环境工程原理传热.过滤实验讲义(学生)

实验五 传热实验

一、实验目的

1.测定单壳程双管程列管式换热器的总传热系数K ; 2.学会传热过程的调节方法。

二、基本原理

1.传热速率方程式

工业上大量存在的传热过程(指间壁式传热过程)都是由固体内部的导热及冷热流体与固体表面间的给热组合而成。传热过程的基本数学描述是传热速率方程式和热量衡算式。

热流密度q 是反映具体传热过程速率大小的特征量。对q 的计算,需要引入壁面温度,而在实际计算时,壁温往往是未知的。为实用方便,希望能避开壁温,直接根据冷﹑热流体的温度进行传热速率的计算。

在间壁式换热器中,热量序贯地由热流体传给壁面左侧、再由壁面左侧传导至壁面右侧、最后由壁面右侧传给冷流体(参见图2-9)。在定态条件下,并忽略壁面内外面积

的差异,则各环节的热流密度相等,即

Q T -T w T w -t w t w -t

=== (2-7) q = A

αh

T -t 1

λ

αc

串联过程的推动力和阻力具有加和性。上式(2-7)通常写成:

q =

αh

+

1+λαc

=

推动力

(2-8) 阻力

图2-9 传热界面温度分布图

Q =KA (T -t ) (2-9)

1

(2-10) 式中 K =

11++

αh

λ

αc

Q =KA ∆t m (2-11)

式(2-10)为传热过程总热阻的倒数,称为传热系数。比较式(2-7)和式(2-8)两式可知,给热系数α同流体与壁面的温差相联系,而传热系数K 则同冷、热流体的温差相联系。 由于冷流体的温度差沿加热面是连续变化的,且此温度差与冷、热流体的温度成线性关系,故将(2-9)式中(T-t )的推动力用换热器两端温差的对数平均温差Δt m 来表示,即传热速率方程为式2-11。

2.总传热速率常数的测定 根据热量衡算方程式(2-12)

Q =q m c C pc (t 2-t 1) =q m h C ph (T 2-T 1) (2-12)

将式(2-11)和式(2-12)联立,则有

q mc C pc (t 2-t 1)

(2-13)

A ∆t m

(T 1-t 2) -(T 2-t 1)

其中 ∆t m = (2-14)

T 1-t 2ln

T 2-t 1K =

若实验物系选定水与热空气,由式(2-13)、(2-14)可知,实验装置中需要确定的参数和安装的仪表有:

A — 由换热器的结构参数而定;

q mc — 测冷流体的流量计;

t 1、t 2 — 测冷流体的进、出口温度计; T 1、T 2— 测热流体的进、出口温度计;

C pc — 由冷流体的进、出口平均温度决定。

由此可得总传热系数测定的实验装置流程示意图如图2-10所示。

图2-10 总传热系数测定实验的流程图

1—气源;2—气量阀;3—气体流量计;4—进气温度计;5—出气温度计;6—进水温度计; 7—换热器;8—出水温度计;9—水流量计;10—水调节阀;11—调压器;12—气体加热器

3.传热过程的调节

在换热器中,若热流体的流量q mh 或进口温度T 1发生变化,而要求出口温度T 2保持原来数值不变,可通过调节冷却介质流量来达到目的。但是这种调节作用不能单纯地从热量衡算的观点理解为冷流体的流量大带走的热量多,流量小带走的热量小。根据传热基本方程式,可能来自△t m 的变化,也可能来自K 的变化,而多数是由两者共同引起的。

如果αc 》αh ,调节q mc ,K 基本不变,调节作用主要靠△t m 的变化。如果αc 《αh 或αc

≈αh ,调节q mc 将使△t m 和K 皆有较大变化,此时过程调节是两者共同作用的结果。

三、传热实验装置图

对应列管式换热实验装置流程示意图2-10的实际传热实验装置如图2-11所示。传热实验装置的主要参数见表2-10。

图2-11 列管式传热实验装置图

1.首先熟悉冷、热流体的流向,了解实验装置。然后打开冷却水调节阀门;

