管式加热炉温度控制系统设计

过程控制系统课程设计报告书

管式加热炉温度控制系统设计

学 院:自 动 化

班 级:15级自动化4班

指导老师:陈 刚

组 员:

重庆大学自动化学院

2019年1月

任务分配

过程控制系统课程设计——管式加热炉温度控制系统的设计

目录

任务分配........................................................................................................................................... 2

过程控制系统课程设计——管式加热炉温度控制系统的设计 ........................................... 2

1摘要 ............................................................................................................................................... 4

2模型简介........................................................................................................................................ 4

2.1背景 . ................................................................................................................................... 4

2.2模型假设 . ........................................................................................................................... 4

2.3系统扰动因素 . ................................................................................................................... 5

3控制方案........................................................................................................................................ 5

3.1传统PID 控制方法 . ........................................................................................................... 5

3.2串级控制系统 . ................................................................................................................... 6

3.3 方案选择 . .......................................................................................................................... 7

4串级控制器的设计 . ....................................................................................................................... 7

4.1主副控制器设计 . ............................................................................................................... 7

4.1.1主、副回路的设计原则 . ....................................................................................... 7

4.1.2主、副调节器的选型 . ........................................................................................... 7

4.1.3主、副调节器调节规律的选择作用 . ................................................................... 8

4.2串级控制器的参数整定 . ................................................................................................... 8

5系统的仿真和改进 . ....................................................................................................................... 9

5.1串级控制系统仿真 . ........................................................................................................... 9

5.2基于Smith 预估计补偿器的串级控制系统 . ................................................................. 11

六.总结......................................................................................................................................... 14

七.参考文献 . ................................................................................................................................ 15

1摘要

当今世界,随着市场竞争的日益激烈,产品的质量和功能也向更高的档次发展,制造产品的工艺过程变得越来越复杂,为满足优质、高产、低消耗,作为工业自动化重要分支的过程控制的任务也愈来愈重,无论是在大规模的工业生产过程中,还是在传统工业过程改造中,过程控制技术对于提高产品质量以及节省能源等均起十分重要的作用。为了能将课程所学理论知识初步尝试应用于实践。

本设计针对管式加热炉系统的控制问题展开了研究。通过将实际加热炉模型化,通过实验法建立锅炉的数学模型。针对物料温度控制问题,在对比了简单的单回路PID 控制方法、串级控制两种方法的优劣性后,选择了串级控制的方法控制物料温度。综合应用过程控制理论以及MATLAB 仿真技术,通过经验模型及参数整定,得到系统响应曲线。通过反复实验,调整参数,使控制效果比较理想。

关键词:管式加热炉系统、串级控制、MATLAB 仿真

2模型简介

2.1背景

管式加热炉是石油工业中重要装置之一,加热炉控制的主要任务就是保证工艺介质最终温度达到并维持在工艺要求范围内,由于其具有强耦合、大滞后等特性,控制起来非常复杂。同时,近年来能源的节约、回收和合理利用日益受到关注。加热炉是冶金、炼油等生产部门的典型热工设备,能耗很大。因此,在设计加热炉控制系统时,在满足工艺要求的前提下,节能也是一个重要质量指标,要保证加热炉的热效率最高,经济效益最大。另外,为了更好地保护环境,在设计加热炉控制系统时,还要保证燃料充分燃烧,使燃烧产生的有害气体最少,达到减排的目的。

2.2模型假设

管式加热炉的主要任务是把原质油或重油加热到一定的温度,保证下一道工序正常进行。假设有一个加热炉系统,系统参数设定为:

1.物料以恒定速度进入管道,流速为10L/s,管道直径为10cm ,不考虑物料浓度变化、压力变化等其他条件。

2.物料在加热炉内的长度为L=5m,假定物料受热均匀,并在t=10s后上升至指定温度。

3.假定燃气混合浓度不变,物料温度上升只受燃料流量影响。

4.不考虑环境温度、燃料值等影响,主要考虑燃料流量的扰动。

5.设定加热炉的出口温度T=70±2℃。

2.3系统扰动因素

管式加热炉的主要任务是把原质油或重油加热到一定的温度。引起温度改变的扰动因素有很多,主要有:

1. 燃油方面(他的组分和调节阀前的油压以及燃料油流量)的扰动;

2. 喷油用的过热蒸汽压力波动;

3. 被加热油料方面(它的流量和入口温度)的扰动;

4. 配风、炉膛漏风和大气温度方面的扰动;

本设计主要考虑的是被加热油料流量的扰动的影响,忽略其他的扰动因素。

3控制方案

3.1传统PID 控制方法

管式加热炉的任务是把原料加热到一定温度,以保证下道工艺顺利进行,因此若采用传统简单控制系统,常选原料油出口温度为 θ1(t ) 被控参数、燃料油流量为控制变量,如图3-1所示,其控制系统框图如图3-2所示。影响原料油出口

f 2(t ) 、f 3(t ) 、燃料f 1(t ) 原料油入口温度 θ1(t ) 的干扰有原料油流量 温度 燃料压力

f 5(t ) 等,该系统根据原料油出口温度 f 4(t ) 、燃料流量 θ1(t ) 来控制燃料阀热值

门的开度,通过改变燃料流量将原油出口温度控制在规定值上,但由其系统图可知当燃料压力、流量、热值发生变化,产生扰动时,最先影响炉膛温度,然后通过传热过程逐渐影响原料油出口温度,从燃料流量变化经过三个容量后,才引起原料油出口温度的变化,这个通道时间常数很大,约15min, 反应缓慢。而温度

