空气的发现史

空气,构成地球周围大气的气体。无色,无味,主要成分是氮气和氧气,还有极少量的氡、氦、氖、氩、氪、氙等稀有气体和水蒸气、二氧化碳和尘埃等。常温下的空气是无色无味的气体,液态空气则是一种易流动的浅黄色液体。一般当空气被液化时二氧化碳已经清除掉,因而液态空气的组成是20.95%氧,78.12%氮和0.93%氩,其它组分含量甚微,可以略而不计。

17世纪中叶以前,人们对空气和气体的认识还是模糊的,到了18世纪,通过对燃烧现象和呼吸作用的深入研究,人们才开始认识到气体的多样性和空气的复杂性。

18世纪初,一位爱好植物学的英国牧师黑尔斯(S. Hales ,1677—1761)发明了集气槽,改进了水上集气法。

1772年卢瑟福(D. Rutherford,英1749—1819)在密闭容器中燃烧磷,除去寻常空气中可助燃和可供动物呼吸的气体,对剩下的气体行了研究,发现这种气体不被碱液吸收,不能维持生命和具有可以灭火的性质,因此他把这种气体叫做“浊气”或“毒气”。同年英国化学家普利斯特里(J. Priestley ,1733—1804)也了解到木炭在密闭于水上的空气中燃烧时,能使1/5的空气变为碳酸气,用石灰水吸收后,剩下的气体,不助燃也不助呼吸。

1774年普利斯特里利用一个直径为一英尺的聚光镜来加热各种物质,看看它们是否会分解放出气体,他还用汞槽来收集产生的气体,以便研究它们的性质。那年8月1曰他如法加热汞煅灰(即氧化汞),发现蜡烛在分解出的“空气”中燃烧,放出更为光亮的火焰;他又将老鼠放

在这种气体中,发现老鼠比在同体积的通常空气中活的时间约长了4倍。可以说,普利斯特里发现了氧。遗憾的是他和卢瑟福等人都坚信当时的“燃素说”,从而错误地认为:这种气体不含燃素,所以有特别强的吸收燃素的能力,因而能够助燃,当时他把氧气称之为“脱燃素空气”,把氮气称之为“被燃素饱和了的空气”。

事实上,瑞典化学家舍勒(C. W. Scheele,1742—1786)在卢瑟福和普利斯特里研究氮气的同时,于1772年也从事这一研究,他可算是第一个认为氮是空气成分之一的人。他曾于1773年用硝酸盐(硝酸钾和硝酸镁)、氧化物(氧化汞)加热,制得“火气”(fire air ),并用实验证明空气中也存在“火气”。

综上所述,可见舍勒和普利斯特里虽然都独立地发现并制得氧气,但正如恩格斯指出的:由于他们被传统的燃素说所束缚,“从歪曲的、片面的、错误的前提出发,循着错误的、弯曲的、不可靠近的途径行进,往往当真理碰到鼻尖上的时候还是没有得到真理”(《自然辩证法》)。 法国化学家拉瓦锡(A. L. Lavoisier,1743—1794)较早地运用天平作为研究化学的工具,在实验过程中重视化学反应中物质质量的变化。当他知道了普利斯特里从氧化汞中制取氧气(当时称之为“脱燃素空气”)的方法后,就做了一个著名的研究空气成分的实验(见教材第一章阅读材料)。他摆脱了传统的错误理论(燃素说)的束缚,根据事实对实验作了科学的分析和判断,揭示了燃烧是物质跟空气里的氧气发生了反应,指出了物质里根本不存在一种所谓“燃素”的特殊东西。1777年,拉瓦锡在接受其他化学家见解的基础上,认识到空气是两种气体的混合

物,一种是能助燃、有助于呼吸的气体,并把它命名为“氧”,意即“成酸的元素”(拉瓦锡当时认为,非金属燃烧后通常变为酸,氧是酸的本质,一切酸中都含有氧元素);另一种不助燃、无助于生命的气体,命名为氮,意思是“不能维持生命”。

1785年英国化学家卡文迪许(H. Cavendish 1731—1810)用电火花使空气中氮气跟氧气化合,并继续加入氧气,使氮气变成氮的氧化物,然后用碱液吸收而将之分离,剩余的氧气用红热的铜除去,但始终残余有1%的气体不跟氧气化合,当时就认为可能是一种新的气体,这种见解却没有受到化学家们应有的重视。

