高斯-克吕格投影分带

该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式。投影后,除中央子午线和赤道为直线外, 其他子午线均为对称于中央子午线的曲线。设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。

高斯-克吕格投影在长度和面积上变形很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大之处在投影带内赤道的两端。由于其投影精度高,变形小,而且计算简便(各投影带坐标一致,只要算出一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,能在图上进行精确的量测计算。

高斯-克吕格投影分带

按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。通常按经差6度或3度分为六度带或三度带。六度带自0度子午线起每隔经差6度自西向东分带,带号依次编为第 1、2„60带。三度带是在六

度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自 1.5度子午线起每隔经差3度自西向东分带,带号依次编为三度带第 1、2„120带。我国的经度范围西起 73°东至135°,可分成六度带十一个,各带中央经线依次为75°、81°、87°、„„、117°、123°、129°、135°,或三度带二十二个。六度带可用于中小比例尺(如 1:250000)测图,三度带可用于大比例尺(如 1:10000)测图,城建坐标多采用三度带的高斯投影。 编辑本段高斯-克吕格投影坐标

高斯- 克吕格投影是按分带方法各自进行投影,故各带坐标成独立系统。以中央经线投影为纵轴(x), 赤道投影为横轴(y),两轴交点即为各带的坐标原点。纵坐标以赤道为零起算,赤道以北为正,以南为负。我国位于北半球,纵坐标均为正值。横坐标如以中央经线为零起算,中央经线以东为正,以西为负,横坐标出现负值,使用不便,故规定将坐标纵轴西移500公里当作起始轴,凡是带内的横坐标值均加 500公里。由于高斯-克吕格投影每一个投影带的坐标都是对本带坐标原点的相对值,所以各带的坐标完全相同,为了区别某一坐标系统属于哪一带,在横轴坐标前加上带号,如(4231898m,21655933m),其中21即为带号

高斯-克吕格投影

科技名词定义

中文名称:

高斯-克吕格投影

英文名称:

Gauss-Kr黦er projection

定义:

由高斯拟定的,后经克吕格补充、完善,即等角横切椭圆柱投影。设想一个椭圆柱横切于地球椭球某一经线(称“中央经线”),根据等角条件,用解析法将中央经线两侧一定经差范围内地球椭球体面上的经纬网投影到椭圆柱面上,并将此椭圆柱面展为平面所得到的一种等角投影。

应用学科: 地理学(一级学科);地图学(二级学科)

本内容由全国科学技术名词审定委员会审定公布

由于这个投影是由德国数学家、物理学家、天文学家高斯于19 世纪20 年代拟定,后经德国大地测量学家克吕格于1912 年对投影公式加以补充,故称为高斯-克吕格投影。

即等角横切椭圆柱投影。假想用一个圆柱横切于地球椭球体的某一经线上,这条与圆柱面相切的经线,称中央经线。以中央经线为投影的对称轴,将东西各3°或1°30′的两条子午线所夹经差6°或3°的带状地区按数学法则、投影法则投影到圆柱面上,再展开成平面,即高斯-克吕格投影,简称高斯投影。这个狭长的带状的经纬线网叫做高斯-克吕格投影带。

这种投影,将中央经线投影为直线,其长度没有变形,与球面实际长度相等,其余经线为向极点收敛的弧线,距中央经线愈远,变形

愈大。 赤道线投影后是直线,但有长度变形。除赤道外的其余纬线,投影后为凸向赤道的曲线,并以赤道为对称轴。经线和纬线投影后仍然保持正交。所有长度变形的线段,其长度变形比均大于1. 随远离中央经线,面积变形也愈大。若采用分带投影的方法,可使投影边缘的变形不致过大。我国各种大、中比例尺地形图采用了不同的高斯-克吕格投影带。其中大于1∶1万的地形图采用3°带;1∶2.5万至1∶50万的地形图采用6°带。