θ调节器 θ1(t ) 与设定值的偏差进行控制,当燃料部1(t ) 是根据原料油的出口温度

T 1C 的影响,分出现干扰后,系统并不能及时产生控制作用,克服干扰对被控参数

θ1(t ) 要求严格时,传统的简单控制控制质量差,当生产工艺对原料油出口温度

系统很难满足要求。

图3.1 管式加热炉简单温度控制系统

图3.2管式加热炉简单温度控制系统框图

3.2串级控制系统

串级控制系统是在简单控制系统的基础上发展起来的,当被控过程的滞后较大,干扰比较剧烈、频繁时,采用简单控制系统控制品质较差,满足不了工艺控制精度,在这种情况下可考虑采用串级控制系统,串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。针对管式加热炉设计的温度-流量串级控制系统3-3所示,其系统框图3-4所示。

图3.3管式加热炉温度-流量串级控制系统

图3.4 管式加热炉温度-流量串级控制系统框图

3.3 方案选择

方案一的简单控制系统有干扰时,TC 输出信号改变阀门开度,进而改变燃料流量,在炉膛中燃烧后,炉膛温度改变,改过程时间常数大,可达到15min 。因此等到出口温度改变后,再改变操纵变量,动作不及时,偏差在较长时间内不能被消除。

方案二的串级控制系统中,由于引进了副回路,不仅能迅速克服作用于副回路内的干扰,也能加速克服主回路的干扰。副回路具有先调、初调、快调的特点;主回路具有后调、细调、慢调的特点,对副回路没有完全克服干扰的影响能彻底加以消除。由于主副回路相互配合,使控制质量显著提高。与单回路控制系统相比,串级控制系统多用了一个测量变送器与一个控制器(调节器),增加的投资并不多(对计算机控制系统来说,仅增加了一个测量变送器),但控制效果却有显著的提高。其原因是在串级控制系统中增加了一个包含二次扰动的副回路,使系统完善了被控过程的动态特性,提高了系统的工作频率; 对二次扰动有很强的克服能力;提高了对一次扰动的克服能力和对回路参数变化的自适应能力。

综上所述,本设计选择串级控制系统。

4串级控制器的设计

为充分发挥串级控制系统的优点,在设计实施控制系统时,还应适当合理的设计主、副回路及选择主、副调节器的控制规律。

4.1主副控制器设计

4.1.1主、副回路的设计原则

1)副参数的选择,应使副回路的时间常数小,控制通道短,反应灵敏。

2)副回路应包含被控对象所受到的主要干扰。

3)主、副对象的时间常数应适当匹配。

4.1.2主、副调节器的选型

1)副调节器的选型:副调节器的任务是要快速动作以迅速消除进入副回路内的扰动,而且副参数并不要求无差,所以一般都选P 调节器,也可采用PD 调节器,但这增加了系统的复杂性,在一般情况下,采用P 调节器就足够了,如果主、副回路频率相差很大,也可以考虑采用PI 调节器。本次设计采用P 调节器。

2)主调节器的选型:主调节器的任务是准确保持被调量符合生产要求。凡是需采用串级控制的生产过程,对控制的品质都是很高的,不允许被调量存在静差。因此主调节器必须具有积分作用,一般都采用PI 调节器。如果控制对象惰性区的容积数目较多,同时又有主要扰动落在副回路以外的话,就可以考虑采用PID 调节器。本次设计采用PID 调节器。

4.1.3主、副调节器调节规律的选择作用

1)主参数控制质量要求不十分严格,同时在对副参数的要求也不高的情况下,为使两者兼顾而采用串级控制方式时,主、副调节器均可以采用比例控制。

2)要求主参数波动范围很小,且不允许有余差,此时副调节器可以采用比例控制,主调节器采用比例积分控制。

3)主参数要求高,副参数亦有一定要求这时主、副调节器均采用比例积分形式。

4.2串级控制器的参数整定

串级控制系统中,两个控制器串联一起控制调节阀,因此两个控制器是相互关联的,不可避免会产生相互影响。所以两个控制器的参数整定也是相互关联的,需要相互协调,反复整定才能达到最佳效果。另外,系统在运行过程中,主回路和副回路的工作频率是不同的,一般副回路的工作频率较高,主回路的频率较低。工作频率的高低主要取决于被控过程的动态特性,但也与主、副回路的参数整定有关。在整定时应尽量加大副控制器的增益以提高副回路的工作频率,目的是师主、副回路的工作频率尽可能错开,以减少相互作用的影响。

在工程实践中,串级控制系统常用的参数整定方法有逐步逼近法、两部整定法,一步整定法等。本设计采用两步整定法,先整定副控制器,后整定主控制器。

图4.1 串级控制系统方框图

1)先整定副调节器:当副回路受到阶跃扰动时,在较短时间内副回路控制过程就告结束。在此期间,主回路基本上不参加动作,由图4.3得整定副回路时的方框图,如图4.4 (a )所示。可按单回路系统的整定方法整定副调节器W T 2(s )。

2)整定主调节器:当主回路进行控制时,副回路几乎起理想随动作用,由图4.3可得

R 2(s ) =Y 2(s ) W m 2(s ) (4.1)

从而求得副回路的闭和传递函数

Y 2(s ) 1=R 2(s ) W m 2(s )

(4.2) 即在主回路中副回路可看作一个比例环节,由此画出整定主回路时的方框图,如图4.2(b )所示。可按单回路系统的整定方法整定主调节器W T 1(s )的参数。

在此方法下主副控制器参数的工程整定如下:

a. 在工况稳定,主、副控制器都在纯比例作用的条件下,将主控制器的比例度先固定

在100%的刻度上,然后逐渐减小副控制器的比例度,求取副回路在满足某种衰减比(如4:

1) 过渡过程下的副控制器比例度δ2S 和操作周期T 2S 。

b. 在副控制器比例度等于δ2S ,的条件下,逐步减小主控制器的比例度,直至得到同样衰减比下的过渡过程,记下此时主控制器的比例度δ1S 。和操作周期T 1S 。

c. 根据上面得到的δ1S 、、T 1S 、δ2S 、、T 2S 计算主、副控制器的比例度、积分时间和微分时间。

d. 按“先副后主”、“先比例次积分后微分”的整定方法,将计算出的控制器参数加到控制器上。

e. 观察控制过程,适当调整,直到获得满意的过渡过程。

按上述步骤整定系统后,通常应满足ω2≥3ω1(ω1、ω2分别为主、副回路主导衰减振荡成分的频率)。通过整定可知主、副控制器的参数为Kc 1=0.8; T i =95; T d =5; Kc 2=

