式很容易看出:cosδ与sinδ之比就等于μ'与μ"之比,所以可用下式表达Q值。

                                  (23)

因此,也有文献用复数磁导率的实部μ'与μ"虚部的比给Q值下定义。

根据闭合磁路绕N 匝线圈具有的电感量为:

C1为磁心常数。

4

把μ用μ=μ'-jμ"

代入上式,得到复数电感为:

                    

(24)

                               (25)                               (26)

我们把L' 称为纯电感,平时测量的电感都是L' 。电感元件对正弦电流产生的电抗为

jωL 4

=jω(L' -jL" )

=ωL"+jL' (27)

所以也有人说材料的品质因数为:

                                  (29)

如前所述,一个电阻与一个电感串联的电路阻抗可用一个电阻与一个电感并联来等效。所以磁心绕线构成的线圈也可用电阻与电感并联等效。用并联电感L p 和并联电阻R p

可算出并联磁导率的实部和虚部。L p 、R p 与

之间的关系为:

L P=μ

0N 2/C1 (30)R P=μ0

N 2ω/C1 (31)

由于并联电路的Q值为:

                                 (32)

把(30)和(31)式代入(32)得:

                                      (33)

值得指出的是,有些文献[3、4]

认为

之比等于

Q值,

之比也就理所当然的等于材料的Q值。所

以就给出下面这个表达式:

                                (34)

一般人不去推导就有可能认为上式真的是正确的,特别是具有权威性的电子工业词典和标准,也把(34)式搬来搬去的引用,这就更能迷惑人了。

4 磁心的品质因数Q 值

对于同一种软磁材料构成的具有闭合磁路的磁心,它的磁导率就等于材料的磁导率,当在磁心磁路的某一部分开个小气隙时,磁路就可看作磁心材料与空气隙共同组成,这时磁心的磁导率可称为有效磁导率μe ,它已不等于材料的磁导率,它与材料磁导率μ之间的关系为[5]:

                             (35)

式中:lg 为气隙量,le 为有效磁路长度。 k=A B /A e ,A e 为磁心有效截面积。

AB 为磁心开气隙处的截面积。

2009.01·

专家论坛·EXPERTS FORUM

如果气隙处的截面积等于磁心有效截面积,且μ>1,(34)

式则可写成:

                              (36)

上式为保持磁通密度不变条件下,磁心开气隙后的磁心有效磁导率与材料磁导率μ之间的关系。(36)式表示常说的气隙定律。(36)式可改写成:

线是可以当作椭圆处理的。

5 材料的功耗P cv 与Q 值的关系

软磁材料的功耗一般表征材料在较高磁通密度工作时,单位体积材料所耗费的功率,而材料的品质因数Q值一般表征材料在弱磁化场下工作时的一个特性,它的意义已在前面详述。所以,功耗P cv 和品质因数Q值本来拉不                                  (37)

4

我们知道,串联复数磁导率μs

与并联复数磁导率

之间的关系为:

                                (38)

4

4

把(37)式中的μe 和μ分别换成复数μe 和μ,再利用(38)式表明的关系,即得出:

                    (39)

由上式两端实部、虚部分别相等可知:

                                     (40)

                              (41)

(40)

式表明,磁心开气隙后,并联有效磁导率的虚部

与材料并联磁导率的虚部

相等。(41)式表明磁心开

气隙后,并联磁导率的实部仍遵循气隙定律。

根据Q值的表达式(33),开气隙后磁心的品质因数Qe

为:

                                 (42)

由材料的品质因数Q =

/

及(40)

式得:

,代入(42)式得:                                    

                            (43)  

由(43)式表明,开气隙后,磁心的品质因数Qe 在材料Q

值的基础上按

倍增大。平时测电感L 算得的磁导

率μ就是μ',也就是串联磁导率的实部。

由(43)式很容易知道磁心开气隙后,只要频率不变,磁通密度保持不变,μQ 乘积就不变或比损耗tgδ/μ也不变。另外指出,以上推导用到复数磁导率,而复数磁导率是以B 和H 都是正弦信号建立起来的。所以,以上结论对椭圆磁滞回线是适合的。实际上软磁材料在正弦电压激励下,只要频率不十分低,磁通密度不接近饱和,其交流磁滞回

·2009.01

上关系,低磁通密度下Q高的材料,到高磁通密度工作时功耗也不一定必然较小。但是,如果在相同频率和相同磁通密度下运行,材料的功耗与Q值之间的关系就很容易找

到了。有不少人关心这一问题,现在顺便作一推导。

软磁材料运行在椭圆磁滞回线状态下,被反复磁化,一周内单位体积材料所消耗的能量W 如(21)式所示。而根据定义,功耗P cv 等于在一定磁通密度下运行单位体积材

料所耗散的功率,这就很容易地写出P cv 的表达式。

P cv =fW =πfHm B m sin δ (44)

如果保证材料在恒定正弦磁场下运行,H m 不发生改变,则(44)式可写成:

         

(45)

或                                         

(46)

(45)式表明,当材料的μ"等于零时,意味着B 与H 同相,没有落后分量,磁滞回线变成一条直线,回线面积等于零,

所以功耗等于零,(46)式的解释是,当Q为定值时每周的储能与耗能之比定了,μ'增高意味着储能增加,储能增加耗能也跟着增加,所以功耗也随着增大。

如果保持材料的工作磁通密度幅度不变,(44)式可变成下式:

     

                          (47)

对于(47)式的应用可分为三种情况:

①如果材料使用频率远低于材料的截止频率,μ'2>μ"2

的条件成立,(47)

式可近似写为:

                  (48)

(48)式表明当软磁材料的μ"比μ'起可忽略不计时,其功耗与其μ'Q 积成反比。文献[6]给出几种材料的功耗

EXPERTS FORUM·

专家论坛

和μQ 乘积的实测数据,并分析看出μQ 乘积高的材料功耗较小。该文测试频率为100kHz,在这一频率下,μ'>μ"的条件成立,但测Q值和测P cv 值的磁通密度峰值差别比较大,电阻与一个纯电感串联。在串联等效时,Q=ωLs /R s 。如果线圈带有磁心,式中的R s 是由线圈本身的铜损和磁心的磁损两部份之和组成的。于是Q值的表达式可写成:

不能严格遵从(48)式表明的关系,只能定性的说明μQ 积高的材料功耗往往也可能较低。

②在远高于材料截止频率时,材料的μ'>μ"这一条件可能成立,(47)式可写成:

                        (49)

从(49)式看出,软磁材料的μ"不是在所有的频段都让人憎恶的。到远高于截止频率使用时,μ"变得可爱了,μ"越高,功耗就越小。μ"产生的感应电动势照样可以利用,只不过其相位比μ'产生的电动势差π/2,类似于一个纯电阻起的阻抗作用。但它不等于电阻,利用μ"仍可以在次级回路中得到耦合能量,也就是说,μ"高而μ'趋于1的材料仍可用作变压器磁心。