2.打开气量阀门,启动风机,关小气量阀门,使进换热器的空气流量恒定在实验值; 3.打开加热电源,调节加热调压器调节电压,使空气进换热器温度恒定在实验值; 4.待t 2和T 2稳定不变10min ,读取原始数据;

5.调节可调控件,即气量阀、冷却水调节阀门或加热调压器,改变换热条件,待稳定后读取数据。重复测取4-6组数据。

6.实验结束,关闭加热电源,待空气出口温度降为室温后,再关闭气量阀门和冷却水调节阀门。

注意事项:加热电压不能过高,保持空气进口温度小于100℃,以免换热器的密封垫圈烧焦。

五、原始数据记录与处理

在表2-11中记录测取的原始实验数据。原始实验数据按传热原理进行处理,结果可填入表格2-12中。 管长 mm; 管程数 ; 管径 mm; 管数 ; 壁厚 mm;

2

换热器内径 mm; 螺纹管增面系数Ψ=2.614; 传热面积 m

1.影响总传热系数K 的因素有哪些?

2.实验条件下,进一步地提高冷却水的用量,是否能达到有效强化传热过程的目的?

恒 压 过 滤 常 数 测 定

实 验 装 置

(板框过滤机)

一. 实验设备的特点

1.该实验设备由过滤板、过滤框组成的小型工业用板框过滤机,实验设备整体美观、简单,操作方便。

2.可测定过滤常数: K, qe ,θe 及s ,k 。

3. 实验数据稳定、可靠,重现性好。 4. 过滤压力范围(0.05--0.2MPa )。 二. 设备的主要技术数据

1. 旋涡泵: 型号:

2.搅拌器: 型号: KDZ-1 ; 功率: 160w 转速: 3200转/分;

3. 过滤板: 规格: 160*180*11(mm )。

4. 滤布:型号 工业用;过滤面积0.0475m 2。 5. 计量桶: 长327mm 、宽286mm 。 三. 设备的流程及操作时应注意的事项 流程图: (见图一)

如图一所示,滤浆槽内配有一定浓度的轻质碳酸钙悬浮液(浓度在2-4%左右),用电动搅拌器进行均匀搅拌(浆液不出现旋涡为好) 。启动旋涡泵,调节阀门3使压力表5指示在规定值。滤液在计量桶内计量。

过滤、洗涤管路如图二示

2. 操作时应注意的事项

1) 过滤板与框之间的密封垫应注意放正,过滤板与框的滤液进出口对齐。用摇柄把过滤设备压紧,以免漏液。

2)计量桶的流液管口应贴桶壁,否则液面波动影响读数。

3)实验结束时关闭阀门3。用阀门11、4接通自来水对泵及滤浆进出口管进行冲洗。切忌将自来水灌入储料槽中。

4)电动搅拌器为无级调速。使用时首先接上系统电源,打开调速器开关,调速钮一定由小到大缓慢调节,切勿反方向调节或调节过快损坏电机。 5)启动搅拌前,用手旋转一下搅拌轴以保证顺利启动搅拌器。 四. 实验方法及操作步骤

1. 系统接上电源,打开搅拌器电源开关,启动电动搅拌器2。将滤液槽10内浆液搅拌均匀。 2.板框过滤机板、框排列顺序为:固定头-非洗涤板-框-洗涤板-框-非洗涤板-可动头。用压紧装置压紧后待用。

3. 使阀门3处于全开、阀4、6、11处于全关状态。启动旋涡泵12,调节阀门3使压力表5达到规定值。

4. 待压力表5稳定后,打开过滤入口阀6过滤开始。当计量桶13内见到第一滴液体时按表计时。记录滤液每增加高度10mm 时所用的时间。当计量桶13读数为150 mm时停止计时,并立即关闭入口阀6。