经过百余年后,英国物理学家雷利(J. W. S. Rayleigh,1842—1919)于1892年发现从含氮的化合物中制得氮气每升重1.2501g ,而从空气中分离出来的氮气在相同情况下每升重1.2571g ,虽然两者之差只有几毫克,但已超出了实验误差范围,所以他怀疑空气中的氮气中一定含有尚未被发现的较重的气体。雷利沿用卡文迪许的放电方法从空气中除去氧和氮;英国化学家拉姆塞(W. Ramsay,1852—1916)把已经除掉CO2、H2O 和O2的空气通过灼热的镁以吸收其中的氮气,他们二人的实验都得到一些残余的气体,经过多方面试验断定它是一种极不活泼的新元素,定名为氩,原文是“不活动”的意思。

1868年8月18曰在印度发生了曰全蚀,法国天文学家严森(P. J. C. Janssen ,1824—1907)从分光镜中发现太阳光谱中有一条跟钠D 线不在同一位置上的黄线,这条光谱线是当时尚未知道的新元素所产生的,当时预定了这种元素的存在,并定名为氦(氦是拉丁文的译音,原意是

“太阳”)。地球上的氦是1895年从铀酸盐的矿物和其他铀钍矿中被发现的。后来,人们在大气里、水里以至陨石和宇宙射线里也发现了氦。 1898年拉姆塞又在液态空气蒸发后的残余物里,先后发现了氪(拉丁文原意是“隐藏的”)、氖(拉丁文原意是“新的”)和氙(拉丁文原意是“生疏的”)。

1990年德国物理学教授道恩(F. E. Dorn1848—?)在含镭的矿物中发现一种具有放射性的气体,称为氡(拉丁文原意是“射气”)。

空气,构成地球周围大气的气体。无色,无味,主要成分是氮气和氧气,还有极少量的氡、氦、氖、氩、氪、氙等稀有气体和水蒸气、二氧化碳和尘埃等。常温下的空气是无色无味的气体,液态空气则是一种易流动的浅黄色液体。一般当空气被液化时二氧化碳已经清除掉,因而液态空气的组成是20.95%氧,78.12%氮和0.93%氩,其它组分含量甚微,可以略而不计。

17世纪中叶以前,人们对空气和气体的认识还是模糊的,到了18世纪,通过对燃烧现象和呼吸作用的深入研究,人们才开始认识到气体的多样性和空气的复杂性。

18世纪初,一位爱好植物学的英国牧师黑尔斯(S. Hales ,1677—1761)发明了集气槽,改进了水上集气法。

1772年卢瑟福(D. Rutherford,英1749—1819)在密闭容器中燃烧磷,除去寻常空气中可助燃和可供动物呼吸的气体,对剩下的气体行了研究,发现这种气体不被碱液吸收,不能维持生命和具有可以灭火的性质,因此他把这种气体叫做“浊气”或“毒气”。同年英国化学家普利斯特里(J. Priestley ,1733—1804)也了解到木炭在密闭于水上的空气中燃烧时,能使1/5的空气变为碳酸气,用石灰水吸收后,剩下的气体,不助燃也不助呼吸。

1774年普利斯特里利用一个直径为一英尺的聚光镜来加热各种物质,看看它们是否会分解放出气体,他还用汞槽来收集产生的气体,以便研究它们的性质。那年8月1曰他如法加热汞煅灰(即氧化汞),发现蜡烛在分解出的“空气”中燃烧,放出更为光亮的火焰;他又将老鼠放

在这种气体中,发现老鼠比在同体积的通常空气中活的时间约长了4倍。可以说,普利斯特里发现了氧。遗憾的是他和卢瑟福等人都坚信当时的“燃素说”,从而错误地认为:这种气体不含燃素,所以有特别强的吸收燃素的能力,因而能够助燃,当时他把氧气称之为“脱燃素空气”,把氮气称之为“被燃素饱和了的空气”。

事实上,瑞典化学家舍勒(C. W. Scheele,1742—1786)在卢瑟福和普利斯特里研究氮气的同时,于1772年也从事这一研究,他可算是第一个认为氮是空气成分之一的人。他曾于1773年用硝酸盐(硝酸钾和硝酸镁)、氧化物(氧化汞)加热,制得“火气”(fire air ),并用实验证明空气中也存在“火气”。