4

图4.2 主(a)副(b)调节器分别独立整定时的方框图

5系统的仿真和改进

5.1串级控制系统仿真

通过查阅相关资料可知导前区的传递函数为 W 02=

惰性区的传递函数为: W 01=

其调节器为PID 调节器,即:

W T (s )=0.8-6s e (5.1)1+50s 1.25(1+90s )2e -40s (5.2) ⎫1⎛11++T s ⎪δ⎝T i s d ⎭

(5.3) 用衰减曲线法整定参数得Kc 1=0.8; T i =95; T d =5; Kc 2=4,用MA TLAB 的Simulink 进行仿真,其结构图如图5.1所示,其仿真曲线如图5.2所示;对系统施加一个给定值阶跃扰动(r=1)时响应曲线如下图5.3所示。

图5.1 串级控制的simulink 结构图

图5.2 串级PID 控制的simulink 仿真图 图5.3 给定值阶跃扰动响应曲线

给系统施加一个外部阶跃扰动时的仿真如图5.4所示,当惰性区纯滞后时间变为60,惯性时间常数变为100时,其仿真如图5.5所示。

图5.4 系统外部阶跃扰动仿真图 图5.5 t 变为60,Td 变为100时的仿真图 当变为当纯滞后时间变为80,惯性时间常数变为120 时如图5.6所示

图5.6t 变为80,Td 变为120 的仿真图

由图5.2可以看到在锅炉过热汽温控制系统中,串级PID 控制能取得比较令人满意的效果。由图5.3、5.4可以看到串级系统对抑制回路内部干扰效果不错,对外部干扰效果不是太好,因此要尽可能把主要的干扰放在内回路解决。但是随着控制理论的发展和过热汽温串级

控制系统的研究发现,常规PID 控制器仍然存在较大的不足,比如其响应速度慢、超调量大、过渡时间长。造成这问题的主要原因是,常规PID 控制器的参数是固定不变的,对参数的整定只能大致按照整个控制过程的要求进行,而系统在控制过程的各个阶段对参数却有不同的要求。另外,过热汽温控制系统属于大惯性、大延迟的系统,由于串级PID 的参数是固定的,很难在工况发生变化时取得令人满意的效果。由图5.5 、图5.6 可知,为取得较好的控制效果,对于大时延、大惯性的系统,单单的串级控制系统是不够的,因此需要改进其算法。下面就来介绍Smith 预估补偿器的作用。

5.2基于Smith 预估计补偿器的串级控制系统

对于有纯迟延过程的控制系统,调节器采用PID 控制规律时,系统的静态和动态品质均下降,纯迟延愈大,其性能指标下降的愈大。Smith 针对具有纯迟延的过程,提出在PID 反馈控制的基础上引入一个预补偿环节,使控制品质大大提高。下面就对Smith 预估补偿的原理进行更详细地介绍。

当采用简单回路控制时,如图5.7所示

图5.7 单回路控制系统

控制器的传递函数为W T (s ) ,对象的传递函数为W

值作用至被控变量的闭环传递函数是:

Y (s )

R s =W ' s e -(s ) W () t s

t s 0' s e -t s 时,从设定(s ) =W 0() 1+W T ' s e -(s ) W 0()

扰动作用至被控变量的闭环传递函数是: (5. 4)

Y (s ) W 0' (s ) e -t s

= (5. 5) ' -t s () () () F s 1+W T s W 0s e

如果分母中的e

在。

Smith -t s 项可以除去,情况就大有改善,迟延对闭环极点的不利影响将不复存-t s e 预估补偿方案主题思想就是消去分母中的项,实现的方法是把对象的数字模型引入到控制回路之内,设法取得更为及时的反馈信息,以改进控制品质,这种方案可按不同的角度进行解释说明,下面从内模(模型置于回路之内)的角度来介绍。Smith 预估器补偿原理图如图5.8所示。

图5.8 Smith 预估补偿控制原理图

' ' (s ) (s ) W W -t s 0s 在图5.8中是对象除去纯迟延环节e 以后的传递函数,是Smith 预估补

() 偿器的传递函数,假若系统中无此补偿器,则由调节器输出m s 到被调量Y (s ) 之间的传

递函数为:

Y (s ) =W 0' (s ) e -t s

m (s )

(5.6)

' 上式表明,受到控制作用之后的被调量要经过纯迟延t 之后才能返回到调节器。若系统采用预估补偿器,则调节器m (s ) 与反馈到调节器的Y

和,即 (s ) 之间传递函数是两个并联通道之

Y ' (s ) =W 0' (s ) e -t s t +W s ' (s ) (5. 7) m (s )

为使调节器采集的信号Y ' (s ) 不至迟延t ,则要求式(5.8)为

Y ' (s ) ' (5. 8) =W 0' (s ) e -t s t +W s ' (s ) =W 0(s ) m (s )

从上式便可得到预估补偿器的传递函数为:

W s ' (s ) =W 0' (s ) 1-e -(t s ) (5. 9)

一般称式(5.4)表示的预估器为Smith 预估器。其实施框图如图5.3所示,只要一个与对象除去纯迟延环节后的传递函数W s (s ) 相同的环节和一个迟延时间等于t 的纯迟延环节就可以组成Smith 预估模型,它将消除大迟延对系统过度过程的影响,使调节过程的品质与过程无迟延环节时的情况一样,只是在时间坐标上向后推迟的一个时间t 。

'