③如果μ"=μ',(47)式变成:

       

            (Q=1)                  (50)

(50)式表明,当B 的相位比H 落后π/4时,δ等于π/4,这时tgδ=Q=1,μ"=μ',在B m 保持不变时,P cv 与Q值无关。这就告诉我们,铁氧体材料应用在截止频率附近时,μ"虽然出现一个陡峭的峰值,但消耗的功率P cv 可能不出现相应的极大值。

6 Q值的测量

对于电感器件的设计人员,主要关心的是电感线圈的Q值,只要在一定频率下加一定的电压或电流,线圈的Q值符合要求就行。对于磁心材料的研制人员,主要关心的是材料本身的参数Q值,只要在一定频率和磁通密度下的Q值达到技术指标的要求就行。不管你关心哪种Q值,总之都要进行Q值的测量。不管用什么仪器,直接测量出来的都是电感线圈在测试条件下呈现出来的Q值。要想得到材料本身的Q值还应作一定程度的修正。为此,不得不研究材料Q值与线圈Q值之间的关系。以下只限于讨论低磁通密度下Q值的测量问题。

6.1 线圈铜损对Q 值的影响

如前所述,对于一个电感线圈在一定频率下,可以等效为一个纯电感和一个纯电阻并联,也可以等效成一个纯

                                  (51)

等效电路如图3所示。铜线的等效损耗电阻R L 如文献[7]所指出的那样,它包含有线圈直流损耗,由集肤效应和邻近效应产生的损耗,连线损耗等。磁心等效损耗电阻R c 则包括磁滞损耗,涡流损耗和剩余损耗等。

图 3  含有磁心线圈的串联等效电路

由(51)

式可写出:

(52)

式中:

,它代表磁心的Q值。,它代表磁损耗为零时线圈的Q值。

应当指出,QL 既不是空心线圈的品质因数Q0,也不是带有磁心的线圈品质因数Q,它是假定磁心损耗等于零时的线圈品质因数,QL 应等于Q0的μe 倍。为了避免与线圈Q值混淆,我们叫它绕线品质因数QL 。

由(52)式可知,当时Qe >QL ,Q=Qe 。在测试频率较高时,QL 高而Qe 很低,认为仪器测出来的线圈Q可近似当作磁心的品质因数Qe ,如果磁心没有开气隙,磁心的品质因数

Qe 就等于材料的品质因数Qμ

图 4  线圈品质因数Q随频率的变化

在频率较低时,往往Qμ远高于QL ,这时测得线圈Q值近似等于绕线品质因数QL ,根本不是材料的品质因数Qμ。材料的Q值可用下式计算:

                                (53)

2009.01·

专家论坛·EXPERTS FORUM

式中L s 为无气隙磁心绕线的串联等效电感,R s 为总的串联等效电阻,R L 为绕组的等效电阻,可近似用绕线的直流电阻代替。线圈的品质因数Q与磁心的品质因数Qe 及绕线的品质因数QL 随频率的变化如图4所示。图4表明,常值得怀疑的。(54)式中计算QL 和Qc 所用的L 到底是个什么电感很不明确。从(9)式可以清楚的看出,当R s 2与(ωLs )2相比很小时,并联等效电感L P 可近似等于串联电感L s 。当R s 可以和ωLs 相比较时L p 和L s 的值就差别甚远了。(54)线圈的Q值随着频率的变化会出现一个极大值。但是,线圈的品质因数Q总是小于材料的品质因数Qμ,同时也总是小于QL 。

线圈的Q值与材料的Qμ之间的这种看似简单的关系,但各文献之间的见解却存在很大的不同。例如文献[8]和[9],把带有磁心的电感线圈等效为图5的电路。图中r 代表线圈(不包括磁心)的交流电阻,R c 代表磁心的损耗电阻。作者按照图5的电路计算出Q值为:

图 5  带磁心的电感线圈的等效电路

                                (54)

式中: 

     

作者又给出Q值随频率的变化如图6

所示。

图 6  文献[9]给出的电感线圈Q值的频率特性

比较(54)式和我们的(52)式,乍一看形式完全相同,但实质不同。(52)式中计算Qe 和QL 所用的电感是被测线圈的串联等效电感L s ,R c 和R L 都是线圈串联等效电阻的组成部分,R s =R c +R L 如图3所示,读出R s ,再单独测出R L ,材料Q值就可用(53)计算出来。再看(54)式,用图5的等效电路在r 和R c 都不可忽略时能否推出(54)式来是非

·2009.01

式是否认为L p 与L s 没区别,都是L 呢?再说,在实际测量中,R c 和r 是无法分开的,串联测量是L s 和R s ,并联测量是L p 和R p ,现在的测量仪器还无法把铜损r 等效为串联磁损等效为并联同时测出这样的串并混联的电感L 和r 及R c 来。

比较图6和图4,线圈Q值随频率f 的变化,图4中Q的极大值只约等于QL 的一半,而图6中Q的极大值却远远高于QL 或Qc 。我们认为(54)式不管它本身是否正确,但从(54)式的关系出发绝对作不出图6那样的Q与f 曲线来。

有资料[10]用串联等效电路测量,给出磁心的品质因数Q为:

Q=ωLs /R s (55)

�中:L s =L e -L 0,R s =R e -R 0

L e 和R e 分别为带磁心线圈的总串联电感和电阻。L 0和R 0分别为空心线圈的串联电感和电阻。从表面看,(55)式好象是正确的,认为总损耗电阻R e

减去空心线圈的损耗电阻R 0得到磁心的损耗电阻,所以线圈的总电感也理所当然的应该减去空心线圈的电感。我们认为L e 减L 0是凭空想象出来的,是没有理论根据的。总损耗电阻减去空心线圈的损耗电阻剩下的是磁心的等效电阻,这个物理概念是清楚的,是应该的。但是,磁心的储能最大值是由电感量决定的,带有磁心的线圈的电感量不能看成空心线圈的电感量加磁心的电感量,只能说加磁心后可使线圈的电感量增加到无磁心时的多少倍。计算带磁心线圈的Q值,用带磁心时测得的串联等效电感就行了,不应再减去空心线圈的电感L 0了。下面可以证明(55)式是不正确的。

我们把(55)式写成:

Q=ω(L e -L 0) /(R e -R 0)                            (56)

设想有一个以空气为磁心的线圈,它的电感量L e 一定等于L 0,它的等效损耗电阻也一定等于R 0。把其值L e 和R e 代入(56)可得Q=0/0。显然,空气的品质因数等于零分之零是错误的。这说明(55)式和(56)式是不正确的。如果(56)式分子上不减去L 0,得出空气的品质因数等于∞。因

