管道压力损失计算

冷热水管道系统的压力损失

无论在供暖、制冷或生活冷热水系统,管道是传送流量和热量必不可少的部分。计算管道系统的压力损失有助于: (1) 设选择正确的管径。

(2) 设选择相应的循环泵和末端设备。也就是让系统水循环起来并且达到热能传送目的

的设备。

如果不进行准确的管道选型,会导致系统出现噪音、腐蚀(比如管道阀门口径偏小)、严重的能耗及设备的浪费(比如管道阀门水泵等偏大)等。

管道系统的水在流动时遇到阻力而造成其压力下降,通常将之简称为压降或压损。

压力损失分为延程压力损失和局部压力损失:

— 延程压力损失指在管道中连续的、一致的压力损失。

— 局部压力损失指管道系统内特殊的部件,由于其改变了水流的方向,或者使局部水流通道变窄(比如缩径、三通、接头、阀门、过滤器等)所造成的非连续性的压力损失。

以下我们将探讨如何计算这两种压力损失值。在本章节内我们只讨论流动介质为水的管道系统。

一、 延程压力损失的计算方式

对于每一米管道,其水流的压力损失可按以下公式计算

其中:r=延程压力损失 Pa/m Fa=摩擦阻力系数

ρ=水的密度 kg/m3

v=水平均流速 m/s

D=管道内径 m

管径、流速及密度容易确定,而摩擦阻力系数的则取决于以下两个方面: (1)水流方式,(2)管道内壁粗糙程度

表1:水密度与温度对应值 水温 °C 1.1

水在管道内的流动方式分为3种:

—分层式,指水粒子流动轨迹平行有序(流动方式平缓有规律) —湍流式,指水粒子无序运动及随时变化(流动方式紊乱、不稳定) —过渡式,指介于分层式和湍流式之间的流动方式。

流动方式通过雷诺数(Reynolds Number)予以确定:

密度 kg/m3 水流方式

其中:

Re=雷诺数

v=流速 m/s

D=管道内径 m ט=水温及水流动力粘度,m 2/s

表 2:水温及相关水流动力粘度 水温

m 2°E

-6 -6 -6 -6 -6 -6 -6 -6 -6

通过公式2计算出雷诺数就可判断水流方式: Re

Re>2,500: 湍流式流动

由于过渡式流动方式的雷诺数范围较窄,且其流动方式多变,因此大多将大于2,000的归为湍流式流动。将雷诺数2,000带入以下公式计算出的流速就是分层式流动和湍流式流动的界线

由公式(3)可以看出,管径与流速是成反比的,也就是说,管径越小,其流速也更高。 表1简单地示范了几个口径在Re=2,000时的流速。 表3 界定水流方式的速度 温度

粘度 m 2/s

-6 -6 80°C

0.39×10-6

1/2″ 16.4mm

1″ 27.4 mm

2″ 53.2 mm

1.2

管道内壁粗糙程度

管道内壁的粗糙程度分为:

(1) 低粗糙程度:多指铜管、不锈钢管和塑料管道。 (2) 中粗糙程度:多指黑钢管、镀锌钢管 1. 3 摩擦阻力系数Fa 的计算方式

在分层式流动方式下,Fa 的计算公式为

对于湍流式流动方式,以前常使用Colebrook 公式。然而,这个公式计算较为复杂。现在则普遍使用Blasius 公式:

针对低粗糙程度管道,公式为

针对中粗糙程度管道,公式为

1.3

湍流式流动延程压力损失的计算方法

将以上计算出的Fa 值(公式4) 代入公式(1)中,则可以根据其它已知的数据计算出延程阻力。

在实际计算时,往往更多地将流速转换为流量,因此公式也相应地改变为以下公式:

r=1,153,983 x ט x ρ x G / D4 公式 7

其中:

r=延程阻力: mm/m ט=动力粘度: m 2/s ρ=水密度: kg/ m3 G=流量: l/h D=管内径: mm

分层流动方式的流速较低,往往只存在于以下两种情况:

1,没有循环泵的自然循环系统,因为没有强制循环所以流速较低; 2,输送燃油的管道,由于其粘度较高因此流速较低。

1. 4 分层式流动延程压力损失的计算方法

将以上计算出的Fa 值(公式5, 6)代入公式(1)中,则可以根据其它已知的数据计算出延程阻力。

在实际计算时,往往更多地将流速转换为流量,因此公式也相应地改变为以下公式:

r =14.68×ν0.25×ρ×G1.75/D4.75 公式 8

r =3.3×ν0.13×ρ×G1.87/D5.01 公式 9

其中:

r=延程阻力: mm/m ט=动力粘度: m 2/s ρ=水密度: kg/ m3 G=流量: l/h D=管内径: mm

公式8针对低粗糙度管道,公式9针对中粗糙度管道。

湍流式流动方式的低粗糙度管道主要指铜管和各类塑料管;而中粗糙度管道则指各类钢管。

1. 5 管道延程压力损失的图表图示

以上所讲到的计算管道阻力的公式在实际运用时往往不是很方便。因此我们提供了各种管道不同管径的压力图表和曲线图,以便能迅速、直观地得到数据。

延程压力损失(r )表

这种表根据管道管径和流量提供相应的压力损失(r )值。同时,在流量值下也注明了流速,以便能了解此流速是否过高而会带来噪音和管道腐蚀。

同时,表格还根据10°C,50°C,80°C这三个不同水温制定,因为在不同水温下的压力损失也不一样。 比如说,内径20mm 的PEX 管,在10°C时,其延程压力损失为r=39.4mm/m, 而在80°C时,其压力损失为28.3mm/m.

由于篇幅关系,我们在这儿只提供了一个水温在80°C时钢管的延程压力损失表仅供参考。更为详细的表格可向我公司技术部咨询。见表4

延程压力损失(r )曲线图

同样的压力损失、流量、管径、流速的数据也可以用曲线图示的方法表达。见图1

二、 局部压力损失计算方法

局部压力损失指管道系统内一些元件, 如阀门、弯头、三通、缩径、接头、过滤器等,它们造成水流方向或流通面积改变,因此在其元件内部所产生的压力损失。计算局部压力损失分为以下3种方法:

2.1 直接计算法

根据局部元件的形状,大小而确定阻力系数,然后再使用相关的公式:

Z=局部压力损失 Pa ξ =局部阻力系数

ρ=水密度 kg/ m3 v=水流速 m/s

如果Z 用mm 表示,则转换公式为:

其中,局部阻力系数ξ可根据相关资料查阅(可参考CALEFFI 技术手册1)

2.2 额定流量计算法

这种方法通常运用于阀门的阻力计算。它根据制造厂家在实验室得出的, 并由第三方检测机构认证的, 在水流通过阀门时,阀前与阀后压力差1bar 或0.01bar 时的流量值为额定流量进行计算。

KV :阀前后压差为1bar 的额定流量计算公式:

ΔP=(G / KV)² 公式 12

ΔP =局部压力损失 bar G=流量: m 3/h

KV=额定流量(压差=1bar) m 3/h

KV 值的计算方法一般运用于口径和流量较大的阀门。

KV0.01: 阀前后压差为0.01bar 的额定流量计算公式:

ΔP= 102 x(G / KV0.01)² 公式 13

ΔP =局部压力损失 mm G=流量 l/h

KV 0.01=额定流量(压差=0.01bar) l/h

KV0.01值的计算方法一般运用于口径及流量相对较小的阀门.