图5.9Smith 补偿控制系统方框图

从图5.9可以推出系统的闭环传递函数为

' ' -τs ⎡⎤Y (s ) ' -τs 1+W T (s ) W 0(s )-W T (s ) W 0(s ) e =W 0(s ) e ⎢⎥ ' R (s ) 1+W T (s ) W 0(s ) ⎣⎦

=W (s ) e '

0-τs ⎡W T (s ) W 0' (s ) e -τs ⎤⎢1-⎥ ' 1+W (s ) W (s ) T 0⎣⎦

=W 0' (s ) e -t s [1-W 1(s ) e -t s ]

' () W T (s ) W s 0 W 1(s ) = (5.10) 1+W T (s ) W 0' (s )

() 式中W 1s 为无延迟环节时系统闭环传递函数。

Y (s ) W T (s ) W 0' (s ) e -t s

-t s (s ) e ==W (5. 11) 1' () () () R s 1+W T s W 0s

由式(5.10)可见,对于随动控制经预估补偿,其特征方程中已消去了e 项,即消除

-t s 了纯迟延对系统控制品质的不利影响。至于分子之中的e 仅仅将系统控制过程曲线在时间

轴上推迟了一个t ,所以预补偿完全补偿了纯迟延对过程的不利影响。控制品质与被控过程无纯迟延完全相同。

对于定值控制,由式(5.11)可知,闭环传递函数由两项组成。第一项为扰动对象只有t >2t 时才产生控制作用,当t ≤2τ时无控制作用。所以Smith 预估补偿控制应用于定值控制其效果不如随动控制。不过,从系统特征方程看,预估补偿方案对定值控制系统品质的改善还是有好处的。

通过对Smith 预估计的分析,可以推出串级汽温控制系统的原理图5.10,并用simulink 对其仿真可以得到其仿真图5.11,如下所示;把惰性区的延迟时间由40s 改为60s ,再次进行仿真得到的仿真曲线如图5.12所示。

由仿真图4.2与图5.11相比较得到,由图5.11可以看出Smith 预估器使控制品质大大提高,系统的特性非常好。 由仿真图5.11与图5.12相比较得到,Smith 预估器它对模型的误差十分敏感,当系统参数变化时,由于控制参数不能随之而化,不能对受控过程参数做出适时调整,从而时过程的品质指标恶化。 -t s

图5.10基于Smith 预估补偿的管式加热炉串级控制系统的simlink 结构图

图5.11 Smith预估补偿的串级控制系统仿真图 图5.12 t =60, Smith估计的仿真图

六.总结

经过一周多小组成员的共同努力,这次课程设计任务总算做完了。在这一个星期的课程设计的过程中,我们深深地体会到,随着自动化技术日新日异的发展,自动化技术的应用已经深入到我们日常生化的各个方面,作为自动化专业的学生,应该学好这个主干课程,为社会作出了巨大贡献。我们切实体会到了MATLAB 强大的计算与绘图功能,尤其是仿真功能,用它可以准确而又高效地解决自动控制分析与设计中的问题,因此掌握MATLAB 是十分重要的。

课程设计是培养学生锻炼实践能力的重要环节, 要求我们综合运用所学知识, 发现、提出、分析和解决实际问题。通过这次能力拓展,我们体会到了理论与实际的差距,我们应该用于承认差异的存在,并且正视差异。在熟练掌握书本上的基本内容的基础上,我们还应该灵活思考,具体问题具体分析,这正是步入社会以后最实用的。

在设计的过程中,我们不断发现自己的缺陷,通过团队合作力,不断完善系统功能。

七.参考文献

[1] 王浩宇; 管式加热炉PID 算法改进及其应用; 北京:电子工业出版社;2009

[2] 冉从蓉; 串级过程控制系统的抗干扰分析[J];北京:自然科学版社;2000

[3] 金以慧; 过程控制; 北京:清华大学出版社;1993

[4] 邵惠鹤; 工业过程高级控制; 上海:上海交通大学出版社;2003.

[5] 刘金琨; 先进PID 控制机器MATLAB 仿真; 北京:电子工业出版社;2003

过程控制系统课程设计报告书

管式加热炉温度控制系统设计

学 院:自 动 化

班 级:15级自动化4班

指导老师:陈 刚

组 员:

重庆大学自动化学院

2019年1月

任务分配

过程控制系统课程设计——管式加热炉温度控制系统的设计

目录

任务分配........................................................................................................................................... 2

过程控制系统课程设计——管式加热炉温度控制系统的设计 ........................................... 2

1摘要 ............................................................................................................................................... 4

2模型简介........................................................................................................................................ 4

2.1背景 . ................................................................................................................................... 4

2.2模型假设 . ........................................................................................................................... 4

2.3系统扰动因素 . ................................................................................................................... 5

3控制方案........................................................................................................................................ 5

3.1传统PID 控制方法 . ........................................................................................................... 5

3.2串级控制系统 . ................................................................................................................... 6

3.3 方案选择 . .......................................................................................................................... 7

4串级控制器的设计 . ....................................................................................................................... 7

4.1主副控制器设计 . ............................................................................................................... 7

4.1.1主、副回路的设计原则 . ....................................................................................... 7

4.1.2主、副调节器的选型 . ........................................................................................... 7

4.1.3主、副调节器调节规律的选择作用 . ................................................................... 8

4.2串级控制器的参数整定 . ................................................................................................... 8

5系统的仿真和改进 . ....................................................................................................................... 9

5.1串级控制系统仿真 . ........................................................................................................... 9

5.2基于Smith 预估计补偿器的串级控制系统 . ................................................................. 11

六.总结......................................................................................................................................... 14

七.参考文献 . ................................................................................................................................ 15

1摘要

当今世界,随着市场竞争的日益激烈,产品的质量和功能也向更高的档次发展,制造产品的工艺过程变得越来越复杂,为满足优质、高产、低消耗,作为工业自动化重要分支的过程控制的任务也愈来愈重,无论是在大规模的工业生产过程中,还是在传统工业过程改造中,过程控制技术对于提高产品质量以及节省能源等均起十分重要的作用。为了能将课程所学理论知识初步尝试应用于实践。

