一种分布式光纤温度传感器的校准方法

计量校准:www.cqstyq.com

一种分布式光纤温度传感器的校准方法张小丽,等

一种分布式光纤温度传感器的校准方法

CalibrationMethodsforDistributedOpticalFiberTemperatureSensor

张小丽陈乐孙坚郑坚璐

(中国计量学院机电工程学院,浙江杭州310018)

要:根据分布式光纤温度传感器的测温特性和温度计量校准要求,对分布式光纤温度传感器的空间分辨率和测温准确性进行了

试验研究。通过选取不同校准基准点、不同光纤环长度和不同光纤的位置设计试验,分析了分布式光纤温度传感器不同的测温曲线和测温误差,提出了一种提高分布式光纤温度传感器测温精度的校准方法。试验表明,该方法测温稳定性好,误差满足精度要求。关键词:拉曼散射中图分类号:TP206

空间分辨率

温度校准

测温精度

传感器

LabVIEW

文献标志码:A

Abstract:Inaccordancewiththecharacteristicsoftemperaturemeasurementofdistributedopticalfibertemperaturesensor,andthecalibrationrequirementoftemperaturemetering,thespatialresolutionandprecisionoftemperaturemeasurementarestudiedbyexperiments.Theexperimentsaredesignedunderdifferentcalibratingbenchmark,differentlengthofopticalfiberring,anddifferentopticalfiberposition;anddifferenttemperaturemeasuringcurve,andmeasurementerrorofthedistributedopticalfibertemperaturesensorareanalyzed.Thusthecalibrationmethodthatenhancestheaccuracyoftemperaturemeasurementisproposed.Theexperimentshowsthatthemethodoftestingtemperaturefeaturesstableperformanceandsatisfiestheaccuracyrequirement.Keywords:Ramanscattering

Spatialresolution

Temperaturecalibration

Accuracyoftemperaturemeasurement

Sensor

LabVIEW

0引言

理,以及数据分析和输出。计算机可以实现系统的控制、信号处理、显示储存以及外部其他扩展功能。

在分布式光纤温度传感器中,前端检测光纤既是传输媒体又是传感媒体

[8]

分布式光纤温度传感器在民用、军工、科技应用等

[1-2]

,它在航空航天、远程控制、领域有着独特的优点

化学、生物化学、医疗、安全保险、电力工业等特殊环境[3-4]

。现有的研究方法大多采下拥有广阔的应用前景

用提升硬件条件和改进解调算法来提高分布式光纤温[5-7]

。目前,分布式光纤温度传度传感器的测温精度

感器在计量方面还没有相关的校准规程和标准。本文在原有分布式光纤温度传感器的基础上,对分布式光纤温度传感器的实际测温误差进行温度校准,使分布式光纤温度传感器达到温度计量标准,具有十分深远的理论和现实意义。

。分布式光纤温度传感器是

基于拉曼散射效应和光时域反射技术实现温度分布式测量的传感器。拉曼散射效应即光纤所处空间各点的温度场调制光纤中反斯托克斯背向拉曼散射光的强由波分复用器和光电检测器采集带有温度信息的度,

背向拉曼散射光电信号,再经信号处理器将温度信息实时地从噪声中提取出来并显示在计算机上。因此,分布式光纤温度传感器是一种典型的光纤温度通信网络。光时域反射技术是利用光在光纤中的传播速度和背向光回波的时间间隔,对所测温度点定位并显示定位温度,体现分布式的特点。

光在光纤中传播,由光信号转化为计算机能采集到的电信号需要3个过程:激光源注入激光脉冲(传播过程)、光电探测器响应(接收过程)和处理器转换(采集过程)。由于光在光纤中传播的速度比硬件电路响应信号的速度快得多,当硬件电路响应到光纤上A点的信号时,实际A点位置的光信号已经传播到达B点,因此,需要一定的光纤长度实现对一个温度点的准确测量。在光学领域中,这段光纤长度L(即为A到B的距离,如图1所示)被定义为空间分辨率

[9]

1理论基础

分布式光纤温度传感器在硬件上由传感光纤、终

端机和计算机三部分组成,在功能上由激光光源、传感光纤和检测单元组成。终端机是系统的核心组成部

分,包括光源、耦合器、波分复用器和光电探测器,其主要功能是实现信号的发射、接收、滤波、放大和信息处

质检公益性行业科研专项基金资助项目(编号:2007GYJ016)。修改稿收到日期:2010-12-17。

1986年生,第一作者张小丽,女,现为中国计量学院检测技术与自动化装置专业在读硕士研究生;主要从事温度传感器计量方面的研究。

。空间分

32

计量校准:www.cqstyq.com

PROCESSAUTOMATIONINSTRUMENTATIONVol.32No.12December2011

计量校准:www.cqstyq.com

辨率越小越好,但受到技术水平和成本的限制,分布式光纤温度传感器存在空间分辨率的问题。实际应用中,前端检测光纤环长度至少要等于空间分辨率,且这一段光纤环所测温度点相当于一般温度计量器具所测的一个温度点。理论上,分布式光纤温度传感器可测得光纤长度上每个点的温度值,体现其分布式优势。但实际上根据分布式光纤温度传感器的理论原理和构成,分布式光纤温度传感器是很难实现真正意义上每个温度点的测量。

