实际积分电路

由图5.4-6B看出,曲线1为理想积分电路的特性曲线,曲线2为实际积分电路的特性曲线。特性曲线2不能保持线性增长,输出电压UO在到达UOM(运放输出电压负向饱和值)以后,如果U1不变,曲线2与曲线1的偏离越来越严重,形成很大的积分误差,甚至不能正常工作。因此图5.4-6A的基本积分电路只能在积分时间很短的情况下工作,这在实际上是不能实用的。其主要原因是电容器C2的漏电和运放本身的输入失调电压与失调电流及其温漂引起的积分漂移,它们和小的输入信号相同,就会被积分,使输出逐渐进入饱和状态。实用的积分电路如图5.4-7A所示。

实际积分电路中的平衡电阻RP=R1在积分电容C2上并上电阻R2,引进直流负反馈,是最简单、有效地抑制失调电压和失调电流造成的积分漂移。但是R2会影响积分的精度,所以适用范围有一定的限制。

对于实际的积分器,运算放大器的增益和带宽是有限的,由图5.4-7A电路可得

式中T1为积分电路时间常数;TC为电容器漏电形成的时间常数;WO为运算放大器主极点的角频率;AUO为运算放大器开环直流电压增益。

上式是四个因子的乘积,第一个因子表征理想积分器的输出电压和输入电压的关系式,其幅频特性曲线如图5.4-7B中的特性曲线1所示,它是一条两端无限延伸的斜率真为-20DB/DEC的直线。第二和第三个因子表示漏电流和由运算放大器有限增益造成低频段误差,第四个因子是由于运算放大器有限带宽造成高频误差。

由图5.4-7B可以看出,只要TC》,W1为实际积分器的正常工作段。这里WC=I/TC是由R2C2所决定的极点的角频率。在正常工作段工作的实际积分电路就几乎是理想的。由于积分电路的电压增益AU(W)随差W升高而下降,所以积分电路一般不考虑高频干扰问题。

图5.4-8所示为实际积分电路的阶跃响应。由于长时间特性反映积分电路对变化缓慢信号的响应。图5.4-8A表明,积分时间越长,误差越大。这是由于AUO的有限和漏电流造成。短时间特性反映积分电路对快速变化的响应。图5.4-8B表明,实际积分电路的响应与理想相比,实际响应有一时间滞后1/AUOWO,它由运放有限带宽而造成。

DSP芯片的定点运算

怎样使用运算放大器

由图5.4-6B看出,曲线1为理想积分电路的特性曲线,曲线2为实际积分电路的特性曲线。特性曲线2不能保持线性增长,输出电压UO在到达UOM(运放输出电压负向饱和值)以后,如果U1不变,曲线2与曲线1的偏离越来越严重,形成很大的积分误差,甚至不能正常工作。因此图5.4-6A的基本积分电路只能在积分时间很短的情况下工作,这在实际上是不能实用的。其主要原因是电容器C2的漏电和运放本身的输入失调电压与失调电流及其温漂引起的积分漂移,它们和小的输入信号相同,就会被积分,使输出逐渐进入饱和状态。实用的积分电路如图5.4-7A所示。

实际积分电路中的平衡电阻RP=R1在积分电容C2上并上电阻R2,引进直流负反馈,是最简单、有效地抑制失调电压和失调电流造成的积分漂移。但是R2会影响积分的精度,所以适用范围有一定的限制。

对于实际的积分器,运算放大器的增益和带宽是有限的,由图5.4-7A电路可得

式中T1为积分电路时间常数;TC为电容器漏电形成的时间常数;WO为运算放大器主极点的角频率;AUO为运算放大器开环直流电压增益。

上式是四个因子的乘积,第一个因子表征理想积分器的输出电压和输入电压的关系式,其幅频特性曲线如图5.4-7B中的特性曲线1所示,它是一条两端无限延伸的斜率真为-20DB/DEC的直线。第二和第三个因子表示漏电流和由运算放大器有限增益造成低频段误差,第四个因子是由于运算放大器有限带宽造成高频误差。

由图5.4-7B可以看出,只要TC》,W1为实际积分器的正常工作段。这里WC=I/TC是由R2C2所决定的极点的角频率。在正常工作段工作的实际积分电路就几乎是理想的。由于积分电路的电压增益AU(W)随差W升高而下降,所以积分电路一般不考虑高频干扰问题。