本设计针对管式加热炉系统的控制问题展开了研究。通过将实际加热炉模型化,通过实验法建立锅炉的数学模型。针对物料温度控制问题,在对比了简单的单回路PID 控制方法、串级控制两种方法的优劣性后,选择了串级控制的方法控制物料温度。综合应用过程控制理论以及MATLAB 仿真技术,通过经验模型及参数整定,得到系统响应曲线。通过反复实验,调整参数,使控制效果比较理想。

关键词:管式加热炉系统、串级控制、MATLAB 仿真

2模型简介

2.1背景

管式加热炉是石油工业中重要装置之一,加热炉控制的主要任务就是保证工艺介质最终温度达到并维持在工艺要求范围内,由于其具有强耦合、大滞后等特性,控制起来非常复杂。同时,近年来能源的节约、回收和合理利用日益受到关注。加热炉是冶金、炼油等生产部门的典型热工设备,能耗很大。因此,在设计加热炉控制系统时,在满足工艺要求的前提下,节能也是一个重要质量指标,要保证加热炉的热效率最高,经济效益最大。另外,为了更好地保护环境,在设计加热炉控制系统时,还要保证燃料充分燃烧,使燃烧产生的有害气体最少,达到减排的目的。

2.2模型假设

管式加热炉的主要任务是把原质油或重油加热到一定的温度,保证下一道工序正常进行。假设有一个加热炉系统,系统参数设定为:

1.物料以恒定速度进入管道,流速为10L/s,管道直径为10cm ,不考虑物料浓度变化、压力变化等其他条件。

2.物料在加热炉内的长度为L=5m,假定物料受热均匀,并在t=10s后上升至指定温度。

3.假定燃气混合浓度不变,物料温度上升只受燃料流量影响。

4.不考虑环境温度、燃料值等影响,主要考虑燃料流量的扰动。

5.设定加热炉的出口温度T=70±2℃。

2.3系统扰动因素

管式加热炉的主要任务是把原质油或重油加热到一定的温度。引起温度改变的扰动因素有很多,主要有:

1. 燃油方面(他的组分和调节阀前的油压以及燃料油流量)的扰动;

2. 喷油用的过热蒸汽压力波动;

3. 被加热油料方面(它的流量和入口温度)的扰动;

4. 配风、炉膛漏风和大气温度方面的扰动;

本设计主要考虑的是被加热油料流量的扰动的影响,忽略其他的扰动因素。

3控制方案

3.1传统PID 控制方法

管式加热炉的任务是把原料加热到一定温度,以保证下道工艺顺利进行,因此若采用传统简单控制系统,常选原料油出口温度为 θ1(t ) 被控参数、燃料油流量为控制变量,如图3-1所示,其控制系统框图如图3-2所示。影响原料油出口

f 2(t ) 、f 3(t ) 、燃料f 1(t ) 原料油入口温度 θ1(t ) 的干扰有原料油流量 温度 燃料压力

f 5(t ) 等,该系统根据原料油出口温度 f 4(t ) 、燃料流量 θ1(t ) 来控制燃料阀热值

门的开度,通过改变燃料流量将原油出口温度控制在规定值上,但由其系统图可知当燃料压力、流量、热值发生变化,产生扰动时,最先影响炉膛温度,然后通过传热过程逐渐影响原料油出口温度,从燃料流量变化经过三个容量后,才引起原料油出口温度的变化,这个通道时间常数很大,约15min, 反应缓慢。而温度

θ调节器 θ1(t ) 与设定值的偏差进行控制,当燃料部1(t ) 是根据原料油的出口温度

T 1C 的影响,分出现干扰后,系统并不能及时产生控制作用,克服干扰对被控参数

θ1(t ) 要求严格时,传统的简单控制控制质量差,当生产工艺对原料油出口温度

系统很难满足要求。

图3.1 管式加热炉简单温度控制系统

图3.2管式加热炉简单温度控制系统框图

3.2串级控制系统

串级控制系统是在简单控制系统的基础上发展起来的,当被控过程的滞后较大,干扰比较剧烈、频繁时,采用简单控制系统控制品质较差,满足不了工艺控制精度,在这种情况下可考虑采用串级控制系统,串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。针对管式加热炉设计的温度-流量串级控制系统3-3所示,其系统框图3-4所示。

图3.3管式加热炉温度-流量串级控制系统

图3.4 管式加热炉温度-流量串级控制系统框图

3.3 方案选择

方案一的简单控制系统有干扰时,TC 输出信号改变阀门开度,进而改变燃料流量,在炉膛中燃烧后,炉膛温度改变,改过程时间常数大,可达到15min 。因此等到出口温度改变后,再改变操纵变量,动作不及时,偏差在较长时间内不能被消除。

方案二的串级控制系统中,由于引进了副回路,不仅能迅速克服作用于副回路内的干扰,也能加速克服主回路的干扰。副回路具有先调、初调、快调的特点;主回路具有后调、细调、慢调的特点,对副回路没有完全克服干扰的影响能彻底加以消除。由于主副回路相互配合,使控制质量显著提高。与单回路控制系统相比,串级控制系统多用了一个测量变送器与一个控制器(调节器),增加的投资并不多(对计算机控制系统来说,仅增加了一个测量变送器),但控制效果却有显著的提高。其原因是在串级控制系统中增加了一个包含二次扰动的副回路,使系统完善了被控过程的动态特性,提高了系统的工作频率; 对二次扰动有很强的克服能力;提高了对一次扰动的克服能力和对回路参数变化的自适应能力。