光纤分辨率的产生过程如图1所示

图1

空间分辨率的产生过程

Fig.1

Thegenerationproceduresofspatialresolution

2试验设计

在0~100℃的温度范围内,选取3m(空间分辨

率)光纤环进行测温试验,验证分布式光纤温度传感器的测温误差是否满足测温精度(±1K),从而对分布式光纤温度传感器进行温度校准。所需试验设备包括恒温水槽、二等标准铂电阻温度计、数字万用表和分布式光纤温度传感器。

前端检测光纤以自然半径盘绕成环状(简称光纤环)作为分布式光纤温度传感器的温度探头。根据温度解调算法,将光纤环测得温度最大值作为该光纤环的温度测量值。试验光纤环位置和长度的对应关系如表1所示。表1中,光纤位置为光纤环测得温度最大值的位置点,光纤环长度为以光纤位置为中心所量取的长度。

表1

位置和长度的对应关系

Tab.1

Relationshipbetweenpositionandlength

参数/m试验数据

光纤环位置[1**********]光纤环长度

3

4

5

2

在分布式光纤温度传感器校准试验中,恒温水槽提供恒温环境,二等标准铂电阻温度计所测的温度数据作为标准温度

[10]

。二等标准铂电阻温度计采用四

线电阻制连接安捷伦34401A数字万用表,以获取铂电阻阻值,再利用RS-232串口连接计算机与数字万用表进行通信,最后利用LabVIEW软件转换得到所测恒

自动化仪表》第32卷第12期2011年12月

计量校准:www.cqstyq.com

一种分布式光纤温度传感器的校准方法

张小丽,等

温环境的标准温度值

[11]

。当计算机软件平台指示恒

温水槽达到稳定状态时,开始校准试验。在校准试验中,将所需长度的光纤环与标准器放置在同一环境下,并保持分布式光纤温度传感器和二等标准铂电阻温度计的同步采集。该方法具有一定的可比性和准确性。

2.13m光纤环校准试验设计

3m光纤环校准试验的目的是对3m光纤环以校

准6个温度点为基准,分析0~100℃范围内所测温度误差情况。

首先开启恒温水槽控温,选取0、10、20、30、40、50、60、70、80、90、100(单位:℃)作为试验温度点,然后量取3m光纤环放入恒温水槽中。试验时分别选取0、30、40、70、80、100(单位:℃)为基准点进行6组试验,每组试验通过校准一个温度点为基准,实现对试验温度点的测量误差研究。

2.25m光纤环校准试验设计

5m光纤环校准试验的目的是对5m光纤环以校

准2个温度点为基准,分析0~100℃范围内所测温度

误差情况。同时,量取2、3、4、5(单位:m)光纤环作为同步试验研究对象,分析不同长度光纤环对于所测温度误差情况的空间分辨率问题。

首先开启恒温水槽控温,选取0、10、20、30、40、50、60、70、80、90、100(单位:℃)作为试验温度点,然后量取2、

3、4、5(单位:m)光纤环放入恒温水槽中。试验时分别选取50、

80(单位:℃)为基准点进行2组试验,每组试验通过校准一个温度点为基准,实现对试验温度点的试验测温误差研究。

2.3光纤位置的影响试验设计

光纤位置的影响试验的目的是对3、

4、5(单位:m)光纤环和对应的光纤位置(见表1)产生的测温误差进行研究,解决不同光纤环长度和对应的光纤位置对测温精度的影响问题。

首先开启恒温水槽控温,选取50℃作为试验温度点,然后在整段光纤上分别取5个不同位置作为研究对象,分别为101、551、911、1431、1907(单位:m),并分别量取3、

4、5(单位:m)光纤环进行3组试验。以上述5个位置点为中心分别选取3、

4、5(单位:m)光纤环,再对50℃试验温度点进行3组测温试验。

3试验分析及结论

为了消除随机误差,将所得的大量随机数据取平

均值进行比较分析。误差均值是分布式光纤温度传感器的温度均值与标准温度均值之间的差值,将误差均值作为试验数据结果,可由Matlab软件计算得到。由

33

计量校准:www.cqstyq.com

一种分布式光纤温度传感器的校准方法张小丽,等

差均值如图2所示

于数据的随机性,校准点的误差均值足够小但很难保证为零。

3.13m光纤环校准试验分析

根据3m光纤环校准试验的数据结果,计算出误

S表示标准温度均值;T1表差均值如表2所示。其中,

示未校准时分布式光纤温度传感器的绝对误差均值;T2~T7分别表示以30、40、70、80、100、0(单位:℃)基准点校准后,分布式光纤温度传感器的绝对误差均值。校准后分布式光纤温度传感器在校准由T2~T7可知,

基准点处的绝对误差均值足够小;而由T1可知,在校准基准点处,未校准时的绝对误差均值较大。

表2

Tab.2

S0.2110.1220.2330.3240.4650.5760.6670.5680.3390.17100.36

校准后温度绝对误差表

Absolutetemperatureerroraftercalibration

T12.080.400.802.043.064.526.138.06

T23.482.571.790.091.934.304.996.859.2911.4813.63

T32.662.021.630.950.070.931.882.954.025.246.66

T40.890.981.251.311.280.900.700.050.511.141.93

T50.541.061.071.601.351.180.880.590.010.270.37

T60.441.001.031.711.451.331.030.850.390.260.08

T70.021.581.801.901.471.451.411.180.920.911.22

图2Fig.2

温度误差图

Temperatureerrorchart

由图2可知,选取一个校准基准点时,校准5m光纤环效果明显比校准3m光纤环要好,可大大提高满足系统精度要求的温度范围。在0~100℃温度范围50℃校准基准点保内,本试验选取两个校准基准点,证低温段的绝对误差在1K内,满足精度要求;80℃校准点保证高温段的绝对误差在1K内,满足精度要求。这样可大大减少测温误差,从而提高校准的试验效率。