高斯投影概述

投影与变形

地图投影:就是将椭球面各元素(包括坐标、方向和长度)按一定的数学法则投影到平面上。研究这个问题的专门学科叫地图投影学。可用下面两个方程式(坐标投影公式)表示:

x=F1(L,B)

y= F2(L,B)

式中L,B是椭球面上某点的大地坐标,而X,Y是该点投影后的平面直角坐标。

投影变形:椭球面是一个凸起的、不可展平的曲面。将这个曲面上的元素(距离、角度、图形)投影到平面上,就会和原来的距离、角度、图形呈现差异,这一差异称为投影变形。

投影变形的形式:角度变形、长度变形和面积变形。 地图投影的方式:

(1)等角投影——投影前后的角度相等,但长度和面积有变形;

(2)等距投影——投影前后的长度相等,但角度和面积有变形;

(3)等积投影——投影前后的面积相等,但角度和长度有变形。 控制测量对地图投影的要求

(1)应当采用等角投影(又称为正形投影)

采用正形投影时,在三角测量中大量的角度观测元素在投影前后保持不变;在测制的地图时,采用等角投影可以保证在有限的范围内使得地图上图形同椭球上原形保持相似。

(2)在采用的正形投影中,要求长度和面积变形不大,并能够应用简单公式计算由于这些变形而带来的改正数。

(3)能按分带投影

高斯投影的基本概念

(1)基本概念:

如图1所示,假想有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线(此子午线称为中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用一定投影方法,将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面,如图2所示,此投影为高斯投影。高斯投影是正形投影的一种。

图1 图2

(2)分带投影n

l 高斯投影6带:自0子午线起每隔经差6自西向东分带,依次编号1,2,3,„。我国6带中央子午线的经度,由75起每隔6而至135,共计11带(13~23带),带号用N表示,中央子午线的经度用Lo表示,它们的关系是,

Lo=6n-3

如图所示。

l 高斯投影3带:它的中央子午线一部分同6带中央子午线重合,一部分同6带的分界子午线重合,如用n

表示3带的带号,表示带中央子午线经度,它们的关系图8-4所示。我国带共计22带(24~45带)。

(3)高斯平面直角坐标系

在投影面上,中央子午线和赤道的投影都是直线,并且以中央子午线和赤道

的交点0作为坐标原点,以中央子午线的投影为纵坐标x轴,以赤道的投影为横坐标y轴。

在我国x坐标都是正的,y坐标的最大值(在赤道上)约为330km。为了避免出现负的横坐标,可在横坐标上加上500 OOOm。此外还应在坐标前面再冠以带号。这种坐标称为国家统一坐标。例如,有一点y=19 123 456.789m,该点位在19带内,其相对于中央子午线而言的横坐标则是:首先去掉带号,再减去500000m,最后得=-376 543.211m。

(4)高斯平面投影的特点

①中央子午线无变形;

②无角度变形,图形保持相似;

③离中央子午线越远,变形越大。

椭球面三角系化算到高斯投影面

将椭球面三角系归算到高斯投影面的主要内容是:

(1)将起始点p的大地坐标(L,B)归算为高斯平面直角坐标(X,Y);为了检核还应进行反算,亦即根据X,Y反算L,B。

(2)通过计算该点的子午线收敛角γ及方向δ改正,将椭球面上起算边大地方位角A归算到高斯平面上相应边PK的坐标方位角α。

(3)通过计算各方向的曲率改正和方向改正,将椭球面上各三角形内角归算到高斯平面上的由相应直线组成的三角形内角。

(4)通过计算距离改正Δs,将椭球面上起算边PK的长度S归算到高斯平面上的直线长度s。

(5)当控制网跨越两个相邻投影带,需要进行平面坐标的邻带换算。

高斯平面直角坐标

求助编辑百科名片

为了方便工程的规划、设计与施工,我们需要把测区投影到平面上来,使测量计算和绘图更加方便。而地理坐标是球面坐标,当测区范围较大时,要建平面坐标系就不能乎略地球曲率的影响。把地球上的点位化算到平面上,称为地图投影。地图投影的方法有很多,目前我国采用的是高斯——克吕格投影(又称高斯正形投影),简称高斯投影。它是由德国数学家高斯提出的,由克吕格改进的一种分带投影方法。它成功解决了将椭球面转换为平面的问题。