范例: 计算一个口径为1/2”的手动温控阀在流量600 l/h时的压力损失值, KV0.01值:399 l/h:

计算: ΔP=102 x (G/KV0.01)²= 102 x (600/399)²=271mm

2.3 对应管径计算法

这种方法是:将每个部件局部的压力损失转换为相对应的一段管道作为计算,即一段管道的压力损失等于这一部分的压力损失。

这种方法较为简便,但是它不能准确地反应压力损失,只能根据近似值估计。因此并未广泛地得到使用。

在下一期的章节里, 我们将更为详细地讨论管道系统内流量与压力损失的变化关系, 及其平衡方式. 。

参考文献:Caleffi Manual 2: Design Principles of Hydronic Heating Systems

冷热水管道系统的压力损失

无论在供暖、制冷或生活冷热水系统,管道是传送流量和热量必不可少的部分。计算管道系统的压力损失有助于: (1) 设选择正确的管径。

(2) 设选择相应的循环泵和末端设备。也就是让系统水循环起来并且达到热能传送目的

的设备。

如果不进行准确的管道选型,会导致系统出现噪音、腐蚀(比如管道阀门口径偏小)、严重的能耗及设备的浪费(比如管道阀门水泵等偏大)等。

管道系统的水在流动时遇到阻力而造成其压力下降,通常将之简称为压降或压损。

压力损失分为延程压力损失和局部压力损失:

— 延程压力损失指在管道中连续的、一致的压力损失。

— 局部压力损失指管道系统内特殊的部件,由于其改变了水流的方向,或者使局部水流通道变窄(比如缩径、三通、接头、阀门、过滤器等)所造成的非连续性的压力损失。

以下我们将探讨如何计算这两种压力损失值。在本章节内我们只讨论流动介质为水的管道系统。

一、 延程压力损失的计算方式

对于每一米管道,其水流的压力损失可按以下公式计算

其中:r=延程压力损失 Pa/m Fa=摩擦阻力系数

ρ=水的密度 kg/m3

v=水平均流速 m/s

D=管道内径 m

管径、流速及密度容易确定,而摩擦阻力系数的则取决于以下两个方面: (1)水流方式,(2)管道内壁粗糙程度

表1:水密度与温度对应值 水温 °C 1.1

水在管道内的流动方式分为3种:

—分层式,指水粒子流动轨迹平行有序(流动方式平缓有规律) —湍流式,指水粒子无序运动及随时变化(流动方式紊乱、不稳定) —过渡式,指介于分层式和湍流式之间的流动方式。

流动方式通过雷诺数(Reynolds Number)予以确定:

密度 kg/m3 水流方式

其中:

Re=雷诺数

v=流速 m/s

D=管道内径 m ט=水温及水流动力粘度,m 2/s

表 2:水温及相关水流动力粘度 水温

m 2°E

-6 -6 -6 -6 -6 -6 -6 -6 -6

通过公式2计算出雷诺数就可判断水流方式: Re

Re>2,500: 湍流式流动

由于过渡式流动方式的雷诺数范围较窄,且其流动方式多变,因此大多将大于2,000的归为湍流式流动。将雷诺数2,000带入以下公式计算出的流速就是分层式流动和湍流式流动的界线

由公式(3)可以看出,管径与流速是成反比的,也就是说,管径越小,其流速也更高。 表1简单地示范了几个口径在Re=2,000时的流速。 表3 界定水流方式的速度 温度

粘度 m 2/s

-6 -6 80°C

0.39×10-6

1/2″ 16.4mm

1″ 27.4 mm

2″ 53.2 mm

1.2

管道内壁粗糙程度

管道内壁的粗糙程度分为:

(1) 低粗糙程度:多指铜管、不锈钢管和塑料管道。 (2) 中粗糙程度:多指黑钢管、镀锌钢管 1. 3 摩擦阻力系数Fa 的计算方式

在分层式流动方式下,Fa 的计算公式为

对于湍流式流动方式,以前常使用Colebrook 公式。然而,这个公式计算较为复杂。现在则普遍使用Blasius 公式:

针对低粗糙程度管道,公式为

针对中粗糙程度管道,公式为

1.3

湍流式流动延程压力损失的计算方法

将以上计算出的Fa 值(公式4) 代入公式(1)中,则可以根据其它已知的数据计算出延程阻力。

在实际计算时,往往更多地将流速转换为流量,因此公式也相应地改变为以下公式:

r=1,153,983 x ט x ρ x G / D4 公式 7

其中:

r=延程阻力: mm/m ט=动力粘度: m 2/s ρ=水密度: kg/ m3 G=流量: l/h D=管内径: mm

分层流动方式的流速较低,往往只存在于以下两种情况:

1,没有循环泵的自然循环系统,因为没有强制循环所以流速较低; 2,输送燃油的管道,由于其粘度较高因此流速较低。

1. 4 分层式流动延程压力损失的计算方法

将以上计算出的Fa 值(公式5, 6)代入公式(1)中,则可以根据其它已知的数据计算出延程阻力。

在实际计算时,往往更多地将流速转换为流量,因此公式也相应地改变为以下公式:

r =14.68×ν0.25×ρ×G1.75/D4.75 公式 8

r =3.3×ν0.13×ρ×G1.87/D5.01 公式 9

其中:

r=延程阻力: mm/m ט=动力粘度: m 2/s ρ=水密度: kg/ m3 G=流量: l/h D=管内径: mm

公式8针对低粗糙度管道,公式9针对中粗糙度管道。

湍流式流动方式的低粗糙度管道主要指铜管和各类塑料管;而中粗糙度管道则指各类钢管。

1. 5 管道延程压力损失的图表图示

以上所讲到的计算管道阻力的公式在实际运用时往往不是很方便。因此我们提供了各种管道不同管径的压力图表和曲线图,以便能迅速、直观地得到数据。

延程压力损失(r )表

这种表根据管道管径和流量提供相应的压力损失(r )值。同时,在流量值下也注明了流速,以便能了解此流速是否过高而会带来噪音和管道腐蚀。

同时,表格还根据10°C,50°C,80°C这三个不同水温制定,因为在不同水温下的压力损失也不一样。 比如说,内径20mm 的PEX 管,在10°C时,其延程压力损失为r=39.4mm/m, 而在80°C时,其压力损失为28.3mm/m.

由于篇幅关系,我们在这儿只提供了一个水温在80°C时钢管的延程压力损失表仅供参考。更为详细的表格可向我公司技术部咨询。见表4

延程压力损失(r )曲线图

同样的压力损失、流量、管径、流速的数据也可以用曲线图示的方法表达。见图1

二、 局部压力损失计算方法

局部压力损失指管道系统内一些元件, 如阀门、弯头、三通、缩径、接头、过滤器等,它们造成水流方向或流通面积改变,因此在其元件内部所产生的压力损失。计算局部压力损失分为以下3种方法:

2.1 直接计算法

根据局部元件的形状,大小而确定阻力系数,然后再使用相关的公式:

Z=局部压力损失 Pa ξ =局部阻力系数

ρ=水密度 kg/ m3 v=水流速 m/s

如果Z 用mm 表示,则转换公式为:

其中,局部阻力系数ξ可根据相关资料查阅(可参考CALEFFI 技术手册1)

2.2 额定流量计算法

这种方法通常运用于阀门的阻力计算。它根据制造厂家在实验室得出的, 并由第三方检测机构认证的, 在水流通过阀门时,阀前与阀后压力差1bar 或0.01bar 时的流量值为额定流量进行计算。

KV :阀前后压差为1bar 的额定流量计算公式:

ΔP=(G / KV)² 公式 12

ΔP =局部压力损失 bar G=流量: m 3/h

KV=额定流量(压差=1bar) m 3/h

KV 值的计算方法一般运用于口径和流量较大的阀门。

KV0.01: 阀前后压差为0.01bar 的额定流量计算公式:

ΔP= 102 x(G / KV0.01)² 公式 13

ΔP =局部压力损失 mm G=流量 l/h

KV 0.01=额定流量(压差=0.01bar) l/h

KV0.01值的计算方法一般运用于口径及流量相对较小的阀门.