综上所述,本设计选择串级控制系统。

4串级控制器的设计

为充分发挥串级控制系统的优点,在设计实施控制系统时,还应适当合理的设计主、副回路及选择主、副调节器的控制规律。

4.1主副控制器设计

4.1.1主、副回路的设计原则

1)副参数的选择,应使副回路的时间常数小,控制通道短,反应灵敏。

2)副回路应包含被控对象所受到的主要干扰。

3)主、副对象的时间常数应适当匹配。

4.1.2主、副调节器的选型

1)副调节器的选型:副调节器的任务是要快速动作以迅速消除进入副回路内的扰动,而且副参数并不要求无差,所以一般都选P 调节器,也可采用PD 调节器,但这增加了系统的复杂性,在一般情况下,采用P 调节器就足够了,如果主、副回路频率相差很大,也可以考虑采用PI 调节器。本次设计采用P 调节器。

2)主调节器的选型:主调节器的任务是准确保持被调量符合生产要求。凡是需采用串级控制的生产过程,对控制的品质都是很高的,不允许被调量存在静差。因此主调节器必须具有积分作用,一般都采用PI 调节器。如果控制对象惰性区的容积数目较多,同时又有主要扰动落在副回路以外的话,就可以考虑采用PID 调节器。本次设计采用PID 调节器。

4.1.3主、副调节器调节规律的选择作用

1)主参数控制质量要求不十分严格,同时在对副参数的要求也不高的情况下,为使两者兼顾而采用串级控制方式时,主、副调节器均可以采用比例控制。

2)要求主参数波动范围很小,且不允许有余差,此时副调节器可以采用比例控制,主调节器采用比例积分控制。

3)主参数要求高,副参数亦有一定要求这时主、副调节器均采用比例积分形式。

4.2串级控制器的参数整定

串级控制系统中,两个控制器串联一起控制调节阀,因此两个控制器是相互关联的,不可避免会产生相互影响。所以两个控制器的参数整定也是相互关联的,需要相互协调,反复整定才能达到最佳效果。另外,系统在运行过程中,主回路和副回路的工作频率是不同的,一般副回路的工作频率较高,主回路的频率较低。工作频率的高低主要取决于被控过程的动态特性,但也与主、副回路的参数整定有关。在整定时应尽量加大副控制器的增益以提高副回路的工作频率,目的是师主、副回路的工作频率尽可能错开,以减少相互作用的影响。

在工程实践中,串级控制系统常用的参数整定方法有逐步逼近法、两部整定法,一步整定法等。本设计采用两步整定法,先整定副控制器,后整定主控制器。

图4.1 串级控制系统方框图

1)先整定副调节器:当副回路受到阶跃扰动时,在较短时间内副回路控制过程就告结束。在此期间,主回路基本上不参加动作,由图4.3得整定副回路时的方框图,如图4.4 (a )所示。可按单回路系统的整定方法整定副调节器W T 2(s )。

2)整定主调节器:当主回路进行控制时,副回路几乎起理想随动作用,由图4.3可得

R 2(s ) =Y 2(s ) W m 2(s ) (4.1)

从而求得副回路的闭和传递函数

Y 2(s ) 1=R 2(s ) W m 2(s )

(4.2) 即在主回路中副回路可看作一个比例环节,由此画出整定主回路时的方框图,如图4.2(b )所示。可按单回路系统的整定方法整定主调节器W T 1(s )的参数。

在此方法下主副控制器参数的工程整定如下:

a. 在工况稳定,主、副控制器都在纯比例作用的条件下,将主控制器的比例度先固定

在100%的刻度上,然后逐渐减小副控制器的比例度,求取副回路在满足某种衰减比(如4:

1) 过渡过程下的副控制器比例度δ2S 和操作周期T 2S 。

b. 在副控制器比例度等于δ2S ,的条件下,逐步减小主控制器的比例度,直至得到同样衰减比下的过渡过程,记下此时主控制器的比例度δ1S 。和操作周期T 1S 。

c. 根据上面得到的δ1S 、、T 1S 、δ2S 、、T 2S 计算主、副控制器的比例度、积分时间和微分时间。

d. 按“先副后主”、“先比例次积分后微分”的整定方法,将计算出的控制器参数加到控制器上。

e. 观察控制过程,适当调整,直到获得满意的过渡过程。

按上述步骤整定系统后,通常应满足ω2≥3ω1(ω1、ω2分别为主、副回路主导衰减振荡成分的频率)。通过整定可知主、副控制器的参数为Kc 1=0.8; T i =95; T d =5; Kc 2=

4

图4.2 主(a)副(b)调节器分别独立整定时的方框图

5系统的仿真和改进

5.1串级控制系统仿真

通过查阅相关资料可知导前区的传递函数为 W 02=

惰性区的传递函数为: W 01=

其调节器为PID 调节器,即:

W T (s )=0.8-6s e (5.1)1+50s 1.25(1+90s )2e -40s (5.2) ⎫1⎛11++T s ⎪δ⎝T i s d ⎭

(5.3) 用衰减曲线法整定参数得Kc 1=0.8; T i =95; T d =5; Kc 2=4,用MA TLAB 的Simulink 进行仿真,其结构图如图5.1所示,其仿真曲线如图5.2所示;对系统施加一个给定值阶跃扰动(r=1)时响应曲线如下图5.3所示。

图5.1 串级控制的simulink 结构图

图5.2 串级PID 控制的simulink 仿真图 图5.3 给定值阶跃扰动响应曲线

给系统施加一个外部阶跃扰动时的仿真如图5.4所示,当惰性区纯滞后时间变为60,惯性时间常数变为100时,其仿真如图5.5所示。

图5.4 系统外部阶跃扰动仿真图 图5.5 t 变为60,Td 变为100时的仿真图 当变为当纯滞后时间变为80,惯性时间常数变为120 时如图5.6所示

图5.6t 变为80,Td 变为120 的仿真图

由图5.2可以看到在锅炉过热汽温控制系统中,串级PID 控制能取得比较令人满意的效果。由图5.3、5.4可以看到串级系统对抑制回路内部干扰效果不错,对外部干扰效果不是太好,因此要尽可能把主要的干扰放在内回路解决。但是随着控制理论的发展和过热汽温串级