目录 投影方法 特点

编辑本段投影方法

高斯投影的方法是将地球按经线划分为带,称为投影带。投影是从首子午线开始的,分6°带和3°两种。每隔6°划分一带的叫6°带,每隔3°划分一带的叫3°带。我国领土位于东经72°∽136°之间,共包括了11个6°带,即13∽23带;22个3°投影带即24

∽45带。

设想一个平面卷成横圆柱套在地球外,如图1-5(a)所示 。通过高斯投影,将中央子午线的投影作为

纵坐标轴,用x表示,将赤道的投影作横坐标轴,用y表示,两轴的交点作为坐标原点,由此构成的平面直角坐标系称为高斯平面直角坐标系,如图1-5(b) 所示。每一个投影带都有一个独立的高斯平面直角坐标系,区分各带坐标系则利用相应投影带的带号。在每一个投影带内,y坐标值都有正有负,这对于计算和使用都不方便,为了使y坐标都为正值,故将纵坐标轴向西平移500㎞,并在y坐标前加上投影带的带号。 6°带投影是从英国格林尼治子午线开始,自西向东,每隔经差6°分为一带,将地球分为60个带,其编号分别为1,2,3,„60。任意带的中央子午线经度为Lo,它与投影带号N的关系如下所示:

Lo=(6N-3°)

式中:N———6°带的带号

离中央子午线越远,长度变形越大,在要求较小的投影变形时,

可采用3°投影带。3°带是在6°带的基础上划分的,如图所示。每3°为一带,从东经1°30′开始,共120带,其中央子午线在奇数带时与6°带的中央子午线重合,每带的中央子午线可用下面的工式计算:

Lo=3N′

式中:N′——3°带的带号。

为了避免y坐标出现负值,3°带的坐标原点同6°带一样,向西移动500㎞,并在y坐标前加3°带的带号。

编辑本段特点 应当注意的是,高斯投影没的角度变形,但有长度变形和面积变形,离中央子午线越远,变形就越大。其主要特点有以下三点:

(1)投影后中央子午线为直线,长度不变形,其余经线投影对称并且凹向于中央子午线,离中央子午线越远,变形越大。

(2)赤道的投影也为一直线,并与中央子午线正交,其余的经纬投影为凸向赤道的对称曲线。

(3)经纬投影后仍然保持相互垂直的关系,投影后有角度无变形。

基本概念

带宽一般分为经差6度和3度,分别称为6度带和3度带。 6度带:从零度子午线开始,每隔经差6度自西向东分带,依次编号1,2,3,„,60,每带中间的子午线称为轴子午线或中央子午线,各带相邻子午线叫分界子午线。东经0~6度为第一带,其中央经线的经度为东经3度,东经6~12度为第二带,其中央经线的经度为9度,以此类推。我国领土跨11个6度投影带,即第13~23带。 3度带:以6度带的中央子午线和分界子午线为其中央子午线,即自东经1.5度子午线起,每隔经差3度自西向东分带,依次编号1,2,3,„,120。东经1.5~4.5度为第一带,其中央经线的经度为东经3度,东经4.5~7.5度为第二带,其中央经线的经度为6度,以此类推。我国领土跨22个3度投影带,即第24~45带。

计算方法

当地中央子午线决定于当地的直角坐标系统,首先确定您的直角坐标系统是3度带还是6度带投影,然后再根据如下公式推算。 6度带:

带号N=round[(L+3)/6],即对(L+3)/6的值四舍五入取整数,L为当地经度;

则中央子午线经度L0=6 × N-3。

3度带:

带号N=round(L/3),即对(L/3)的值四舍五入取整数,L为当地

则中央子午线经度L0=3 × N。 、高斯-克吕格投影

该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式。投影后,除中央子午线和赤道为直线外, 其他子午线均为对称于中央子午线的曲线。设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。

高斯-克吕格投影在长度和面积上变形很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大之处在投影带内赤道的两端。由于其投影精度高,变形小,而且计算简便(各投影带坐标一致,只要算出一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,能在图上进行精确的量测计算。

高斯-克吕格投影分带

按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。通常按经差6度或3度分为六度带或三度带。六度带自0度子午线起每隔经差6度自西向东分带,带号依次编为第 1、2„60带。三度带是在六

度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自 1.5度子午线起每隔经差3度自西向东分带,带号依次编为三度带第 1、2„120带。我国的经度范围西起 73°东至135°,可分成六度带十一个,各带中央经线依次为75°、81°、87°、„„、117°、123°、129°、135°,或三度带二十二个。六度带可用于中小比例尺(如 1:250000)测图,三度带可用于大比例尺(如 1:10000)测图,城建坐标多采用三度带的高斯投影。 编辑本段高斯-克吕格投影坐标

高斯- 克吕格投影是按分带方法各自进行投影,故各带坐标成独立系统。以中央经线投影为纵轴(x), 赤道投影为横轴(y),两轴交点即为各带的坐标原点。纵坐标以赤道为零起算,赤道以北为正,以南为负。我国位于北半球,纵坐标均为正值。横坐标如以中央经线为零起算,中央经线以东为正,以西为负,横坐标出现负值,使用不便,故规定将坐标纵轴西移500公里当作起始轴,凡是带内的横坐标值均加 500公里。由于高斯-克吕格投影每一个投影带的坐标都是对本带坐标原点的相对值,所以各带的坐标完全相同,为了区别某一坐标系统属于哪一带,在横轴坐标前加上带号,如(4231898m,21655933m),其中21即为带号

高斯-克吕格投影

科技名词定义

中文名称:

高斯-克吕格投影

英文名称:

Gauss-Kr黦er projection

定义:

由高斯拟定的,后经克吕格补充、完善,即等角横切椭圆柱投影。设想一个椭圆柱横切于地球椭球某一经线(称“中央经线”),根据等角条件,用解析法将中央经线两侧一定经差范围内地球椭球体面上的经纬网投影到椭圆柱面上,并将此椭圆柱面展为平面所得到的一种等角投影。

应用学科: 地理学(一级学科);地图学(二级学科)

本内容由全国科学技术名词审定委员会审定公布

由于这个投影是由德国数学家、物理学家、天文学家高斯于19 世纪20 年代拟定,后经德国大地测量学家克吕格于1912 年对投影公式加以补充,故称为高斯-克吕格投影。

即等角横切椭圆柱投影。假想用一个圆柱横切于地球椭球体的某一经线上,这条与圆柱面相切的经线,称中央经线。以中央经线为投影的对称轴,将东西各3°或1°30′的两条子午线所夹经差6°或3°的带状地区按数学法则、投影法则投影到圆柱面上,再展开成平面,即高斯-克吕格投影,简称高斯投影。这个狭长的带状的经纬线网叫做高斯-克吕格投影带。

这种投影,将中央经线投影为直线,其长度没有变形,与球面实际长度相等,其余经线为向极点收敛的弧线,距中央经线愈远,变形

愈大。 赤道线投影后是直线,但有长度变形。除赤道外的其余纬线,投影后为凸向赤道的曲线,并以赤道为对称轴。经线和纬线投影后仍然保持正交。所有长度变形的线段,其长度变形比均大于1. 随远离中央经线,面积变形也愈大。若采用分带投影的方法,可使投影边缘的变形不致过大。我国各种大、中比例尺地形图采用了不同的高斯-克吕格投影带。其中大于1∶1万的地形图采用3°带;1∶2.5万至1∶50万的地形图采用6°带。