图5.4-8所示为实际积分电路的阶跃响应。由于长时间特性反映积分电路对变化缓慢信号的响应。图5.4-8A表明,积分时间越长,误差越大。这是由于AUO的有限和漏电流造成。短时间特性反映积分电路对快速变化的响应。图5.4-8B表明,实际积分电路的响应与理想相比,实际响应有一时间滞后1/AUOWO,它由运放有限带宽而造成。

DSP芯片的定点运算

怎样使用运算放大器


相关内容

  • PID电机控制
  • 实验7,运放应用: PID电机控制 1 介绍: 这次电路比较直观: 一个电位器设定一个目标位置,一个直流电机企图运转到这个目标位置,实际位置通过第二个电位器进行测量.电路中的滞后因素会带来一定的麻烦:修正信号似乎到达得太慢.如果是这样子的话,修正信号将会使事情变得更糟糕. 电机控制回路经常采用经典的 ...

  • 多种波形发生器
  • 电气工程学院课程设计报告 多 种 波 形 发 生 器 波形发生器被广泛用于各大院校的教学和科研场所的研究. 我们通过对实验的认识和对资料的查询,选择利用脉冲数字电路原理设计了多 种波形发生器,该发生器通过 555 数字芯片构成多级振荡器,组成 RC 积分电路来 分别实现方波.三角波和正弦波的输出.它 ...

  • 阶梯波发生电路的设计
  • 实验三 阶梯波发生电路的设计 一.实验目的 1.掌握阶梯波发生器电路的结构特点. 2.掌握阶梯波发生器电路的工作原理. 3.学习复杂的集成运算放大器电路的设计. 二.实验要求 1.设计一个能产生周期性阶梯波的电路,要求阶梯波周期在18ms左右,输出电压范围10V,阶梯个数5个.(注意:电路中均采用模 ...

  • 电路实验报告(5)
  • 电路实验报告(5) 计科1403班 覃舒婕 一.实验题目 集成放大器的应用 二.实验摘要(关键信息) 1.在面包板上搭接µA741的电路.首先将+12V和-12V直流电压正确接入µA741的Vcc+(7脚)和Vcc-(4脚). 2.用µA741组成反比例放大电路,放大倍数自定,用示波器观察输入和输出 ...

  • 典型环节及其阶跃响应
  • 设计型实验 典型环节及其阶跃响应 一. 目的要求 1. 根据典型环节及其阶跃响应的基本原理,自己设计各种典型环节模拟电路,了解并掌握典型环节模拟电路的构成方法和验证典型环节及其阶跃响应,培养学生实验技能. 2. 熟悉各种典型环节的阶跃响应曲线. 3. 了解参数变化对典型环节动态特性的影响. 二. 实 ...

  • 方波产生与波形变换电路
  • 电气与自动化工程学院课程设计评分表 课程设计题目: 方波产生与波形变换电路 班级: 学号: 姓名: 指导老师: 2013 年 1 月 日 常熟理工学院电气与自动化工程学院 课程设计说明书 课程名称: 电子技术课程设计 设计题目: 方波产生与波形变换电路 班级: 姓名: 学号:指导老师: 设计时间: ...

  • 函数信号发生器说明书
  • 1 绪 论 1.1函数信号发生器的背景 信号发生器是一种最悠久的测量仪器,早在20年代电子设备刚出现时它就产生了.随着通信和雷达技术的发展,40年代出现了主要用于测试各种接收机的标准信号发生器,使信号发生器从定性分析的测试仪器发展成定量分析的测量仪器.同时还出现了可用来测量脉冲电路或用作脉冲调制器的 ...

  • 电压-频率转换电路
  • 模拟电路课程设计报告 设计课题: 电压/频率转换电路 专业班级:学生姓名:学 号:指导教师:设计时间: 09电信本 090802016 曾祥华 二0一一年一月一日 目录 一.设计任务与要求 二.方案设计与论证 1.方案一:电荷平衡式电路 2.方案二:复位式电路 三.单元电路设计与参数计算 1.±12 ...

  • 实验二报告 微积分电路
  • 实验二报告 微积分电路 一.实验准备 1. 对积分电路的认识及理解 积分电路定义:输出电压与输入电压的时间积分成正比的电路. 电路图如下: 输入信号为方形波 原理:Uo=Uc=(1/C)∫icdt,因Ui=UR+Uo,当t=to时,Uc=Oo.随后C 充电,由于RC≥Tk,充电很慢,所 以认为Ui= ...