范例: 计算一个口径为1/2”的手动温控阀在流量600 l/h时的压力损失值, KV0.01值:399 l/h:

计算: ΔP=102 x (G/KV0.01)²= 102 x (600/399)²=271mm

2.3 对应管径计算法

这种方法是:将每个部件局部的压力损失转换为相对应的一段管道作为计算,即一段管道的压力损失等于这一部分的压力损失。

这种方法较为简便,但是它不能准确地反应压力损失,只能根据近似值估计。因此并未广泛地得到使用。

在下一期的章节里, 我们将更为详细地讨论管道系统内流量与压力损失的变化关系, 及其平衡方式. 。

参考文献:Caleffi Manual 2: Design Principles of Hydronic Heating Systems


相关内容

  • 医院医用气体管路的设计计算(2014)
  • 医院医用气体管路的设计计算 航空部第六0四研究所 高级工程师 袁明华 关键词:Medical gas医用气体 Piping design管道设计 本文根据GB50751-2012 <医用气体工程技术规范>.GB50333-2002 <医院洁净手术部建筑技术规范>.YFB001 ...

  • 节流装置设计计算结果
  • 节流装置设计计算结果 节流件名称:标准孔板 取压方式:法兰 数量: 委托数据 流 体 名 称 最大流量 流 量 混合气体 计算结果 主给水 绝对压力 密度 粘度 等熵指数 压缩系数 最大 常用 最小 7.901 Mpa 921.05㎏/m3 187×10p a・s 1. 9×10 1.3×10 0. ...

  • 燃气设计说明书
  • 河南城建学院 <燃气输配>课程设计说明书 题 目: 河南城建学院小区燃气 管网设计 学生姓名: 学 号: 系部名称: 建筑环境与能源工程系 指导老师: 马良涛 王旭涛 鞠睿 完成时间: 2010年6月18日 二○一○年六月十八日 目 录 一.设计目的------------------- ...

  • 管道流量计算
  • 请教:已知管道直径D ,管道内压力P ,能否求管道中流体的流速和流量?怎么求 已知管道直径D ,管道内压力P ,还不能求管道中流体的流速和流量.你设想管道末端有一 阀门,并关闭的管内有压力P ,可管内流量为零.管内流量不是由管内压力决定,而是由管 内沿途压力下降坡度决定的.所以一定要说明管道的长度和 ...

  • 压缩空气管道长度和压力损失的简易计算
  • 从空压机排出到用气设备的压缩空气的压力,总是无法得到充分的利用,造成能源白白浪费.这些浪费主要表现在输气管道.阀门.弯道.气流改变方向和节流上的阻力损失,阻力损失转化成热量散发在大气中,造成压力降.因此,必须有一种简易实用的计算方法,计算管道长度和压力损失,使阻力损失最小而投资最经济.我们可以使用以 ...

  • 燃气课程设计
  • 第1章 建筑概况及基础资料 1.1 工程名称 ----------------------------------------------------------- 3 1.2 建筑概况 -------------------------------------------------------- ...

  • 管道内压力和流速的关系
  • 管道内压力和流速的关系 一般计算管线的需求,主要在于求取流体在管内的流量与管径大小.这个结果从流体力学的 ※ Energy equation ※ Bernoullie equation - 等可以计算一个参考值. 吾等更进一步,藉 ☆ Hazen & Williams equation ☆ ...

  • 大气污染课程设计
  • 大气污染控制工程课程设计 题目: 某白合金浇铸车间烟气收集系统方案设计 目 录 前 言„„„„„„„„„„„„„„„„„„„„„„‥„„„„„„„„3 第一章 工程概况„„„„„„„„„„„„„„„„„„„„„„„„„ 3 1.1 设计条件„„„„„„„„„„„„„„„„„„„„„„„„„„ 3 1 ...

  • 低压管道输水灌溉工程技术规范
  • 低压管道输水灌溉工程技术规范(井灌区部分) [题 名]:低压管道输水灌溉工程技术规范(井灌区部分) [副 题 名]: [起草单位]:中国水利水电科学研究院 [标 准 号]:SL/T 153-95 [代替标准]: [颁布部门]:中华人民共和国水利部 [发布日期]:1995年3月27日发布 [实施日期] ...