为空气或真空都可以储存磁能,但它们不消耗能量,所以

EXPERTS FORUM·

专家论坛

说空气或真空的品质因数等于无穷大是正确的。这就证明计算磁心或材料Q值时,串联等效电感不应再减去空心线圈电感。

6.2 分布电容对Q 值的影响

在低频测量,匝数又不多,分布电容对Q值的影响可以忽略不计。当测试绕组匝数较多、频率又较高时,分布电容对Q值的影响就比较大,不得不考虑分布电容对Q值的影响。因为磁损耗随着频率的升高而迅速增大,在高的频段,线圈的铜损往往远小于磁损,这时可不考虑线圈的电阻对Q值的影响,只考虑分布电容对Q值的影响。

研究分布电容对Q值的影响,采用图7所示的等效电路比较方便。

图 7  考虑分布电容C 0在并联测时的等效电路

图中L p 和R p 分别为带磁心线圈的并联电感和电阻,C 0为线圈的等效分布电容。电路中L p 与C 0并联后的阻抗很容易求出,其表达式为:

                            (57)

上式可写成:

Z 4

=jωLPe                                      (58)

(58)式中的L Pe 是考虑到分布电容后的并联等效电感,它与线圈本身的并联等效电感L P 的关系为:

                             (59)

我们把没有分布电容C 0时线圈的品质因数记作Qx ,把有分布电容时测得的线圈品质因数记作Qcx 。根据(58)式可写出Qcx 的表达式为:

       (60) 

(60)式中的Qx 表示没有分布电容时的线圈品质因数,在磁心不开气隙,铜损又远小于磁损时,可把Qx 视为材料的品质因数Qμ,由(60)式也可看出,Qx 虽然不会等于零,但随着频率ω的升高,测得的器件品质因数却可以为零。

过零后,Qcx 的值还会随频率升高而增大。

也有文献[11]给出Qcx 与Qx 的关系式为: 

Qcx =Qx (1-ω2L x C 0) (61)

上式的形式与(60)式完全相同,但(61)式中的L x 是线圈的串联等效电感,(60)式中的L p 是线圈的并联等效

电感。如前所述,在频率较高时,并联电感可能远高于串联电感。所以(61)式与(60)式并不是一个意义相同的公式。(61)式的推导是作者给线圈的串联等效电路并联一个分布电容C 0,然后又把它们等效成一个串联电路进行推导。其推导过程不详,说略去二级小量,然后就直接给出了(61)式。(61)式又在被一些人引用[12]。我们认为,(60)式是严格推导得到,如果(60)式没错,就不可能再推导出一个正确的(61)式来。

由(59)式 和(60)式很容易得出:

                           (62)

由(60)式可知,当(1-ω2L p C 0) 之差小于1时测量值Qcx 小于材料的品质因数Qμ,当ω2L p C 0=1时Qcx =0,事实也证明了这一推论。当(1-ω2L p C 0) 之差大于1之后Qcx 就

会大于Qμ。

由以上分析可见,在频率较高测量材料的品质因数Qμ

时,应尽量减小线圈和引线的分布电容。使用多股线测量可减小分布电容又可减小匝间绝缘层的介电损耗。

7 对Q 值的测量实例

如前所述,线圈的Q值,与绕组的铜损、磁心的磁损及绕线的分布电容有关。磁心损耗在不开气隙时认为是材料损耗,而材料损耗又与测试频率有关,在频率不变时,材料中的磁滞损耗随着磁通密度B 的增大近视为线性上升。所以测量材料的Q值就必须规定材料的磁通密度峰值B m为多少。在不加说明时,软磁材料的磁导率一般是指B m限定在0.25mT以下时的相对起始磁导率。同样,如果不加说明,材料的Q值也应指的是B m在不超过0.25mT时的Q值。

在测量材料Q值随频率的变化时,如果保持施加在绕组两端的电压不变,由于测试频率改变,实际上就造成磁通密度改变。这无形之中就掺进了磁通密度变化的影响。要想测得相同磁通密度下的Q值,测试频率变化时,施加在测试绕组两端的电压也应随着改变。最近有一篇研究高B [13]s NiZn铁氧体的文章,文中公布有材料Q

值随频率

2009.01·

专家论坛·EXPERTS FORUM

f 的变化曲线,其曲线簇都在400kHz处出现一个凸起的峰值。其作者只公布测Q值使用的仪器是Agilent 4285A和4284A精密LCR测试仪。我们知道,这些仪器也只能测线圈的Q值,并不能直接测材料的Q值。要想得到材料的Q值需加以修整,到底修正与否,不得而知。不过,Q ̄f 曲线在400kHz处都出现凸起的峰值是值得怀疑的,因为材料Q值等于μ"分之μ',在400kHz时μ'不会突然增大,μ"也不会突然减小。所以,NiZn铁氧体Q值在400kHz出现凸起的极大值是令人怀疑的。如果是仪器直接读出的带磁心线圈的Q值,在400kHz处出现凸起的峰值是非常正常的。

下面我们给出对MnZn铁氧体材料作出的实测数据,把线圈Q值与材料Q值作个比较。

实验样品为φ24.86×φ14.98×7.52的环型MnZn铁氧体磁心,其磁导率约为4300,测试绕组为22匝,其直流电阻约为0.14Ω。测试仪器为Agilent 4284A精密LCR测试仪。固定测试电平为100mv,测量Q值随频率f 的变化,测试数据见表1。

表1中的U L 是测试线圈两端的实际电压,I L 是测试线圈上流过的电流,L S 是串联等效电感,R S 是串联等效电阻,L P 是并联等效电感。Q是由仪器上直接读得的带磁心线圈的品质因数,是修正后得到的材料品质因数。1至250kHz的值是用(53)式修正得到,导线的电阻近似采用的其直流电阻。400kHz 和1000kHz的Qμ是用(62)式修正出来的。表1中的L P 实际上就是线圈的并联等效电感与分布电容C 0并联后的总等效并联电感,也就是(62)式中的L Pe 。(62)

式中的线圈并联电感L P 是用1匝时的并联电感乘以匝数的平方算得的近似值,因为1匝时的分布电容影响可以忽略。

从表1中的实测数据可以看出:

(1)测试仪器给定的测试电平固定后,随着测试频率的增高,被测线圈两端的电压U L 由低变高,最后趋于仪器给定的测试电平。如果要保持磁通密度B 不变测量,线圈两端的电压就应该保持与频率成正比。表1中的I L 随着f 的下降虽然也下降,但比按正比下降的速度要慢,所以频率越低测量时的B 就越高。说明表1不是恒磁通密度测量。表1中的I L 也随f 升高而减小,说明也不是恒磁场下测量。要想测出B 严格不变时Q随f 的变化,就应该在每个频率下算出B 为规定值时该加的电压,然后把线圈两端的测试电压调在计算值上测量。一般都不用这样严格测量。