控制系统的研究发现,常规PID 控制器仍然存在较大的不足,比如其响应速度慢、超调量大、过渡时间长。造成这问题的主要原因是,常规PID 控制器的参数是固定不变的,对参数的整定只能大致按照整个控制过程的要求进行,而系统在控制过程的各个阶段对参数却有不同的要求。另外,过热汽温控制系统属于大惯性、大延迟的系统,由于串级PID 的参数是固定的,很难在工况发生变化时取得令人满意的效果。由图5.5 、图5.6 可知,为取得较好的控制效果,对于大时延、大惯性的系统,单单的串级控制系统是不够的,因此需要改进其算法。下面就来介绍Smith 预估补偿器的作用。

5.2基于Smith 预估计补偿器的串级控制系统

对于有纯迟延过程的控制系统,调节器采用PID 控制规律时,系统的静态和动态品质均下降,纯迟延愈大,其性能指标下降的愈大。Smith 针对具有纯迟延的过程,提出在PID 反馈控制的基础上引入一个预补偿环节,使控制品质大大提高。下面就对Smith 预估补偿的原理进行更详细地介绍。

当采用简单回路控制时,如图5.7所示

图5.7 单回路控制系统

控制器的传递函数为W T (s ) ,对象的传递函数为W

值作用至被控变量的闭环传递函数是:

Y (s )

R s =W ' s e -(s ) W () t s

t s 0' s e -t s 时,从设定(s ) =W 0() 1+W T ' s e -(s ) W 0()

扰动作用至被控变量的闭环传递函数是: (5. 4)

Y (s ) W 0' (s ) e -t s

= (5. 5) ' -t s () () () F s 1+W T s W 0s e

如果分母中的e

在。

Smith -t s 项可以除去,情况就大有改善,迟延对闭环极点的不利影响将不复存-t s e 预估补偿方案主题思想就是消去分母中的项,实现的方法是把对象的数字模型引入到控制回路之内,设法取得更为及时的反馈信息,以改进控制品质,这种方案可按不同的角度进行解释说明,下面从内模(模型置于回路之内)的角度来介绍。Smith 预估器补偿原理图如图5.8所示。

图5.8 Smith 预估补偿控制原理图

' ' (s ) (s ) W W -t s 0s 在图5.8中是对象除去纯迟延环节e 以后的传递函数,是Smith 预估补

() 偿器的传递函数,假若系统中无此补偿器,则由调节器输出m s 到被调量Y (s ) 之间的传

递函数为:

Y (s ) =W 0' (s ) e -t s

m (s )

(5.6)

' 上式表明,受到控制作用之后的被调量要经过纯迟延t 之后才能返回到调节器。若系统采用预估补偿器,则调节器m (s ) 与反馈到调节器的Y

和,即 (s ) 之间传递函数是两个并联通道之

Y ' (s ) =W 0' (s ) e -t s t +W s ' (s ) (5. 7) m (s )

为使调节器采集的信号Y ' (s ) 不至迟延t ,则要求式(5.8)为

Y ' (s ) ' (5. 8) =W 0' (s ) e -t s t +W s ' (s ) =W 0(s ) m (s )

从上式便可得到预估补偿器的传递函数为:

W s ' (s ) =W 0' (s ) 1-e -(t s ) (5. 9)

一般称式(5.4)表示的预估器为Smith 预估器。其实施框图如图5.3所示,只要一个与对象除去纯迟延环节后的传递函数W s (s ) 相同的环节和一个迟延时间等于t 的纯迟延环节就可以组成Smith 预估模型,它将消除大迟延对系统过度过程的影响,使调节过程的品质与过程无迟延环节时的情况一样,只是在时间坐标上向后推迟的一个时间t 。

'

图5.9Smith 补偿控制系统方框图

从图5.9可以推出系统的闭环传递函数为

' ' -τs ⎡⎤Y (s ) ' -τs 1+W T (s ) W 0(s )-W T (s ) W 0(s ) e =W 0(s ) e ⎢⎥ ' R (s ) 1+W T (s ) W 0(s ) ⎣⎦

=W (s ) e '

0-τs ⎡W T (s ) W 0' (s ) e -τs ⎤⎢1-⎥ ' 1+W (s ) W (s ) T 0⎣⎦

=W 0' (s ) e -t s [1-W 1(s ) e -t s ]

' () W T (s ) W s 0 W 1(s ) = (5.10) 1+W T (s ) W 0' (s )

() 式中W 1s 为无延迟环节时系统闭环传递函数。

Y (s ) W T (s ) W 0' (s ) e -t s

-t s (s ) e ==W (5. 11) 1' () () () R s 1+W T s W 0s

由式(5.10)可见,对于随动控制经预估补偿,其特征方程中已消去了e 项,即消除

-t s 了纯迟延对系统控制品质的不利影响。至于分子之中的e 仅仅将系统控制过程曲线在时间

轴上推迟了一个t ,所以预补偿完全补偿了纯迟延对过程的不利影响。控制品质与被控过程无纯迟延完全相同。

对于定值控制,由式(5.11)可知,闭环传递函数由两项组成。第一项为扰动对象只有t >2t 时才产生控制作用,当t ≤2τ时无控制作用。所以Smith 预估补偿控制应用于定值控制其效果不如随动控制。不过,从系统特征方程看,预估补偿方案对定值控制系统品质的改善还是有好处的。

通过对Smith 预估计的分析,可以推出串级汽温控制系统的原理图5.10,并用simulink 对其仿真可以得到其仿真图5.11,如下所示;把惰性区的延迟时间由40s 改为60s ,再次进行仿真得到的仿真曲线如图5.12所示。