图2中,由2m光纤环的误差均值明显不在±1K以内,验证了当光纤环长度小于空间分辨率3m时,测温误差达不到分布式光纤温度传感器的测温精度的结4、5(单位:m)光纤环(检测光纤长度≥空间论。对于3、

分辨率)的误差均值结果,它们的温度误差分布趋势是主要误差来源于系统硬件电路的随机性和各个一致的,干扰因素。

11.7214.0516.38

由表2数据可知,分布式光纤温度传感器在各个温度点所测的误差随着温度的升高而升高,且误差较大;针对不同的校准点,本试验校准方法可改善分布式光纤温度传感器的测温误差。观察纵向数据可以发现,绝对误差均值是随着测温点与校准基准点差值增大而增大。因此,每个校准基准点只能保证在小范围内满足系统测温精度。

70、80、100在测量大于60℃的温度点时,以0、(单位:℃)为校准基准点比以30、40(单位:℃)为校准基准点的测量温度点绝对误差均值要小得多。因此,70、80、100(单位:℃)为校准基准点,以0、可有效减小测量温度点的绝对误差均值,且明显降低50~100℃温度段的绝对误差均值,并使误差保证在2K范围内。

试验表明,分布式光纤温度传感器需要根据实际测温点选取校准基准点进行温度测量。对于定点测温,其测温准确度满足精度要求,但如果需要测量较大范围的温度,就需要考虑校准基准点的选取和误差的分布情况。

3.3光纤位置的影响试验分析

根据光纤位置影响试验的数据结果,计算出误差

均值如表3所示。

表3

Tab.3

光纤位置/m

[**************]07

温度绝对误差数据表

50.070.541.241.651.29

Temperatureabsoluteerrordata

30.280.521.842.522.99

光线长度/m

4

0.260.491.842.202.34

由表3可知,针对相同长度光纤环的不同位置,随分布式光纤温度传感器的着光纤位置距离光源越远,

绝对误差越大。其根本原因是光在光纤中传播时光强

3.234

5m光纤环校准试验分析

根据5m光纤环校准试验的数据结果,计算出误

PROCESSAUTOMATIONINSTRUMENTATIONVol.32No.12December2011

计量校准:www.cqstyq.com

计量校准:www.cqstyq.com

一种分布式光纤温度传感器的校准方法

会一直衰减,携带温度信息的光强本身较弱,当光传播到光纤末端时,该信号光强会完全淹没在噪声中而无法解调出来。针对相同位置不同长度的光纤环,也存4m光纤环的测在不同的误差,且5m光纤环比3m、温误差小,验证了分析结果的正确性。

张小丽,等

准确性的校准方法,根据分布式光纤温度传感器的测温范围选取合适的温度校准基准点、光纤环长度和光纤位置,可大大降低分布式光纤温度传感器的测量误差,且在更大温度范围内也能够满足精度要求。本文对0~100℃内的温度点进行的研究,为将来其他温度范围的校准奠定了基础。但由于测温范围较小,试验结果具有一定的局限性,需要进一步的试验和研究。

参考文献

[1]倪玉婷,吕辰刚,葛春风,等.基于OTDR的分布式光纤传感器

2006(1):1-4.原理及其应用[J].光纤与电缆及其应用技术,

[2]李志全,白志华,王会波,等.分布式光纤传感器多点温度测量

J].光学仪器,2007,29(6):8-11.的研究[

[3]何明科,张佩宗,李永丽.分布式光纤测温技术在电力设备过热

J].电力设备,2007,10(10):30-32.监测的应用[

[4]彭超,[J].赵健康,苗付贵.分布式光纤测温技术在线监测电缆温度

2006,32(8):43-45.高电压技术,

[5]刘媛,J].雷涛,张勇,等.油井分布式光纤测温及高温标定实验[

2008,21(6):40-44.山东科学,

[6]张利勋,欧中华,刘永智,等.分布式光纤喇曼温度传感器的循

J].光子学报,2005,34(8):1176-1178.环解调法[

[7]史晓锋,[J].李铮,蔡志权.分布式光纤测温系统及其测温精度分析

2002,21(1):9-12.测控技术,

[8]常程.基于拉曼散射测温系统温度标定问题的研究[J].北京航

2001,27(5):522-524.空航天大学学报,

[9]黄松.拉曼分布式光纤温度传感器及其空间分辨率研究的提

D].成都:电子科技大学,2004.高[

[10][J].刘大木.水三相点温度的获得及标准铂电阻温度计Rtp的测定

2006,34(4):27-28.上海计量测试,

[11]王磊,陶梅.精通LabVIEW8.0[M].北京:电子工业出版社,

2007.