(2)线圈的Q值随频率f 的变化正如图4所示,在20kHz时有极大值Q为253,这个极大值出现的位置应与分布电容C 0的大小有关。C 0越大,Q出现峰值的频率就越低,若使用线圈的交流电阻修正,算出材料的Qμ值在低频时就更高。尽管如此,材料的Qμ值仍远大于线圈的最大Q值,Q仍没有发现图6所示的那样,Q的峰值会远大于材料的Qμ值。

(3)表中的L P 实际上是L Pe ,它随着频率的升高会出现一个正的峰值,再猛然跳到一个负的峰值,再然后就从负的峰值随频率的增高而趋于零,这从(59)式可以预见得到的。所以在分布电容影响不可忽略时,用仪器测出的并联电感不能用来算并联磁导率

。同样,分布电容影响较大时,

下转97页

表 1  线圈值随频率的变化

151020501002002503004005006008001000

L /mv

10.1345.2971.1689.5498.399.51100100100.1100.1100.1100.1100.1103.2

I L /mA

997.5892.8201.8445.1194.597.4346.4736.2729.7621.7916.9913.8510.118.130

L s /mH

1.6161.6151.6131.6071.6081.6251.7101.7511.7711.7951.8111.8091.7201.48

R s /Ω

0.1620.2840.4410.7982.69.4585.7208.2384.6854.01542247051188610

L P /mH

1.6161.6141.6131.6081.6081.6251.7141.7611.7951.8601.9432.0472.3222.755

62.8179230253194.310825.113.28.685.283.692.761.691.08

Qμ

46235233730820511025.113.25.54

1.33

·2009.01

EXPERTS FORUM·

专家论坛

软磁铁氧体 Q 值的概念和测量

The conception and measurement of softmagnetic ferrite Q Value

绵阳开元磁性材料有限公司  张忠仕,汪伟,陈文,李卫  (四川绵阳 621000)

摘    要:从品质因数值的定义出发,推出计算值的各种解析表达式。分析在测量值的过程中,测试绕组本身的电损耗及 

分布电容对测试结果的影响。另外讨论软磁材料的值与其功耗之间的关系。

关键词:材料的值,损耗因数,分布电容

中图分类号:TM27 文献标识码:B 文章编号:1606-7517(2009)01-8-85

1 引言

关于品质因数Q值这一术语是大家都熟悉的。对于电感线圈的Q值也是众所周知的。但对于材料的Q值,从定义到各种表达式就是五花八门,好像随便拉一个Q值的数(a)串联等效电路

(b)并联等效电路

学表达式都可作为Q值的定义,而Q值的物理慨念却被无图 1  电感线圈的等效电路

形中弄得无影无踪了。本文试图从Q值的定义出发引伸出对于串联等效电路,当通以正弦电流时:

各种Q值的数学表达式。对现行某些资料给出的Q值个别i =I mcos(ωt+φ)                                (1)

表达式提出异议。

每个周期内电感L s 储存能量的最大值为:

本文不涉及Q值的测仪器问题,只讨论在测量Q值时                                    (2)

碰到的具体问题。顺便讨论材料Q值与其功耗之间的关系。

本文中所有公式中的各物理量,除特殊说明外均使用每个周期内R s

消耗的能量为:

国际单位制的基本单位,对各公式不再说明单位。

                            (3)

2 电感线圈的品质因数Q 值

根据前一种定义得:

关于电感线圈的品质因数Q值的最早定义为:在给定                       (4)

频率下,每个周期里,线圈储存能量的最大值与总损耗能对于并联等效电路,如果两端所施加的为正弦电压

量之比的2π倍。以后也有人把线圈的Q值定义为无功功u =U m cos(ωt+ψ)                              (5)

率与有功功率之比[1]。

每个周期电感L p 所储存能量的最大值为:

对于任何一个电感线圈,它在储能放能的工作过程中,                     (6)

都不可避免地或多或少的消耗一些能量。因此,可把电感每个周期内R 线圈等效成一个纯电感和一个纯电阻串联或并联。串联等p 消耗的能量为:

效用L                         (7)

s 和R s 表示,并联等效用L p 和R p 表示,如图1所示。

2009.01·

专家论坛·EXPERTS FORUM

根据前种定义得

                      (8)

由以上推导可知,线圈Q值的表达式可以用串联等效电阻和电感表示,也可以用并联等效电感和电阻表示。根据Q值的后一种定义,也同样可推导出Q值的表达式,与从第一种定义出发推导结果是一样的,即用(4)式或(8)式表达Q值。

对正弦信号来说,当频率给定后,电感线圈的串联电路可以用一个并联电路来等效,串联、并联之间的电感电阻互换关系式为:

                              (9)

                             (10)                            (11)                             (12)

3 材料的品质因数Q 值

谈到软磁材料的品质因数Q值,有很多资料是随便拉一个Q的表达式作为Q的定义,例如用损耗角正切的倒数

[2]

来定义Q。我们认为Q的表达式可以有很多,但它的物理意义还是应当有一个明确的概念。那就是软磁材料的品质因数Q值,它应该用“在交变磁场作用下,材料每周储存的最大能量与损耗能量之比的2π倍”来定义。

从材料Q值的定义出发,导出Q的各种表达式,不象推导电感线圈Q值表达式那样简易,必须先对复数磁导率的概念有一了解。

3.1 复数磁导率的引出

假定材料在外磁化场的作用下被均匀磁化,而磁路闭合,不存在退磁场。而交流磁滞回线是个椭圆,这时磁场H 和磁通密度B 都可用时间的正弦函数来描写:

H =H 4

m cos(ωt+φ)=R e (H e jωt

)                         (13)B =B 4m cos(ωt+φ-δ)=R e (B e jωt

)                        (14)

式中:φ代表H 的初相,δ代表B 的相位比H 落后一个δ角。

H 4

=H m e jφ 是H 的相量。                      (15)B 4=B m e j (φ-δ) 是B 的相量。                     (16)

·2009.01

D和H 之间的关系可用相量法计算。B 和H 都可用旋转速度为ω的相量来表示(见图2)。这时磁导率就变成一

4

个复数μ" 。

图 2  B 和H 的相量图

                (17)  

式中:可称为幅度磁导率。 

    

称为弹性磁导率。

                    

            

称为粘性磁导率。

由图2看出,复数磁导率的实部μ'和μ"虚部都代表4

一定的物理意义。我们可以把相量B 分解为两个相互垂直4

的分量,其中与H 同相的分量B m cosδ与μ0H m 之比为μ',

4

它代表可逆磁化的程度。相位比H 落后的分量B m sinδ与μ0H m 之比是μ",它是由损耗引起的滞后分量。

δ称为损耗角。3.2 磁介质中的磁能密度

在静态磁化时,对于各向同性的铁磁介质来说,磁导率μ

为一个实数,这时介质中的磁能密度为:

           (18)

对于动态磁化过程,当磁场为正弦形,磁通密度为落后磁场一个δ角的正弦形时,磁介质中的磁能密度最大值应为:

                  (19)

(19)式中是点乘积

,即

的同相分量与

H m 之积。

EXPERTS FORUM·

专家论坛

3.3 磁介质磁化一周单位体积中消耗的能量

我们知道,磁介质被磁化一周单位体积中消耗的能量在数值上正好等于磁滞回线的面积,即:

                            (20)

B =B m cos(ωt-δ),如果H =H m cosωt,解出B 与H 的关系,(27)式中的L" 是由复数磁导率的虚部μ"引起的,ωL"是个实数,它对阻抗的贡献类似于一个电阻的作用。(27)式像似于一个电阻和一个纯电感串联的阻抗,我们把ωL"用R s 表示,L' 用L s 表示,由磁心引起的阻抗为

4

z =R s +jωLs                                                            (28)

在B 为纵坐标H 为横坐标的直角坐标系中,B  ̄H 曲线正好是一个椭圆,其面积为

S =πHm B m sinδ

所以 

W =πHm B m sinδ (21)

3.4 材料Q 值的表达式

根据材料的品质因数Q值的定义,导出Q的表达式,

即:

                         (22)

上式表明,材料的品质因数Q值等于其损耗角正切的倒数,所以有些文献上直接说材料的损耗角正切的倒数就是Q值。

由(17)式很容易看出:cosδ与sinδ之比就等于μ'与μ"之比,所以可用下式表达Q值。

                                  (23)

因此,也有文献用复数磁导率的实部μ'与μ"虚部的比给Q值下定义。

根据闭合磁路绕N 匝线圈具有的电感量为:

C1为磁心常数。

4

把μ用μ=μ'-jμ"

代入上式,得到复数电感为:

                    

(24)

                               (25)                               (26)

我们把L' 称为纯电感,平时测量的电感都是L' 。电感元件对正弦电流产生的电抗为

jωL 4

=jω(L' -jL" )

=ωL"+jL' (27)

所以也有人说材料的品质因数为:

                                  (29)

如前所述,一个电阻与一个电感串联的电路阻抗可用一个电阻与一个电感并联来等效。所以磁心绕线构成的线圈也可用电阻与电感并联等效。用并联电感L p 和并联电阻R p

可算出并联磁导率的实部和虚部。L p 、R p 与

之间的关系为:

L P=μ

0N 2/C1 (30)R P=μ0

N 2ω/C1 (31)

由于并联电路的Q值为:

                                 (32)

把(30)和(31)式代入(32)得:

                                      (33)

值得指出的是,有些文献[3、4]

认为

之比等于

Q值,

之比也就理所当然的等于材料的Q值。所

以就给出下面这个表达式:

                                (34)

一般人不去推导就有可能认为上式真的是正确的,特别是具有权威性的电子工业词典和标准,也把(34)式搬来搬去的引用,这就更能迷惑人了。

4 磁心的品质因数Q 值

对于同一种软磁材料构成的具有闭合磁路的磁心,它的磁导率就等于材料的磁导率,当在磁心磁路的某一部分开个小气隙时,磁路就可看作磁心材料与空气隙共同组成,这时磁心的磁导率可称为有效磁导率μe ,它已不等于材料的磁导率,它与材料磁导率μ之间的关系为[5]:

                             (35)

式中:lg 为气隙量,le 为有效磁路长度。 k=A B /A e ,A e 为磁心有效截面积。

AB 为磁心开气隙处的截面积。

2009.01·

专家论坛·EXPERTS FORUM

如果气隙处的截面积等于磁心有效截面积,且μ>1,(34)

式则可写成:

                              (36)

上式为保持磁通密度不变条件下,磁心开气隙后的磁心有效磁导率与材料磁导率μ之间的关系。(36)式表示常说的气隙定律。(36)式可改写成:

线是可以当作椭圆处理的。

5 材料的功耗P cv 与Q 值的关系

软磁材料的功耗一般表征材料在较高磁通密度工作时,单位体积材料所耗费的功率,而材料的品质因数Q值一般表征材料在弱磁化场下工作时的一个特性,它的意义已在前面详述。所以,功耗P cv 和品质因数Q值本来拉不                                  (37)

4

我们知道,串联复数磁导率μs

与并联复数磁导率

之间的关系为:

                                (38)

4

4

把(37)式中的μe 和μ分别换成复数μe 和μ,再利用(38)式表明的关系,即得出:

                    (39)

由上式两端实部、虚部分别相等可知:

                                     (40)

                              (41)

(40)

式表明,磁心开气隙后,并联有效磁导率的虚部

与材料并联磁导率的虚部

相等。(41)式表明磁心开

气隙后,并联磁导率的实部仍遵循气隙定律。

根据Q值的表达式(33),开气隙后磁心的品质因数Qe

为:

                                 (42)

由材料的品质因数Q =

/

及(40)

式得:

,代入(42)式得:                                    

                            (43)  

由(43)式表明,开气隙后,磁心的品质因数Qe 在材料Q

值的基础上按

倍增大。平时测电感L 算得的磁导

率μ就是μ',也就是串联磁导率的实部。

由(43)式很容易知道磁心开气隙后,只要频率不变,磁通密度保持不变,μQ 乘积就不变或比损耗tgδ/μ也不变。另外指出,以上推导用到复数磁导率,而复数磁导率是以B 和H 都是正弦信号建立起来的。所以,以上结论对椭圆磁滞回线是适合的。实际上软磁材料在正弦电压激励下,只要频率不十分低,磁通密度不接近饱和,其交流磁滞回

·2009.01

上关系,低磁通密度下Q高的材料,到高磁通密度工作时功耗也不一定必然较小。但是,如果在相同频率和相同磁通密度下运行,材料的功耗与Q值之间的关系就很容易找

到了。有不少人关心这一问题,现在顺便作一推导。

软磁材料运行在椭圆磁滞回线状态下,被反复磁化,一周内单位体积材料所消耗的能量W 如(21)式所示。而根据定义,功耗P cv 等于在一定磁通密度下运行单位体积材

料所耗散的功率,这就很容易地写出P cv 的表达式。

P cv =fW =πfHm B m sin δ (44)

如果保证材料在恒定正弦磁场下运行,H m 不发生改变,则(44)式可写成:

         

(45)

或                                         

(46)

(45)式表明,当材料的μ"等于零时,意味着B 与H 同相,没有落后分量,磁滞回线变成一条直线,回线面积等于零,

所以功耗等于零,(46)式的解释是,当Q为定值时每周的储能与耗能之比定了,μ'增高意味着储能增加,储能增加耗能也跟着增加,所以功耗也随着增大。

如果保持材料的工作磁通密度幅度不变,(44)式可变成下式:

     

                          (47)

对于(47)式的应用可分为三种情况:

①如果材料使用频率远低于材料的截止频率,μ'2>μ"2

的条件成立,(47)

式可近似写为:

                  (48)