5.打开阀门3使压力表5指示值下降。开启压紧装置卸下过滤框内的滤饼并

放回滤浆槽内,将滤布清洗干净。放出计量桶内的滤液并倒回槽内,以保证滤浆浓度恒定。

6. 改变压力,从(2)开始重复上述实验。

7. 每组实验结束后应用洗水管路对滤饼进行洗涤,测定洗涤时间和洗水量。 8.实验结束时阀门11接上自来水、阀门4接通下水,关闭阀门3对泵及滤浆

进出口管进行冲洗。 五. 附录

1. 实验数据的计算方法(实验数据见表一)

根据恒压过滤方程:(q+q e ) 2=K(θ+θe ) (1) 式中: q─单位过滤面积获得的滤液体积 m3/m2; qe ─单位过滤面积的虚拟滤液体积 m3/m2; θ─实际过滤时间 S; θe ─虚拟过滤时间 S; K─过滤常数 m2/S 。 将(1)式微分得:

d θ22

=q +q e (2)

dq k k

d θ

此为直线方程,于普通坐标系上标绘对的关系,所得直线斜率为:

dq

22

,截距为q e ,从而求出,K ,q e

k k

θe 由下式得:

q2e =K θe (3)

d θ∆θ

可以用增量之比来代替即: 与 作

dq ∆q

图。

过滤常数的定义式:

K=2k △p 1-s (5) 两边取对数:

lgK=(1-s)lg(△p) +lg(2k) (6)

因 s=常数,k =

1

v

=常数,故 K 与△P 的关系,在双对数坐标上标绘是

一条直线。直线的斜率 1-S,由此可计算出压缩性指数 S,读取△P-K 直线上任一点处的K ,△p 数据一起代入(5)式计算物料特性常数 k 。

[(5)式中的内容可根据各学校的教学要求自选决定取舍。 2. 记录样表

3. 过滤常数: K,q e ,θe 的计算

实验五 传热实验

一、实验目的

1.测定单壳程双管程列管式换热器的总传热系数K ; 2.学会传热过程的调节方法。

二、基本原理

1.传热速率方程式

工业上大量存在的传热过程(指间壁式传热过程)都是由固体内部的导热及冷热流体与固体表面间的给热组合而成。传热过程的基本数学描述是传热速率方程式和热量衡算式。

热流密度q 是反映具体传热过程速率大小的特征量。对q 的计算,需要引入壁面温度,而在实际计算时,壁温往往是未知的。为实用方便,希望能避开壁温,直接根据冷﹑热流体的温度进行传热速率的计算。

在间壁式换热器中,热量序贯地由热流体传给壁面左侧、再由壁面左侧传导至壁面右侧、最后由壁面右侧传给冷流体(参见图2-9)。在定态条件下,并忽略壁面内外面积

的差异,则各环节的热流密度相等,即

Q T -T w T w -t w t w -t

=== (2-7) q = A

αh

T -t 1

λ

αc

串联过程的推动力和阻力具有加和性。上式(2-7)通常写成:

q =

αh

+

1+λαc

=

推动力

(2-8) 阻力

图2-9 传热界面温度分布图

Q =KA (T -t ) (2-9)

1

(2-10) 式中 K =

11++

αh

λ

αc

Q =KA ∆t m (2-11)

式(2-10)为传热过程总热阻的倒数,称为传热系数。比较式(2-7)和式(2-8)两式可知,给热系数α同流体与壁面的温差相联系,而传热系数K 则同冷、热流体的温差相联系。 由于冷流体的温度差沿加热面是连续变化的,且此温度差与冷、热流体的温度成线性关系,故将(2-9)式中(T-t )的推动力用换热器两端温差的对数平均温差Δt m 来表示,即传热速率方程为式2-11。

2.总传热速率常数的测定 根据热量衡算方程式(2-12)