高斯投影概述

投影与变形

地图投影:就是将椭球面各元素(包括坐标、方向和长度)按一定的数学法则投影到平面上。研究这个问题的专门学科叫地图投影学。可用下面两个方程式(坐标投影公式)表示:

x=F1(L,B)

y= F2(L,B)

式中L,B是椭球面上某点的大地坐标,而X,Y是该点投影后的平面直角坐标。

投影变形:椭球面是一个凸起的、不可展平的曲面。将这个曲面上的元素(距离、角度、图形)投影到平面上,就会和原来的距离、角度、图形呈现差异,这一差异称为投影变形。

投影变形的形式:角度变形、长度变形和面积变形。 地图投影的方式:

(1)等角投影——投影前后的角度相等,但长度和面积有变形;

(2)等距投影——投影前后的长度相等,但角度和面积有变形;

(3)等积投影——投影前后的面积相等,但角度和长度有变形。 控制测量对地图投影的要求

(1)应当采用等角投影(又称为正形投影)

采用正形投影时,在三角测量中大量的角度观测元素在投影前后保持不变;在测制的地图时,采用等角投影可以保证在有限的范围内使得地图上图形同椭球上原形保持相似。

(2)在采用的正形投影中,要求长度和面积变形不大,并能够应用简单公式计算由于这些变形而带来的改正数。

(3)能按分带投影

高斯投影的基本概念

(1)基本概念:

如图1所示,假想有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线(此子午线称为中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用一定投影方法,将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面,如图2所示,此投影为高斯投影。高斯投影是正形投影的一种。

图1 图2

(2)分带投影n

l 高斯投影6带:自0子午线起每隔经差6自西向东分带,依次编号1,2,3,„。我国6带中央子午线的经度,由75起每隔6而至135,共计11带(13~23带),带号用N表示,中央子午线的经度用Lo表示,它们的关系是,

Lo=6n-3

如图所示。

l 高斯投影3带:它的中央子午线一部分同6带中央子午线重合,一部分同6带的分界子午线重合,如用n

表示3带的带号,表示带中央子午线经度,它们的关系图8-4所示。我国带共计22带(24~45带)。

(3)高斯平面直角坐标系

在投影面上,中央子午线和赤道的投影都是直线,并且以中央子午线和赤道

的交点0作为坐标原点,以中央子午线的投影为纵坐标x轴,以赤道的投影为横坐标y轴。

在我国x坐标都是正的,y坐标的最大值(在赤道上)约为330km。为了避免出现负的横坐标,可在横坐标上加上500 OOOm。此外还应在坐标前面再冠以带号。这种坐标称为国家统一坐标。例如,有一点y=19 123 456.789m,该点位在19带内,其相对于中央子午线而言的横坐标则是:首先去掉带号,再减去500000m,最后得=-376 543.211m。

(4)高斯平面投影的特点

①中央子午线无变形;

②无角度变形,图形保持相似;

③离中央子午线越远,变形越大。

椭球面三角系化算到高斯投影面

将椭球面三角系归算到高斯投影面的主要内容是:

(1)将起始点p的大地坐标(L,B)归算为高斯平面直角坐标(X,Y);为了检核还应进行反算,亦即根据X,Y反算L,B。

(2)通过计算该点的子午线收敛角γ及方向δ改正,将椭球面上起算边大地方位角A归算到高斯平面上相应边PK的坐标方位角α。

(3)通过计算各方向的曲率改正和方向改正,将椭球面上各三角形内角归算到高斯平面上的由相应直线组成的三角形内角。

(4)通过计算距离改正Δs,将椭球面上起算边PK的长度S归算到高斯平面上的直线长度s。

(5)当控制网跨越两个相邻投影带,需要进行平面坐标的邻带换算。

高斯平面直角坐标

求助编辑百科名片

为了方便工程的规划、设计与施工,我们需要把测区投影到平面上来,使测量计算和绘图更加方便。而地理坐标是球面坐标,当测区范围较大时,要建平面坐标系就不能乎略地球曲率的影响。把地球上的点位化算到平面上,称为地图投影。地图投影的方法有很多,目前我国采用的是高斯——克吕格投影(又称高斯正形投影),简称高斯投影。它是由德国数学家高斯提出的,由克吕格改进的一种分带投影方法。它成功解决了将椭球面转换为平面的问题。

目录 投影方法 特点

编辑本段投影方法

高斯投影的方法是将地球按经线划分为带,称为投影带。投影是从首子午线开始的,分6°带和3°两种。每隔6°划分一带的叫6°带,每隔3°划分一带的叫3°带。我国领土位于东经72°∽136°之间,共包括了11个6°带,即13∽23带;22个3°投影带即24

∽45带。

设想一个平面卷成横圆柱套在地球外,如图1-5(a)所示 。通过高斯投影,将中央子午线的投影作为

纵坐标轴,用x表示,将赤道的投影作横坐标轴,用y表示,两轴的交点作为坐标原点,由此构成的平面直角坐标系称为高斯平面直角坐标系,如图1-5(b) 所示。每一个投影带都有一个独立的高斯平面直角坐标系,区分各带坐标系则利用相应投影带的带号。在每一个投影带内,y坐标值都有正有负,这对于计算和使用都不方便,为了使y坐标都为正值,故将纵坐标轴向西平移500㎞,并在y坐标前加上投影带的带号。 6°带投影是从英国格林尼治子午线开始,自西向东,每隔经差6°分为一带,将地球分为60个带,其编号分别为1,2,3,„60。任意带的中央子午线经度为Lo,它与投影带号N的关系如下所示:

Lo=(6N-3°)

式中:N———6°带的带号

离中央子午线越远,长度变形越大,在要求较小的投影变形时,

可采用3°投影带。3°带是在6°带的基础上划分的,如图所示。每3°为一带,从东经1°30′开始,共120带,其中央子午线在奇数带时与6°带的中央子午线重合,每带的中央子午线可用下面的工式计算:

Lo=3N′

式中:N′——3°带的带号。

为了避免y坐标出现负值,3°带的坐标原点同6°带一样,向西移动500㎞,并在y坐标前加3°带的带号。

编辑本段特点 应当注意的是,高斯投影没的角度变形,但有长度变形和面积变形,离中央子午线越远,变形就越大。其主要特点有以下三点:

(1)投影后中央子午线为直线,长度不变形,其余经线投影对称并且凹向于中央子午线,离中央子午线越远,变形越大。

(2)赤道的投影也为一直线,并与中央子午线正交,其余的经纬投影为凸向赤道的对称曲线。

(3)经纬投影后仍然保持相互垂直的关系,投影后有角度无变形。

基本概念

带宽一般分为经差6度和3度,分别称为6度带和3度带。 6度带:从零度子午线开始,每隔经差6度自西向东分带,依次编号1,2,3,„,60,每带中间的子午线称为轴子午线或中央子午线,各带相邻子午线叫分界子午线。东经0~6度为第一带,其中央经线的经度为东经3度,东经6~12度为第二带,其中央经线的经度为9度,以此类推。我国领土跨11个6度投影带,即第13~23带。 3度带:以6度带的中央子午线和分界子午线为其中央子午线,即自东经1.5度子午线起,每隔经差3度自西向东分带,依次编号1,2,3,„,120。东经1.5~4.5度为第一带,其中央经线的经度为东经3度,东经4.5~7.5度为第二带,其中央经线的经度为6度,以此类推。我国领土跨22个3度投影带,即第24~45带。