(48)式表明当软磁材料的μ"比μ'起可忽略不计时,其功耗与其μ'Q 积成反比。文献[6]给出几种材料的功耗

EXPERTS FORUM·

专家论坛

和μQ 乘积的实测数据,并分析看出μQ 乘积高的材料功耗较小。该文测试频率为100kHz,在这一频率下,μ'>μ"的条件成立,但测Q值和测P cv 值的磁通密度峰值差别比较大,电阻与一个纯电感串联。在串联等效时,Q=ωLs /R s 。如果线圈带有磁心,式中的R s 是由线圈本身的铜损和磁心的磁损两部份之和组成的。于是Q值的表达式可写成:

不能严格遵从(48)式表明的关系,只能定性的说明μQ 积高的材料功耗往往也可能较低。

②在远高于材料截止频率时,材料的μ'>μ"这一条件可能成立,(47)式可写成:

                        (49)

从(49)式看出,软磁材料的μ"不是在所有的频段都让人憎恶的。到远高于截止频率使用时,μ"变得可爱了,μ"越高,功耗就越小。μ"产生的感应电动势照样可以利用,只不过其相位比μ'产生的电动势差π/2,类似于一个纯电阻起的阻抗作用。但它不等于电阻,利用μ"仍可以在次级回路中得到耦合能量,也就是说,μ"高而μ'趋于1的材料仍可用作变压器磁心。

③如果μ"=μ',(47)式变成:

       

            (Q=1)                  (50)

(50)式表明,当B 的相位比H 落后π/4时,δ等于π/4,这时tgδ=Q=1,μ"=μ',在B m 保持不变时,P cv 与Q值无关。这就告诉我们,铁氧体材料应用在截止频率附近时,μ"虽然出现一个陡峭的峰值,但消耗的功率P cv 可能不出现相应的极大值。

6 Q值的测量

对于电感器件的设计人员,主要关心的是电感线圈的Q值,只要在一定频率下加一定的电压或电流,线圈的Q值符合要求就行。对于磁心材料的研制人员,主要关心的是材料本身的参数Q值,只要在一定频率和磁通密度下的Q值达到技术指标的要求就行。不管你关心哪种Q值,总之都要进行Q值的测量。不管用什么仪器,直接测量出来的都是电感线圈在测试条件下呈现出来的Q值。要想得到材料本身的Q值还应作一定程度的修正。为此,不得不研究材料Q值与线圈Q值之间的关系。以下只限于讨论低磁通密度下Q值的测量问题。

6.1 线圈铜损对Q 值的影响

如前所述,对于一个电感线圈在一定频率下,可以等效为一个纯电感和一个纯电阻并联,也可以等效成一个纯

                                  (51)

等效电路如图3所示。铜线的等效损耗电阻R L 如文献[7]所指出的那样,它包含有线圈直流损耗,由集肤效应和邻近效应产生的损耗,连线损耗等。磁心等效损耗电阻R c 则包括磁滞损耗,涡流损耗和剩余损耗等。

图 3  含有磁心线圈的串联等效电路

由(51)

式可写出:

(52)

式中:

,它代表磁心的Q值。,它代表磁损耗为零时线圈的Q值。

应当指出,QL 既不是空心线圈的品质因数Q0,也不是带有磁心的线圈品质因数Q,它是假定磁心损耗等于零时的线圈品质因数,QL 应等于Q0的μe 倍。为了避免与线圈Q值混淆,我们叫它绕线品质因数QL 。

由(52)式可知,当时Qe >QL ,Q=Qe 。在测试频率较高时,QL 高而Qe 很低,认为仪器测出来的线圈Q可近似当作磁心的品质因数Qe ,如果磁心没有开气隙,磁心的品质因数

Qe 就等于材料的品质因数Qμ

图 4  线圈品质因数Q随频率的变化

在频率较低时,往往Qμ远高于QL ,这时测得线圈Q值近似等于绕线品质因数QL ,根本不是材料的品质因数Qμ。材料的Q值可用下式计算:

                                (53)

2009.01·

专家论坛·EXPERTS FORUM

式中L s 为无气隙磁心绕线的串联等效电感,R s 为总的串联等效电阻,R L 为绕组的等效电阻,可近似用绕线的直流电阻代替。线圈的品质因数Q与磁心的品质因数Qe 及绕线的品质因数QL 随频率的变化如图4所示。图4表明,常值得怀疑的。(54)式中计算QL 和Qc 所用的L 到底是个什么电感很不明确。从(9)式可以清楚的看出,当R s 2与(ωLs )2相比很小时,并联等效电感L P 可近似等于串联电感L s 。当R s 可以和ωLs 相比较时L p 和L s 的值就差别甚远了。(54)线圈的Q值随着频率的变化会出现一个极大值。但是,线圈的品质因数Q总是小于材料的品质因数Qμ,同时也总是小于QL 。

线圈的Q值与材料的Qμ之间的这种看似简单的关系,但各文献之间的见解却存在很大的不同。例如文献[8]和[9],把带有磁心的电感线圈等效为图5的电路。图中r 代表线圈(不包括磁心)的交流电阻,R c 代表磁心的损耗电阻。作者按照图5的电路计算出Q值为:

图 5  带磁心的电感线圈的等效电路

                                (54)

式中: 

     

作者又给出Q值随频率的变化如图6

所示。

图 6  文献[9]给出的电感线圈Q值的频率特性

比较(54)式和我们的(52)式,乍一看形式完全相同,但实质不同。(52)式中计算Qe 和QL 所用的电感是被测线圈的串联等效电感L s ,R c 和R L 都是线圈串联等效电阻的组成部分,R s =R c +R L 如图3所示,读出R s ,再单独测出R L ,材料Q值就可用(53)计算出来。再看(54)式,用图5的等效电路在r 和R c 都不可忽略时能否推出(54)式来是非

·2009.01

式是否认为L p 与L s 没区别,都是L 呢?再说,在实际测量中,R c 和r 是无法分开的,串联测量是L s 和R s ,并联测量是L p 和R p ,现在的测量仪器还无法把铜损r 等效为串联磁损等效为并联同时测出这样的串并混联的电感L 和r 及R c 来。

比较图6和图4,线圈Q值随频率f 的变化,图4中Q的极大值只约等于QL 的一半,而图6中Q的极大值却远远高于QL 或Qc 。我们认为(54)式不管它本身是否正确,但从(54)式的关系出发绝对作不出图6那样的Q与f 曲线来。

有资料[10]用串联等效电路测量,给出磁心的品质因数Q为:

Q=ωLs /R s (55)