Q =q m c C pc (t 2-t 1) =q m h C ph (T 2-T 1) (2-12)

将式(2-11)和式(2-12)联立,则有

q mc C pc (t 2-t 1)

(2-13)

A ∆t m

(T 1-t 2) -(T 2-t 1)

其中 ∆t m = (2-14)

T 1-t 2ln

T 2-t 1K =

若实验物系选定水与热空气,由式(2-13)、(2-14)可知,实验装置中需要确定的参数和安装的仪表有:

A — 由换热器的结构参数而定;

q mc — 测冷流体的流量计;

t 1、t 2 — 测冷流体的进、出口温度计; T 1、T 2— 测热流体的进、出口温度计;

C pc — 由冷流体的进、出口平均温度决定。

由此可得总传热系数测定的实验装置流程示意图如图2-10所示。

图2-10 总传热系数测定实验的流程图

1—气源;2—气量阀;3—气体流量计;4—进气温度计;5—出气温度计;6—进水温度计; 7—换热器;8—出水温度计;9—水流量计;10—水调节阀;11—调压器;12—气体加热器

3.传热过程的调节

在换热器中,若热流体的流量q mh 或进口温度T 1发生变化,而要求出口温度T 2保持原来数值不变,可通过调节冷却介质流量来达到目的。但是这种调节作用不能单纯地从热量衡算的观点理解为冷流体的流量大带走的热量多,流量小带走的热量小。根据传热基本方程式,可能来自△t m 的变化,也可能来自K 的变化,而多数是由两者共同引起的。

如果αc 》αh ,调节q mc ,K 基本不变,调节作用主要靠△t m 的变化。如果αc 《αh 或αc

≈αh ,调节q mc 将使△t m 和K 皆有较大变化,此时过程调节是两者共同作用的结果。

三、传热实验装置图

对应列管式换热实验装置流程示意图2-10的实际传热实验装置如图2-11所示。传热实验装置的主要参数见表2-10。

图2-11 列管式传热实验装置图

1.首先熟悉冷、热流体的流向,了解实验装置。然后打开冷却水调节阀门;

2.打开气量阀门,启动风机,关小气量阀门,使进换热器的空气流量恒定在实验值; 3.打开加热电源,调节加热调压器调节电压,使空气进换热器温度恒定在实验值; 4.待t 2和T 2稳定不变10min ,读取原始数据;

5.调节可调控件,即气量阀、冷却水调节阀门或加热调压器,改变换热条件,待稳定后读取数据。重复测取4-6组数据。

6.实验结束,关闭加热电源,待空气出口温度降为室温后,再关闭气量阀门和冷却水调节阀门。

注意事项:加热电压不能过高,保持空气进口温度小于100℃,以免换热器的密封垫圈烧焦。

五、原始数据记录与处理

在表2-11中记录测取的原始实验数据。原始实验数据按传热原理进行处理,结果可填入表格2-12中。 管长 mm; 管程数 ; 管径 mm; 管数 ; 壁厚 mm;

2

换热器内径 mm; 螺纹管增面系数Ψ=2.614; 传热面积 m

1.影响总传热系数K 的因素有哪些?

2.实验条件下,进一步地提高冷却水的用量,是否能达到有效强化传热过程的目的?

恒 压 过 滤 常 数 测 定

实 验 装 置

(板框过滤机)

一. 实验设备的特点

1.该实验设备由过滤板、过滤框组成的小型工业用板框过滤机,实验设备整体美观、简单,操作方便。

2.可测定过滤常数: K, qe ,θe 及s ,k 。

3. 实验数据稳定、可靠,重现性好。 4. 过滤压力范围(0.05--0.2MPa )。 二. 设备的主要技术数据

1. 旋涡泵: 型号:

2.搅拌器: 型号: KDZ-1 ; 功率: 160w 转速: 3200转/分;