由仿真图4.2与图5.11相比较得到,由图5.11可以看出Smith 预估器使控制品质大大提高,系统的特性非常好。 由仿真图5.11与图5.12相比较得到,Smith 预估器它对模型的误差十分敏感,当系统参数变化时,由于控制参数不能随之而化,不能对受控过程参数做出适时调整,从而时过程的品质指标恶化。 -t s

图5.10基于Smith 预估补偿的管式加热炉串级控制系统的simlink 结构图

图5.11 Smith预估补偿的串级控制系统仿真图 图5.12 t =60, Smith估计的仿真图

六.总结

经过一周多小组成员的共同努力,这次课程设计任务总算做完了。在这一个星期的课程设计的过程中,我们深深地体会到,随着自动化技术日新日异的发展,自动化技术的应用已经深入到我们日常生化的各个方面,作为自动化专业的学生,应该学好这个主干课程,为社会作出了巨大贡献。我们切实体会到了MATLAB 强大的计算与绘图功能,尤其是仿真功能,用它可以准确而又高效地解决自动控制分析与设计中的问题,因此掌握MATLAB 是十分重要的。

课程设计是培养学生锻炼实践能力的重要环节, 要求我们综合运用所学知识, 发现、提出、分析和解决实际问题。通过这次能力拓展,我们体会到了理论与实际的差距,我们应该用于承认差异的存在,并且正视差异。在熟练掌握书本上的基本内容的基础上,我们还应该灵活思考,具体问题具体分析,这正是步入社会以后最实用的。

在设计的过程中,我们不断发现自己的缺陷,通过团队合作力,不断完善系统功能。

七.参考文献

[1] 王浩宇; 管式加热炉PID 算法改进及其应用; 北京:电子工业出版社;2009

[2] 冉从蓉; 串级过程控制系统的抗干扰分析[J];北京:自然科学版社;2000

[3] 金以慧; 过程控制; 北京:清华大学出版社;1993

[4] 邵惠鹤; 工业过程高级控制; 上海:上海交通大学出版社;2003.

[5] 刘金琨; 先进PID 控制机器MATLAB 仿真; 北京:电子工业出版社;2003


相关内容

  • 石油工业用加热炉安全规程2012
  • 前言 ..................................................................... II 1 范围 .................................................................... ...

  • 管式加热炉的技术改造及节能措施
  • 管式加热炉的技术改造及节能措施 贾芳成 天利实业总公司技术项目部 摘要: 针对早期建造的炼油厂和化工厂在役管式加热炉热负荷和热效率低以及热源损失大等状况,提出了若干技术改造和节能措施,包括增大对流管表面积以增大对流段的热负荷:增加辐射管的换热面积:修正烟囱高度:换用新型燃烧器,变自然通风为强制供风, ...

  • 高效缠绕管式换热器的节能分析与工业应用
  • 经 验 交 流 高效缠绕管式换热器的节能分析与工业应用 张贤安 (镇海炼化检修安装公司,浙江宁波 315207) 摘 要: 介绍了缠绕管式换热器的节能原理,利用工业应用实例对缠绕管式换热器的节能进行了分 析,并根据工业实际情况,提出了采用缠绕管式换热器,可使工艺流程简洁.操作条件优化.大幅度降低能耗 ...

  • 糠醛装置工艺优化改造
  • 第期李云霞:糠醛装置工艺优化改造 ・43・ 糠醛装置工艺优化改造 李云霞 (中国石化南阳石蜡精细化工厂,河南南阳473132) 摘要:对南阳石蜡精细化工厂糠醛装置抽提系统现状进行了分析,通过改造后的糠醛精制装置在保证抽提产品质量要求的前提下,处理能力提高15%左右,单日处理量由现在的平均380t/d ...

  • 各种类型换热器结构原理及特点(图文并茂)
  • 本账号为化工707服务号,与化工707订阅号同步运行,本账号下方菜单栏每天都会更新内容,请各位多使用下方菜单栏,获取最新的内容.需要下载文档的朋友,可以到化工707论坛下载. 板式换热器的构造原理.特点: 板式换热器由高效传热波纹板片及框架组成.板片由螺栓夹紧在固定压紧板及活动压紧板之间,在换热器内 ...

  • 管式加热炉的改进措施及工艺优化
  • 第10期 程远铭等: 管式加热炉的改进措施及工艺优化・43・ 节能降耗 管式加热炉的改进措施及工艺优化 程远铭, 王允从, 潘爱军, 何泽涵 1 2 1 1 (1. 河南神马尼龙化工有限责任公司, 河南平顶山 467013; 2. 河南汇源化学化工有限公司, 河南平顶山 467013) 摘 要:通过 ...

  • 管式冷却器使用说明
  • 管式冷却器使用说明 一.概述 列管式冷却器是冶金.化工.机械.能源.交通.轻工.食品等工业部门普遍采用的热交换装置.它适用于冷却.冷凝.加热.蒸发.废热回收等不同工况.由于其结构坚固,使用弹性大,适应性强,近些年来又对结构.工艺和材料等方面作了大量改进,使它的技术性能更趋于合理与先进.因此,在门类众 ...

  • 常减压加热炉技术改造
  • 第30卷 增刊 石 油 化 工 设 备 V ol. 30 Supplement 2001年5月PETRO 2CHE MIC A L E QUIP ME NT May 2001文章编号:100027466(2001) 增20067203 常减压加热炉技术改造 王向蒙 (金陵石化公司炼油厂, 江苏南京 ...

  • 东北石油大学油库设计与管理考试知识点总结
  • 油库设计 第一章 油库概述 1油库作用:基地作用,纽带作用 2油库的分类:(1)根据油库的管理体制和业务性质,油库可分为 独立油库 和 企业附属油库 两大类型.(2)根据油库的主要储油方式,油库可分为地面油库.隐蔽油库.山洞油库.水封石洞油库和海上油库等. 3油库总容量(判断,选择):是指油库的所有 ...