�中:L s =L e -L 0,R s =R e -R 0

L e 和R e 分别为带磁心线圈的总串联电感和电阻。L 0和R 0分别为空心线圈的串联电感和电阻。从表面看,(55)式好象是正确的,认为总损耗电阻R e

减去空心线圈的损耗电阻R 0得到磁心的损耗电阻,所以线圈的总电感也理所当然的应该减去空心线圈的电感。我们认为L e 减L 0是凭空想象出来的,是没有理论根据的。总损耗电阻减去空心线圈的损耗电阻剩下的是磁心的等效电阻,这个物理概念是清楚的,是应该的。但是,磁心的储能最大值是由电感量决定的,带有磁心的线圈的电感量不能看成空心线圈的电感量加磁心的电感量,只能说加磁心后可使线圈的电感量增加到无磁心时的多少倍。计算带磁心线圈的Q值,用带磁心时测得的串联等效电感就行了,不应再减去空心线圈的电感L 0了。下面可以证明(55)式是不正确的。

我们把(55)式写成:

Q=ω(L e -L 0) /(R e -R 0)                            (56)

设想有一个以空气为磁心的线圈,它的电感量L e 一定等于L 0,它的等效损耗电阻也一定等于R 0。把其值L e 和R e 代入(56)可得Q=0/0。显然,空气的品质因数等于零分之零是错误的。这说明(55)式和(56)式是不正确的。如果(56)式分子上不减去L 0,得出空气的品质因数等于∞。因

为空气或真空都可以储存磁能,但它们不消耗能量,所以

EXPERTS FORUM·

专家论坛

说空气或真空的品质因数等于无穷大是正确的。这就证明计算磁心或材料Q值时,串联等效电感不应再减去空心线圈电感。

6.2 分布电容对Q 值的影响

在低频测量,匝数又不多,分布电容对Q值的影响可以忽略不计。当测试绕组匝数较多、频率又较高时,分布电容对Q值的影响就比较大,不得不考虑分布电容对Q值的影响。因为磁损耗随着频率的升高而迅速增大,在高的频段,线圈的铜损往往远小于磁损,这时可不考虑线圈的电阻对Q值的影响,只考虑分布电容对Q值的影响。

研究分布电容对Q值的影响,采用图7所示的等效电路比较方便。

图 7  考虑分布电容C 0在并联测时的等效电路

图中L p 和R p 分别为带磁心线圈的并联电感和电阻,C 0为线圈的等效分布电容。电路中L p 与C 0并联后的阻抗很容易求出,其表达式为:

                            (57)

上式可写成:

Z 4

=jωLPe                                      (58)

(58)式中的L Pe 是考虑到分布电容后的并联等效电感,它与线圈本身的并联等效电感L P 的关系为:

                             (59)

我们把没有分布电容C 0时线圈的品质因数记作Qx ,把有分布电容时测得的线圈品质因数记作Qcx 。根据(58)式可写出Qcx 的表达式为:

       (60) 

(60)式中的Qx 表示没有分布电容时的线圈品质因数,在磁心不开气隙,铜损又远小于磁损时,可把Qx 视为材料的品质因数Qμ,由(60)式也可看出,Qx 虽然不会等于零,但随着频率ω的升高,测得的器件品质因数却可以为零。

过零后,Qcx 的值还会随频率升高而增大。

也有文献[11]给出Qcx 与Qx 的关系式为: 

Qcx =Qx (1-ω2L x C 0) (61)

上式的形式与(60)式完全相同,但(61)式中的L x 是线圈的串联等效电感,(60)式中的L p 是线圈的并联等效

电感。如前所述,在频率较高时,并联电感可能远高于串联电感。所以(61)式与(60)式并不是一个意义相同的公式。(61)式的推导是作者给线圈的串联等效电路并联一个分布电容C 0,然后又把它们等效成一个串联电路进行推导。其推导过程不详,说略去二级小量,然后就直接给出了(61)式。(61)式又在被一些人引用[12]。我们认为,(60)式是严格推导得到,如果(60)式没错,就不可能再推导出一个正确的(61)式来。

由(59)式 和(60)式很容易得出:

                           (62)

由(60)式可知,当(1-ω2L p C 0) 之差小于1时测量值Qcx 小于材料的品质因数Qμ,当ω2L p C 0=1时Qcx =0,事实也证明了这一推论。当(1-ω2L p C 0) 之差大于1之后Qcx 就

会大于Qμ。

由以上分析可见,在频率较高测量材料的品质因数Qμ

时,应尽量减小线圈和引线的分布电容。使用多股线测量可减小分布电容又可减小匝间绝缘层的介电损耗。

7 对Q 值的测量实例

如前所述,线圈的Q值,与绕组的铜损、磁心的磁损及绕线的分布电容有关。磁心损耗在不开气隙时认为是材料损耗,而材料损耗又与测试频率有关,在频率不变时,材料中的磁滞损耗随着磁通密度B 的增大近视为线性上升。所以测量材料的Q值就必须规定材料的磁通密度峰值B m为多少。在不加说明时,软磁材料的磁导率一般是指B m限定在0.25mT以下时的相对起始磁导率。同样,如果不加说明,材料的Q值也应指的是B m在不超过0.25mT时的Q值。

在测量材料Q值随频率的变化时,如果保持施加在绕组两端的电压不变,由于测试频率改变,实际上就造成磁通密度改变。这无形之中就掺进了磁通密度变化的影响。要想测得相同磁通密度下的Q值,测试频率变化时,施加在测试绕组两端的电压也应随着改变。最近有一篇研究高B [13]s NiZn铁氧体的文章,文中公布有材料Q

值随频率

2009.01·

专家论坛·EXPERTS FORUM

f 的变化曲线,其曲线簇都在400kHz处出现一个凸起的峰值。其作者只公布测Q值使用的仪器是Agilent 4285A和4284A精密LCR测试仪。我们知道,这些仪器也只能测线圈的Q值,并不能直接测材料的Q值。要想得到材料的Q值需加以修整,到底修正与否,不得而知。不过,Q ̄f 曲线在400kHz处都出现凸起的峰值是值得怀疑的,因为材料Q值等于μ"分之μ',在400kHz时μ'不会突然增大,μ"也不会突然减小。所以,NiZn铁氧体Q值在400kHz出现凸起的极大值是令人怀疑的。如果是仪器直接读出的带磁心线圈的Q值,在400kHz处出现凸起的峰值是非常正常的。

下面我们给出对MnZn铁氧体材料作出的实测数据,把线圈Q值与材料Q值作个比较。

实验样品为φ24.86×φ14.98×7.52的环型MnZn铁氧体磁心,其磁导率约为4300,测试绕组为22匝,其直流电阻约为0.14Ω。测试仪器为Agilent 4284A精密LCR测试仪。固定测试电平为100mv,测量Q值随频率f 的变化,测试数据见表1。

表1中的U L 是测试线圈两端的实际电压,I L 是测试线圈上流过的电流,L S 是串联等效电感,R S 是串联等效电阻,L P 是并联等效电感。Q是由仪器上直接读得的带磁心线圈的品质因数,是修正后得到的材料品质因数。1至250kHz的值是用(53)式修正得到,导线的电阻近似采用的其直流电阻。400kHz 和1000kHz的Qμ是用(62)式修正出来的。表1中的L P 实际上就是线圈的并联等效电感与分布电容C 0并联后的总等效并联电感,也就是(62)式中的L Pe 。(62)