3. 过滤板: 规格: 160*180*11(mm )。

4. 滤布:型号 工业用;过滤面积0.0475m 2。 5. 计量桶: 长327mm 、宽286mm 。 三. 设备的流程及操作时应注意的事项 流程图: (见图一)

如图一所示,滤浆槽内配有一定浓度的轻质碳酸钙悬浮液(浓度在2-4%左右),用电动搅拌器进行均匀搅拌(浆液不出现旋涡为好) 。启动旋涡泵,调节阀门3使压力表5指示在规定值。滤液在计量桶内计量。

过滤、洗涤管路如图二示

2. 操作时应注意的事项

1) 过滤板与框之间的密封垫应注意放正,过滤板与框的滤液进出口对齐。用摇柄把过滤设备压紧,以免漏液。

2)计量桶的流液管口应贴桶壁,否则液面波动影响读数。

3)实验结束时关闭阀门3。用阀门11、4接通自来水对泵及滤浆进出口管进行冲洗。切忌将自来水灌入储料槽中。

4)电动搅拌器为无级调速。使用时首先接上系统电源,打开调速器开关,调速钮一定由小到大缓慢调节,切勿反方向调节或调节过快损坏电机。 5)启动搅拌前,用手旋转一下搅拌轴以保证顺利启动搅拌器。 四. 实验方法及操作步骤

1. 系统接上电源,打开搅拌器电源开关,启动电动搅拌器2。将滤液槽10内浆液搅拌均匀。 2.板框过滤机板、框排列顺序为:固定头-非洗涤板-框-洗涤板-框-非洗涤板-可动头。用压紧装置压紧后待用。

3. 使阀门3处于全开、阀4、6、11处于全关状态。启动旋涡泵12,调节阀门3使压力表5达到规定值。

4. 待压力表5稳定后,打开过滤入口阀6过滤开始。当计量桶13内见到第一滴液体时按表计时。记录滤液每增加高度10mm 时所用的时间。当计量桶13读数为150 mm时停止计时,并立即关闭入口阀6。

5.打开阀门3使压力表5指示值下降。开启压紧装置卸下过滤框内的滤饼并

放回滤浆槽内,将滤布清洗干净。放出计量桶内的滤液并倒回槽内,以保证滤浆浓度恒定。

6. 改变压力,从(2)开始重复上述实验。

7. 每组实验结束后应用洗水管路对滤饼进行洗涤,测定洗涤时间和洗水量。 8.实验结束时阀门11接上自来水、阀门4接通下水,关闭阀门3对泵及滤浆

进出口管进行冲洗。 五. 附录

1. 实验数据的计算方法(实验数据见表一)

根据恒压过滤方程:(q+q e ) 2=K(θ+θe ) (1) 式中: q─单位过滤面积获得的滤液体积 m3/m2; qe ─单位过滤面积的虚拟滤液体积 m3/m2; θ─实际过滤时间 S; θe ─虚拟过滤时间 S; K─过滤常数 m2/S 。 将(1)式微分得:

d θ22

=q +q e (2)

dq k k

d θ

此为直线方程,于普通坐标系上标绘对的关系,所得直线斜率为:

dq

22

,截距为q e ,从而求出,K ,q e

k k

θe 由下式得:

q2e =K θe (3)

d θ∆θ

可以用增量之比来代替即: 与 作

dq ∆q

图。

过滤常数的定义式:

K=2k △p 1-s (5) 两边取对数:

lgK=(1-s)lg(△p) +lg(2k) (6)

因 s=常数,k =

1

v

=常数,故 K 与△P 的关系,在双对数坐标上标绘是

一条直线。直线的斜率 1-S,由此可计算出压缩性指数 S,读取△P-K 直线上任一点处的K ,△p 数据一起代入(5)式计算物料特性常数 k 。

[(5)式中的内容可根据各学校的教学要求自选决定取舍。 2. 记录样表

3. 过滤常数: K,q e ,θe 的计算


相关内容

  • [化工原理实验]教学大纲
  • <化工原理实验>教学大纲 四川理工学院材料与化学工程系实验中心 2006.05 目 录 1 化工原理实验的性质和任务 1 2 大纲编写依据 1 3 适用专业 1 4 先行课程 1 5 考核方式及办法 1 6 实验项目 2 7 实验学时分配 2 8 实验基本要求 3 9 教材及参考资料 7 ...