[12]崔文华,.陈志斌.分布式光纤温度监测与报警系统的研究[J]

2002,31(2):175-178.红外与激光工程,

3.4试验结论

本试验测量数据是分布式光纤温度传感器长时间

运行所测的结果,由此可知,分布式光纤温度传感器的测温稳定性好。根据上述试验,分布式光纤温度传感器在各个温度点的误差都不同,测温点距离校准基准点越远,其误差越大。因此,选取不同的校准基准点对于3m光纤环可实现小范围满足精度要求;而对于5m光纤环,选取两个校准基准点可使得在0~100℃温度范围内,分布式光纤温度传感器的测温误差满足精度要求。实际中测量更大的温度范围时,可根据具体测温点来选取几个或多个校准基准点,实现校准过程。

研究表明,影响分布式光纤温度传感器测温准确性的因素包括校准基准点、光纤环长度和光纤位置的选取。考虑这三个因素,通过上述校准方法可提高分布式光纤温度传感器测温准确性。

4结束语

分布式光纤温度传感器应用于定点预警报警领域

[12]

无疑是稳定的

,且测量特定温度点的准确性较好,

但其更多地应用于测量温度范围较大的变化温度场。由于分布式光纤温度传感器的测温误差会随着温度的变化而变化,无法保证测量的准确性,因此,通过校准试验方法提高分布式光纤温度传感器的测温准确性,具有一定的研究价值和现实意义。

本文提出一种提高分布式光纤温度传感器测温

(上接第31页)

库研究方向,有很大的发展空间与潜力。本文采用面向对象的设计思想,将实时数据库的操作以类的方式实现,并且利用类的继承、派生和重载等特性提高程序质量;利用动态链接库和全局内存共享技术来建立系统实时数据库,并为用户提供一组接口函数实现数据库的访问,大大提高了实时数据库系统的实时性与开放性。

参考文献

[1]王荃,金海东,李福中.工控组态软件实时数据库系统的设计与

J].化工自动化及仪表,2000,27(3):40-43.实现[

[2]王成光,苏宏业,褚健.石化企业大型实时数据库系统的结构设

2002,29(5):7-11.计[J].化工自动化及仪表,

[3]钱笑宇,.计算机工张彦武.工业实时数据库的研究和设计[J]

2005,31(5):98-132.程,

[4]张会彦,周丽虹.新型构件化组态软件中实时数据库设计与实

J].计算机应用于软件,2009,26(7):153-174.现[

[5]杨华丽,石锐,胡捷,等.组态软件中实时数据库系统的设计和

2007,24(3):80-83.实现[J].实验技术与管理,

[6]宋清昆,J].孙元娜,王学伟,等.组态软件实时数据库系统的设计[

2008,27(1):55-57.计算机应用,

[7]阚宏进,刘希远,李翠玲.基于VC++工控组态软件实时数据

2001,27(4):73-76.库系统的设计[J].甘肃工业大学学报,

[8]孙鑫,[M].北京:电子工业出版社,2006.余安萍.VC++深入详解[9]杨立保,.自动许忠仁.组态软件实时数据库的研究与设计[J]

2009,30(8):19-21.化仪表,

[10]姜军银,[J].侯立刚.基于COM技术的通用数据库存取组件的设计

2005,25(1):75-77.辽宁石油化工大学学报,

《自动化仪表》第32卷第12期2011年12月

35

计量校准:www.cqstyq.com

计量校准:www.cqstyq.com

一种分布式光纤温度传感器的校准方法张小丽,等

一种分布式光纤温度传感器的校准方法

CalibrationMethodsforDistributedOpticalFiberTemperatureSensor

张小丽陈乐孙坚郑坚璐

(中国计量学院机电工程学院,浙江杭州310018)

要:根据分布式光纤温度传感器的测温特性和温度计量校准要求,对分布式光纤温度传感器的空间分辨率和测温准确性进行了

试验研究。通过选取不同校准基准点、不同光纤环长度和不同光纤的位置设计试验,分析了分布式光纤温度传感器不同的测温曲线和测温误差,提出了一种提高分布式光纤温度传感器测温精度的校准方法。试验表明,该方法测温稳定性好,误差满足精度要求。关键词:拉曼散射中图分类号:TP206

空间分辨率

温度校准

测温精度

传感器

LabVIEW

文献标志码:A

Abstract:Inaccordancewiththecharacteristicsoftemperaturemeasurementofdistributedopticalfibertemperaturesensor,andthecalibrationrequirementoftemperaturemetering,thespatialresolutionandprecisionoftemperaturemeasurementarestudiedbyexperiments.Theexperimentsaredesignedunderdifferentcalibratingbenchmark,differentlengthofopticalfiberring,anddifferentopticalfiberposition;anddifferenttemperaturemeasuringcurve,andmeasurementerrorofthedistributedopticalfibertemperaturesensorareanalyzed.Thusthecalibrationmethodthatenhancestheaccuracyoftemperaturemeasurementisproposed.Theexperimentshowsthatthemethodoftestingtemperaturefeaturesstableperformanceandsatisfiestheaccuracyrequirement.Keywords:Ramanscattering

Spatialresolution

Temperaturecalibration

Accuracyoftemperaturemeasurement

Sensor

LabVIEW

0引言

理,以及数据分析和输出。计算机可以实现系统的控制、信号处理、显示储存以及外部其他扩展功能。

在分布式光纤温度传感器中,前端检测光纤既是传输媒体又是传感媒体

[8]