计算方法

当地中央子午线决定于当地的直角坐标系统,首先确定您的直角坐标系统是3度带还是6度带投影,然后再根据如下公式推算。 6度带:

带号N=round[(L+3)/6],即对(L+3)/6的值四舍五入取整数,L为当地经度;

则中央子午线经度L0=6 × N-3。

3度带:

带号N=round(L/3),即对(L/3)的值四舍五入取整数,L为当地

则中央子午线经度L0=3 × N。 、高斯-克吕格投影


相关内容

  • 投影的判别与选择
  • 常用地图投影(Map Projection) 椭球体参数 我国常用的3个椭球体参数如下(源自"全球定位系统测量规范 GB/T 18314-2001") Krassovsky (北京54采用)(长轴a: 6378245, 短轴b: 6356863.0188) IAG 75(西安80 ...

  • 墨卡托投影
  • 墨卡托投影.高斯-克吕格投影.UTM 投影及我国分带 方法 一.墨卡托投影.高斯- 克吕格投影.UTM 投影 1. 墨卡托(Mercator)投影 墨卡托(Mercator)投影,是一种" 等角正切圆柱投影",荷兰地图学家墨卡托(Gerhardus Mercator 1512-1 ...

  • 高斯-克吕格投影
  • 高斯-克吕格投影 高斯-克吕格(GAUSS-KRUGER)是等角横切椭圆柱投影,由德国数学家高斯提出,后经克吕格扩充并推倒出计算公式,故称为高斯-克吕格投影,简称高斯投影.该投影以中央经线和赤道投影后为坐标轴,中央经线和赤道交点为坐标原点,纵坐标由坐标原点向北为正,向南为负,规定为X轴,横坐标从中央 ...

  • 地图投影与地图坐标系
  • 地图投影与地图坐标系 1. 地图投影与地图坐标系 1.1. 地图坐标系 平面坐标系: 经纬度坐标系: 投影坐标系 1.2. 地图投影 高斯-克吕格 (1)高斯-克吕格投影性质 高斯-克吕格(Gauss-Kruger)投影简称"高斯投影",又名" 等角横切椭圆柱投影&qu ...

  • 大地坐标系统
  • 大地坐标系统 来源:中国勘察测绘网 作者: 发布时间:2009.04.08 1.椭球体 GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及 其对应的转换参数确定. 基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的基准 面.基准面是在椭球体基 ...

  • 中央子午线的计算方法
  • 中央子午线 全球分为二十四个时区,以能够被15整除的经度作为该区域的中央子午线,每一时区占经度15度. 概述 全球分为二十四个时区,以能够被15整除的经度作为该区域的中央子午线,每一时区占经度15度.在该时区中央子午线以东的地区,时间要加,以西的地区,时间要减,一度4分钟地形图坐标系:我国的地形图采 ...

  • 中央子午线
  • 中国中央子午线 中国共分五个时区: 中原时区 以东经120度为中央子午线. 陇蜀时区 以东经105度为中央子午线. 新藏时区 以东经90度为中央子午线. 昆仑时区 以东经75(82.5)度为中央子午线. 长白时区 以东经135(127.5)度为中央子午线. 一个时区的"标准时", ...

  • 地理坐标知识
  • ArcGIS中坐标系统小议 要明确两个概念:Geographic coordinate system和projected coordinate system的区别. 1.首先理解Geographic coordinate system,Geographic coordinate system直译为地 ...

  • 关于子午线
  • 关于-子午线收敛角校正问题 韩志勇 作者简介:韩志勇(1 937 ) ,男.1962年毕业于北京石油学院油井工程专业,教授. 联系电话:(0516)K396262 (中国石油大学(华东) 石油工程学院,„东营 25706)) 摘 要:论述了予午线收敛角校正在定向井轨迹计算中的重要性,介绍了子午线收敛 ...