式中的线圈并联电感L P 是用1匝时的并联电感乘以匝数的平方算得的近似值,因为1匝时的分布电容影响可以忽略。

从表1中的实测数据可以看出:

(1)测试仪器给定的测试电平固定后,随着测试频率的增高,被测线圈两端的电压U L 由低变高,最后趋于仪器给定的测试电平。如果要保持磁通密度B 不变测量,线圈两端的电压就应该保持与频率成正比。表1中的I L 随着f 的下降虽然也下降,但比按正比下降的速度要慢,所以频率越低测量时的B 就越高。说明表1不是恒磁通密度测量。表1中的I L 也随f 升高而减小,说明也不是恒磁场下测量。要想测出B 严格不变时Q随f 的变化,就应该在每个频率下算出B 为规定值时该加的电压,然后把线圈两端的测试电压调在计算值上测量。一般都不用这样严格测量。

(2)线圈的Q值随频率f 的变化正如图4所示,在20kHz时有极大值Q为253,这个极大值出现的位置应与分布电容C 0的大小有关。C 0越大,Q出现峰值的频率就越低,若使用线圈的交流电阻修正,算出材料的Qμ值在低频时就更高。尽管如此,材料的Qμ值仍远大于线圈的最大Q值,Q仍没有发现图6所示的那样,Q的峰值会远大于材料的Qμ值。

(3)表中的L P 实际上是L Pe ,它随着频率的升高会出现一个正的峰值,再猛然跳到一个负的峰值,再然后就从负的峰值随频率的增高而趋于零,这从(59)式可以预见得到的。所以在分布电容影响不可忽略时,用仪器测出的并联电感不能用来算并联磁导率

。同样,分布电容影响较大时,

下转97页

表 1  线圈值随频率的变化

151020501002002503004005006008001000

L /mv

10.1345.2971.1689.5498.399.51100100100.1100.1100.1100.1100.1103.2

I L /mA

997.5892.8201.8445.1194.597.4346.4736.2729.7621.7916.9913.8510.118.130

L s /mH

1.6161.6151.6131.6071.6081.6251.7101.7511.7711.7951.8111.8091.7201.48

R s /Ω

0.1620.2840.4410.7982.69.4585.7208.2384.6854.01542247051188610

L P /mH

1.6161.6141.6131.6081.6081.6251.7141.7611.7951.8601.9432.0472.3222.755

62.8179230253194.310825.113.28.685.283.692.761.691.08

Qμ

46235233730820511025.113.25.54

1.33

·2009.01


相关内容

  • 软磁铁氧体磁芯形状命名及标准
  • 软磁铁氧体磁芯形状与尺寸标准 软磁铁氧体磁芯形状与尺寸标准 1 软磁铁氧体磁芯形状 软磁铁氧体磁芯形状 软磁铁氧体是软磁铁氧体材料和软磁铁氧体磁芯的总称.软磁铁氧体磁芯是用软磁铁氧体材料制成的元件或零件,或是由软磁铁氧体材料根据不同形式组成的磁路.磁芯的形状基本上由成型(形)模具决定,而成型(形)模 ...

  • 软磁材料磁性能测量的方法[大比特论坛]
  • 软磁材料磁性能测量的方法软磁材料磁性能测量软磁材料品种很多.因使用场合不同,需要测量的参数也十分的复杂:同一参数的测量和方法又很多,是磁性能测量中最为重要的部分. 一.直流磁特性的测量 软磁材料的支流参数根据材料不同有不同的测试要求.对电工纯铁和硅钢,主要有标准磁场强度下的幅值磁感应强度Bm,例如B ...

  • 软磁材料和硬磁材料
  • 1 软磁材料和硬磁材料 软磁性材料 特点:导磁率高.剩磁弱.在较软的外磁场的作用下就能产生较强的磁感应强度,而且随着外磁场的增强,很快达到磁饱和状态.当外磁场除去后,它的磁性就基本消失.软磁性材料的磁性能物理及机械特性参考文献8. 常用的有:电工用纯铁和硅钢片 1.电工用纯铁:一般用于直流磁场,其中 ...

  • 软磁铁氧体磁芯现下的市场形态
  • 软磁铁氧体磁芯现下的市场形态 发布时间:2014-7-7 9:59:17 浏览次数:16 软磁铁氧体磁性材料和软磁铁氧体磁芯统称软磁铁氧体,长期以来软磁铁氧体产量的增长是建立在其生产技术和应用技术共同发展的基础之上的.电子技术的飞速发展,对软磁铁氧体器件,如电感器.变压器.滤波器等不断提出了各种新的 ...

  • 流年搁浅 47621--铁磁质的特性及其应用--正文
  • 铁磁质的特性及其应用 摘要:铁磁质材料被普遍的应用于人们的社会生活和生产中.铁磁质是一种性能特异.用途广泛的磁介质,其主要有三个特点:高导磁率.非线性和磁滞.工程技术中仪器设备,大的如发电机和变压器,小的如电表铁心和录音机磁头等.都要用到铁磁材料.对铁磁质特性研究,能够指导它的应用,为现代技术的发展 ...

  • 非晶纳米晶软磁材料的发展及应用
  • 第14卷 第4期金属功能材料Vol 114, No 14 2007年8月Metallic Functional Materials August , 2007 非晶纳米晶软磁材料的发展及应用 李智勇1, 陈孝文2, 张德芬2 (1. 湖北信息工程学校机械专业, 湖北 荆门 448000; 2. 西南 ...

  • 磁性材料家族的新成员_高分子有机磁性材料
  • 1999年12月磁性材料及器件・31・ 磁性材料家族的新成员 Ξ --高分子有机磁性材料 钟昭明 (国营第八九九厂 四川宜宾 644005) 摘 要 料--高分子有机磁性材料的主要性能特点..些问题. 关键词 合物 beroftheMagneticMaterials'Family:High Poly ...

  • 功能材料概论个人整理版(考试专用)
  • 第一章 功能材料概论 功能材料的定义 功能材料指以特殊的电.磁.声.光.热.力.化学及生物学等性能作为主要性能指标的一类材料 . 功能材料的特征 1)功能材料的功能对应于材料的微观结构和微观物体的运动,是最本质的特征. 2)功能材料的聚集态和形态非常多样化,除晶态外,还有气态.液态.液晶态.非晶态. ...

  • 2017年软磁材料市场现状与发展趋势预测 (目录)
  • 中国软磁材料市场现状调研与发展趋势分 析报告(2017-2022年) 报告编号:2055023 行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容: 一份专业的软磁材料行业研究报告(2017年软磁材料市场现状与发展趋势预测),注重指导企业或投 ...