分布式光纤温度传感器在民用、军工、科技应用等

[1-2]

,它在航空航天、远程控制、领域有着独特的优点

化学、生物化学、医疗、安全保险、电力工业等特殊环境[3-4]

。现有的研究方法大多采下拥有广阔的应用前景

用提升硬件条件和改进解调算法来提高分布式光纤温[5-7]

。目前,分布式光纤温度传度传感器的测温精度

感器在计量方面还没有相关的校准规程和标准。本文在原有分布式光纤温度传感器的基础上,对分布式光纤温度传感器的实际测温误差进行温度校准,使分布式光纤温度传感器达到温度计量标准,具有十分深远的理论和现实意义。

。分布式光纤温度传感器是

基于拉曼散射效应和光时域反射技术实现温度分布式测量的传感器。拉曼散射效应即光纤所处空间各点的温度场调制光纤中反斯托克斯背向拉曼散射光的强由波分复用器和光电检测器采集带有温度信息的度,

背向拉曼散射光电信号,再经信号处理器将温度信息实时地从噪声中提取出来并显示在计算机上。因此,分布式光纤温度传感器是一种典型的光纤温度通信网络。光时域反射技术是利用光在光纤中的传播速度和背向光回波的时间间隔,对所测温度点定位并显示定位温度,体现分布式的特点。

光在光纤中传播,由光信号转化为计算机能采集到的电信号需要3个过程:激光源注入激光脉冲(传播过程)、光电探测器响应(接收过程)和处理器转换(采集过程)。由于光在光纤中传播的速度比硬件电路响应信号的速度快得多,当硬件电路响应到光纤上A点的信号时,实际A点位置的光信号已经传播到达B点,因此,需要一定的光纤长度实现对一个温度点的准确测量。在光学领域中,这段光纤长度L(即为A到B的距离,如图1所示)被定义为空间分辨率

[9]

1理论基础

分布式光纤温度传感器在硬件上由传感光纤、终

端机和计算机三部分组成,在功能上由激光光源、传感光纤和检测单元组成。终端机是系统的核心组成部

分,包括光源、耦合器、波分复用器和光电探测器,其主要功能是实现信号的发射、接收、滤波、放大和信息处

质检公益性行业科研专项基金资助项目(编号:2007GYJ016)。修改稿收到日期:2010-12-17。

1986年生,第一作者张小丽,女,现为中国计量学院检测技术与自动化装置专业在读硕士研究生;主要从事温度传感器计量方面的研究。

。空间分

32

计量校准:www.cqstyq.com

PROCESSAUTOMATIONINSTRUMENTATIONVol.32No.12December2011

计量校准:www.cqstyq.com

辨率越小越好,但受到技术水平和成本的限制,分布式光纤温度传感器存在空间分辨率的问题。实际应用中,前端检测光纤环长度至少要等于空间分辨率,且这一段光纤环所测温度点相当于一般温度计量器具所测的一个温度点。理论上,分布式光纤温度传感器可测得光纤长度上每个点的温度值,体现其分布式优势。但实际上根据分布式光纤温度传感器的理论原理和构成,分布式光纤温度传感器是很难实现真正意义上每个温度点的测量。

光纤分辨率的产生过程如图1所示

图1

空间分辨率的产生过程

Fig.1

Thegenerationproceduresofspatialresolution

2试验设计

在0~100℃的温度范围内,选取3m(空间分辨

率)光纤环进行测温试验,验证分布式光纤温度传感器的测温误差是否满足测温精度(±1K),从而对分布式光纤温度传感器进行温度校准。所需试验设备包括恒温水槽、二等标准铂电阻温度计、数字万用表和分布式光纤温度传感器。

前端检测光纤以自然半径盘绕成环状(简称光纤环)作为分布式光纤温度传感器的温度探头。根据温度解调算法,将光纤环测得温度最大值作为该光纤环的温度测量值。试验光纤环位置和长度的对应关系如表1所示。表1中,光纤位置为光纤环测得温度最大值的位置点,光纤环长度为以光纤位置为中心所量取的长度。

表1

位置和长度的对应关系

Tab.1

Relationshipbetweenpositionandlength

参数/m试验数据

光纤环位置[1**********]光纤环长度

3

4

5

2

在分布式光纤温度传感器校准试验中,恒温水槽提供恒温环境,二等标准铂电阻温度计所测的温度数据作为标准温度

[10]

。二等标准铂电阻温度计采用四

线电阻制连接安捷伦34401A数字万用表,以获取铂电阻阻值,再利用RS-232串口连接计算机与数字万用表进行通信,最后利用LabVIEW软件转换得到所测恒

自动化仪表》第32卷第12期2011年12月

计量校准:www.cqstyq.com

一种分布式光纤温度传感器的校准方法

张小丽,等

温环境的标准温度值

[11]

。当计算机软件平台指示恒

温水槽达到稳定状态时,开始校准试验。在校准试验中,将所需长度的光纤环与标准器放置在同一环境下,并保持分布式光纤温度传感器和二等标准铂电阻温度计的同步采集。该方法具有一定的可比性和准确性。