  • 化工原理实验
  • 黄冈师范学院 2011至2012学年度第二学期 授 院别课计划课程名称班级应化201001-02化工原理实验 主讲教师熊绪杰实验辅导教师莫小曼实际授课 讲授12学周时总学时(不包括期终考试阶段)36学时实验36学时 学时 学时校外教学(教学参观)机动学时学时习题课其它 教研室主任 中心办公室主任 中 ...

  • 化工原理实验试题集
  • 渭南师范学院化学化工系期末考试试题(A ) (2009-2010学年第二学期) 年级 08级 专业 精细化工 科目 化工原理实验 一.填空题(每空1分,共30分) 1. 工程问题的研究方法主要有.. . 2. 量纲分析法是以为指导的研究方法. 3. 变量之间的定量关系常用,,表示. 4. 通常将流体 ...

  • 10级食品工程原理实验讲义修改
  • 食品工程原理实验讲义 (2010级适用) 预习内容: 1. 预习报告内容: 实验目的: 实验原理:要在理解的基础上写,不能照抄(内容也太多) 实验装置图(简图) 实验步骤: 数据表格:要求规整,可用铅笔 2. 预习操作内容: 实验注意事项 思考题 实验前老师提问,按此结合预习报告给预习成绩. 化学化 ...

  • 化工原理实验习题答案
  • 1.填料吸收实验思考题 (1)本实验中,为什么塔底要有液封?液封高度如何计算? 答:保证塔内液面,防止气体漏出,保持塔内压力.0.1 设置液封装置时,必须正确地确定液封所需高度,才能达到液封的目的. U形管液封所需高度是由系统内压力(P1 塔顶气相压力).冷凝器气相的压力(P2)及管道压力降(h,) ...

  • 列管式换热器性能测试
  • 列管式换热器性能测试 一.实验目的 1.熟悉列管式换热器的结构. 2.了解列管式换热器的工作原理. 3.掌握列管式换热器传热性能的测量计算方法. 4.测定列管式换热器的总传热系数,对数平均传热温差及热平衡误差. 5.绘制列管式换热器传热性能曲线. 6.掌握列管式换热器顺流/逆流对传热性能的影响. 二 ...

  • 化工原理上册实验考试
  • 考生注意事项:1.本试卷共 6 页,请查看试卷中是否有缺页. 2.考试结束后,考生不得将试卷.答题纸和草稿纸带出考场. 一.选择题(每小题2分,共20分) 1.在完全湍流区是,粗糙管的摩擦系数值 A 与光滑管一样 B 只取决于雷诺数 C 只取决于相对粗糙度 D 与粗糙度无关 2.水在内径一定的圆管中 ...

  • 医用化学实验
  • 高等医学院校基础医学实验教学系列教材 供与医学有关各专业用 医用化学实验 主编 余瑜 尚京川 科学技术出版社 高等医学院校基础医学实验教学系列教材 供与医学有关各专业用 医用化学实验 主 编 余 瑜 尚京川 罗美明 赵先英 贾云宏 编委(以姓氏笔画为序) 于明安(重庆医科大学) 王 驰(重庆医科大学 ...

  • 化工原理附答案
  • 一. 填空(每小题1分,共20分) 1.流体流动阻力的形成是流体具有---粘性---的结果. 2. 边长为a的正方形截面风道,其当量直径为-----a---. 3.经内径为50mm的钢管输送运动20℃的水,水的流速为2 m/s,粘度为1.005cP.试判定 水在钢管中的流型. 湍流 4.每千克水经过 ...