2.13m光纤环校准试验设计

3m光纤环校准试验的目的是对3m光纤环以校

准6个温度点为基准,分析0~100℃范围内所测温度误差情况。

首先开启恒温水槽控温,选取0、10、20、30、40、50、60、70、80、90、100(单位:℃)作为试验温度点,然后量取3m光纤环放入恒温水槽中。试验时分别选取0、30、40、70、80、100(单位:℃)为基准点进行6组试验,每组试验通过校准一个温度点为基准,实现对试验温度点的测量误差研究。

2.25m光纤环校准试验设计

5m光纤环校准试验的目的是对5m光纤环以校

准2个温度点为基准,分析0~100℃范围内所测温度

误差情况。同时,量取2、3、4、5(单位:m)光纤环作为同步试验研究对象,分析不同长度光纤环对于所测温度误差情况的空间分辨率问题。

首先开启恒温水槽控温,选取0、10、20、30、40、50、60、70、80、90、100(单位:℃)作为试验温度点,然后量取2、

3、4、5(单位:m)光纤环放入恒温水槽中。试验时分别选取50、

80(单位:℃)为基准点进行2组试验,每组试验通过校准一个温度点为基准,实现对试验温度点的试验测温误差研究。

2.3光纤位置的影响试验设计

光纤位置的影响试验的目的是对3、

4、5(单位:m)光纤环和对应的光纤位置(见表1)产生的测温误差进行研究,解决不同光纤环长度和对应的光纤位置对测温精度的影响问题。

首先开启恒温水槽控温,选取50℃作为试验温度点,然后在整段光纤上分别取5个不同位置作为研究对象,分别为101、551、911、1431、1907(单位:m),并分别量取3、

4、5(单位:m)光纤环进行3组试验。以上述5个位置点为中心分别选取3、

4、5(单位:m)光纤环,再对50℃试验温度点进行3组测温试验。

3试验分析及结论

为了消除随机误差,将所得的大量随机数据取平

均值进行比较分析。误差均值是分布式光纤温度传感器的温度均值与标准温度均值之间的差值,将误差均值作为试验数据结果,可由Matlab软件计算得到。由

33

计量校准:www.cqstyq.com

一种分布式光纤温度传感器的校准方法张小丽,等

差均值如图2所示

于数据的随机性,校准点的误差均值足够小但很难保证为零。

3.13m光纤环校准试验分析

根据3m光纤环校准试验的数据结果,计算出误

S表示标准温度均值;T1表差均值如表2所示。其中,

示未校准时分布式光纤温度传感器的绝对误差均值;T2~T7分别表示以30、40、70、80、100、0(单位:℃)基准点校准后,分布式光纤温度传感器的绝对误差均值。校准后分布式光纤温度传感器在校准由T2~T7可知,

基准点处的绝对误差均值足够小;而由T1可知,在校准基准点处,未校准时的绝对误差均值较大。

表2

Tab.2

S0.2110.1220.2330.3240.4650.5760.6670.5680.3390.17100.36

校准后温度绝对误差表

Absolutetemperatureerroraftercalibration

T12.080.400.802.043.064.526.138.06

T23.482.571.790.091.934.304.996.859.2911.4813.63

T32.662.021.630.950.070.931.882.954.025.246.66

T40.890.981.251.311.280.900.700.050.511.141.93

T50.541.061.071.601.351.180.880.590.010.270.37

T60.441.001.031.711.451.331.030.850.390.260.08

T70.021.581.801.901.471.451.411.180.920.911.22

图2Fig.2

温度误差图

Temperatureerrorchart

由图2可知,选取一个校准基准点时,校准5m光纤环效果明显比校准3m光纤环要好,可大大提高满足系统精度要求的温度范围。在0~100℃温度范围50℃校准基准点保内,本试验选取两个校准基准点,证低温段的绝对误差在1K内,满足精度要求;80℃校准点保证高温段的绝对误差在1K内,满足精度要求。这样可大大减少测温误差,从而提高校准的试验效率。

图2中,由2m光纤环的误差均值明显不在±1K以内,验证了当光纤环长度小于空间分辨率3m时,测温误差达不到分布式光纤温度传感器的测温精度的结4、5(单位:m)光纤环(检测光纤长度≥空间论。对于3、

分辨率)的误差均值结果,它们的温度误差分布趋势是主要误差来源于系统硬件电路的随机性和各个一致的,干扰因素。

11.7214.0516.38

由表2数据可知,分布式光纤温度传感器在各个温度点所测的误差随着温度的升高而升高,且误差较大;针对不同的校准点,本试验校准方法可改善分布式光纤温度传感器的测温误差。观察纵向数据可以发现,绝对误差均值是随着测温点与校准基准点差值增大而增大。因此,每个校准基准点只能保证在小范围内满足系统测温精度。

70、80、100在测量大于60℃的温度点时,以0、(单位:℃)为校准基准点比以30、40(单位:℃)为校准基准点的测量温度点绝对误差均值要小得多。因此,70、80、100(单位:℃)为校准基准点,以0、可有效减小测量温度点的绝对误差均值,且明显降低50~100℃温度段的绝对误差均值,并使误差保证在2K范围内。

试验表明,分布式光纤温度传感器需要根据实际测温点选取校准基准点进行温度测量。对于定点测温,其测温准确度满足精度要求,但如果需要测量较大范围的温度,就需要考虑校准基准点的选取和误差的分布情况。

3.3光纤位置的影响试验分析

根据光纤位置影响试验的数据结果,计算出误差

均值如表3所示。

表3

Tab.3

光纤位置/m

[**************]07

温度绝对误差数据表

50.070.541.241.651.29

Temperatureabsoluteerrordata

30.280.521.842.522.99

光线长度/m

4

0.260.491.842.202.34

由表3可知,针对相同长度光纤环的不同位置,随分布式光纤温度传感器的着光纤位置距离光源越远,

绝对误差越大。其根本原因是光在光纤中传播时光强

3.234

5m光纤环校准试验分析

根据5m光纤环校准试验的数据结果,计算出误

PROCESSAUTOMATIONINSTRUMENTATIONVol.32No.12December2011

计量校准:www.cqstyq.com

计量校准:www.cqstyq.com

一种分布式光纤温度传感器的校准方法

会一直衰减,携带温度信息的光强本身较弱,当光传播到光纤末端时,该信号光强会完全淹没在噪声中而无法解调出来。针对相同位置不同长度的光纤环,也存4m光纤环的测在不同的误差,且5m光纤环比3m、温误差小,验证了分析结果的正确性。

张小丽,等

准确性的校准方法,根据分布式光纤温度传感器的测温范围选取合适的温度校准基准点、光纤环长度和光纤位置,可大大降低分布式光纤温度传感器的测量误差,且在更大温度范围内也能够满足精度要求。本文对0~100℃内的温度点进行的研究,为将来其他温度范围的校准奠定了基础。但由于测温范围较小,试验结果具有一定的局限性,需要进一步的试验和研究。

参考文献

[1]倪玉婷,吕辰刚,葛春风,等.基于OTDR的分布式光纤传感器

2006(1):1-4.原理及其应用[J].光纤与电缆及其应用技术,

[2]李志全,白志华,王会波,等.分布式光纤传感器多点温度测量

J].光学仪器,2007,29(6):8-11.的研究[

[3]何明科,张佩宗,李永丽.分布式光纤测温技术在电力设备过热

J].电力设备,2007,10(10):30-32.监测的应用[

[4]彭超,[J].赵健康,苗付贵.分布式光纤测温技术在线监测电缆温度

2006,32(8):43-45.高电压技术,

[5]刘媛,J].雷涛,张勇,等.油井分布式光纤测温及高温标定实验[

2008,21(6):40-44.山东科学,

[6]张利勋,欧中华,刘永智,等.分布式光纤喇曼温度传感器的循

J].光子学报,2005,34(8):1176-1178.环解调法[

[7]史晓锋,[J].李铮,蔡志权.分布式光纤测温系统及其测温精度分析

2002,21(1):9-12.测控技术,

[8]常程.基于拉曼散射测温系统温度标定问题的研究[J].北京航

2001,27(5):522-524.空航天大学学报,

[9]黄松.拉曼分布式光纤温度传感器及其空间分辨率研究的提

D].成都:电子科技大学,2004.高[

[10][J].刘大木.水三相点温度的获得及标准铂电阻温度计Rtp的测定

2006,34(4):27-28.上海计量测试,

[11]王磊,陶梅.精通LabVIEW8.0[M].北京:电子工业出版社,

2007.

[12]崔文华,.陈志斌.分布式光纤温度监测与报警系统的研究[J]

2002,31(2):175-178.红外与激光工程,

3.4试验结论

本试验测量数据是分布式光纤温度传感器长时间

运行所测的结果,由此可知,分布式光纤温度传感器的测温稳定性好。根据上述试验,分布式光纤温度传感器在各个温度点的误差都不同,测温点距离校准基准点越远,其误差越大。因此,选取不同的校准基准点对于3m光纤环可实现小范围满足精度要求;而对于5m光纤环,选取两个校准基准点可使得在0~100℃温度范围内,分布式光纤温度传感器的测温误差满足精度要求。实际中测量更大的温度范围时,可根据具体测温点来选取几个或多个校准基准点,实现校准过程。

研究表明,影响分布式光纤温度传感器测温准确性的因素包括校准基准点、光纤环长度和光纤位置的选取。考虑这三个因素,通过上述校准方法可提高分布式光纤温度传感器测温准确性。

4结束语

分布式光纤温度传感器应用于定点预警报警领域

[12]

无疑是稳定的

,且测量特定温度点的准确性较好,

但其更多地应用于测量温度范围较大的变化温度场。由于分布式光纤温度传感器的测温误差会随着温度的变化而变化,无法保证测量的准确性,因此,通过校准试验方法提高分布式光纤温度传感器的测温准确性,具有一定的研究价值和现实意义。

本文提出一种提高分布式光纤温度传感器测温

(上接第31页)

库研究方向,有很大的发展空间与潜力。本文采用面向对象的设计思想,将实时数据库的操作以类的方式实现,并且利用类的继承、派生和重载等特性提高程序质量;利用动态链接库和全局内存共享技术来建立系统实时数据库,并为用户提供一组接口函数实现数据库的访问,大大提高了实时数据库系统的实时性与开放性。

参考文献

[1]王荃,金海东,李福中.工控组态软件实时数据库系统的设计与

J].化工自动化及仪表,2000,27(3):40-43.实现[

[2]王成光,苏宏业,褚健.石化企业大型实时数据库系统的结构设

2002,29(5):7-11.计[J].化工自动化及仪表,

[3]钱笑宇,.计算机工张彦武.工业实时数据库的研究和设计[J]

2005,31(5):98-132.程,

[4]张会彦,周丽虹.新型构件化组态软件中实时数据库设计与实

J].计算机应用于软件,2009,26(7):153-174.现[

[5]杨华丽,石锐,胡捷,等.组态软件中实时数据库系统的设计和

2007,24(3):80-83.实现[J].实验技术与管理,

[6]宋清昆,J].孙元娜,王学伟,等.组态软件实时数据库系统的设计[

2008,27(1):55-57.计算机应用,

[7]阚宏进,刘希远,李翠玲.基于VC++工控组态软件实时数据

2001,27(4):73-76.库系统的设计[J].甘肃工业大学学报,

[8]孙鑫,[M].北京:电子工业出版社,2006.余安萍.VC++深入详解[9]杨立保,.自动许忠仁.组态软件实时数据库的研究与设计[J]

2009,30(8):19-21.化仪表,

[10]姜军银,[J].侯立刚.基于COM技术的通用数据库存取组件的设计

2005,25(1):75-77.辽宁石油化工大学学报,

《自动化仪表》第32卷第12期2011年12月

35

计量校准:www.cqstyq.com


相关内容

  • 油罐火灾报警系统方案
  • 中石油项目 油罐光纤光栅感温火灾探测系统 技 术 方 案 武汉理工光科股份有限公司 二00八年八月 一.企业简介 武汉理工光科股份有限公司(简称"理工光科")是由武汉理工大学产业集团.北新集团建材股份公司(上市公司).湖北省投资公司.武汉钢铁(集团)公司.湖北双环科技股份公司(上 ...

  • 煤矿用传感器现状及研究方向探讨
  • 煤矿用传感器现状及研究方向探讨 郭玉彪 (山西潞安集团司马煤业有限公司,山西,长治) 摘要:针对煤矿用传感器使用过程中出现的问题进行分析梳理和总结,并结合实际的工程应用提出了一些针对性的解决思路,并对今后传感器类产品研究方向进行探讨,提出一些意见和思路. 关键词:煤矿:传感器:误报警:维护 0 概述 ...

  • 传感器和信号调理
  • 传感器与信号调理模拟题1 1 为了测量某一电阻器两端的压降,我们考虑两种可供选择的方法:利用精确度为0.1%读数的电压表:利用精确度为0.1%读数的电流表.若电阻器的公差为0.1%,试问哪一种方法更精确? 1答: dV=RdI+IdR 对于微小变化,可用增量近似代表微分,△V/V=△I/I+△R/R ...

  • 光纤温度传感器
  • 光纤温度传感器 电子092班 张洪亮 2009131041 光纤温度传感器 摘要 本文从光纤和光纤传感器以及光纤温度传感器的发展历程开始详细分析国内外 主要光纤温度测温方法的原理及特点, 比较了不同方法的温度测量范围和性能指 标以及各自的优缺点.通过研究发现了当前的光纤温度传感器的种类和特点,详 细 ...

  • 窄线宽光纤激光器的应用
  • 窄线宽光纤激光器的应用 单频光纤激光器具有线宽超窄.频率可调.相干长度超长以及噪声超低等独特性能,借用微波雷达上的FMCW 技术可对超远距离的目标进行超高精度的相干探测,从而会改变市场对光纤传感.激光雷达和激光测距等固有观念,继续把激光器应用革命进行到底. 光库通讯提供的单频光纤激光器拥有世界上独一 ...

  • 教学大纲 传感器与检测技术
  • <传感器与检测技术>课程教学大纲 一.课程基本信息 二.课程内容及基本要求 项目一 认识传感器检测装置 课程内容: 1. 自动检测技术的重要性:自动检测系统的组成:信息的获取.转换.处理及输出:自动检测技术的发展趋势:提高仪器的性能.开发新型传感器及应用新材料. 2. 传感器的定义:传感 ...

  • 桥梁健康监测讲义
  • 桥梁健康监测 第一节 绪论 随着桥梁分析理论.施工技术.材料性能的迅速发展,桥梁跨度越来越大.斜拉桥跨度已 达到890m(日本多多罗大桥),连接江苏南通与苏州的苏通大桥主桥斜拉桥跨度超过1080m:悬 索桥跨度已达到1991m(日本明石大桥),国内润扬大桥为1490m,江阴大桥为1385m,钢拱桥 ...

  • 光纤光栅 医学应用
  • 光纤医学应用 光纤传感器将在生物医疗领域开辟应用天地 光纤固有的物理特性和在远程传感方面的多功能特性,使其在生物医学领域具有诱人的发展前景. Alexis Mendez,MCH Engineering公司总裁 随 着全球人口数量的增长和人均寿命的延长,医疗机构越来越希望采用先进的生物医学仪器对病人进 ...

  • (PLC 和可编程逻辑控制器)
  • PLC 和可编程逻辑控制器是同义词,已合并. 可编程逻辑控制器 百科名片 可编程逻辑控制器 可编程逻辑控制器(Programmable Logic Controller ,PLC ),它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算.顺序控制.定时.计数与算术操作等面向用户的指令,并通过数 ...