综上所述,可见舍勒和普利斯特里虽然都独立地发现并制得氧气,但正如恩格斯指出的:由于他们被传统的燃素说所束缚,“从歪曲的、片面的、错误的前提出发,循着错误的、弯曲的、不可靠近的途径行进,往往当真理碰到鼻尖上的时候还是没有得到真理”(《自然辩证法》)。 法国化学家拉瓦锡(A. L. Lavoisier,1743—1794)较早地运用天平作为研究化学的工具,在实验过程中重视化学反应中物质质量的变化。当他知道了普利斯特里从氧化汞中制取氧气(当时称之为“脱燃素空气”)的方法后,就做了一个著名的研究空气成分的实验(见教材第一章阅读材料)。他摆脱了传统的错误理论(燃素说)的束缚,根据事实对实验作了科学的分析和判断,揭示了燃烧是物质跟空气里的氧气发生了反应,指出了物质里根本不存在一种所谓“燃素”的特殊东西。1777年,拉瓦锡在接受其他化学家见解的基础上,认识到空气是两种气体的混合

物,一种是能助燃、有助于呼吸的气体,并把它命名为“氧”,意即“成酸的元素”(拉瓦锡当时认为,非金属燃烧后通常变为酸,氧是酸的本质,一切酸中都含有氧元素);另一种不助燃、无助于生命的气体,命名为氮,意思是“不能维持生命”。

1785年英国化学家卡文迪许(H. Cavendish 1731—1810)用电火花使空气中氮气跟氧气化合,并继续加入氧气,使氮气变成氮的氧化物,然后用碱液吸收而将之分离,剩余的氧气用红热的铜除去,但始终残余有1%的气体不跟氧气化合,当时就认为可能是一种新的气体,这种见解却没有受到化学家们应有的重视。

经过百余年后,英国物理学家雷利(J. W. S. Rayleigh,1842—1919)于1892年发现从含氮的化合物中制得氮气每升重1.2501g ,而从空气中分离出来的氮气在相同情况下每升重1.2571g ,虽然两者之差只有几毫克,但已超出了实验误差范围,所以他怀疑空气中的氮气中一定含有尚未被发现的较重的气体。雷利沿用卡文迪许的放电方法从空气中除去氧和氮;英国化学家拉姆塞(W. Ramsay,1852—1916)把已经除掉CO2、H2O 和O2的空气通过灼热的镁以吸收其中的氮气,他们二人的实验都得到一些残余的气体,经过多方面试验断定它是一种极不活泼的新元素,定名为氩,原文是“不活动”的意思。

1868年8月18曰在印度发生了曰全蚀,法国天文学家严森(P. J. C. Janssen ,1824—1907)从分光镜中发现太阳光谱中有一条跟钠D 线不在同一位置上的黄线,这条光谱线是当时尚未知道的新元素所产生的,当时预定了这种元素的存在,并定名为氦(氦是拉丁文的译音,原意是

“太阳”)。地球上的氦是1895年从铀酸盐的矿物和其他铀钍矿中被发现的。后来,人们在大气里、水里以至陨石和宇宙射线里也发现了氦。 1898年拉姆塞又在液态空气蒸发后的残余物里,先后发现了氪(拉丁文原意是“隐藏的”)、氖(拉丁文原意是“新的”)和氙(拉丁文原意是“生疏的”)。

1990年德国物理学教授道恩(F. E. Dorn1848—?)在含镭的矿物中发现一种具有放射性的气体,称为氡(拉丁文原意是“射气”)。


相关内容

  • 空气的成分教学设计案例
  • 空气的成分 教学设计案例一.教学设计思路 [教材分析] 本课为第二单元课题 1 空气第一课时的教学内容. 要求学生通过对空气成分的探究, 了解空气的组成. 教学重点:空气的组成.空气中氧气含量的测定实验. 教学难点:空气中氧气含量的测定实验. [教学理念] 本课题主要采用问题探究来设计教学, 始终贯 ...

  • 被压缩空气
  • <被压缩空气>教学设计 中和小学 徐建东 教材分析: 被<压缩的空气>一课主要的教学目标主要是从玩拍皮球.给皮球充气这些学生十分熟悉的生活经历,引领学生感知空气可以被压缩,被压缩的空气有弹力.并引领学生借助注射器,初步学习定量研究空气可以被压缩,压缩空气具有弹力. 教学目标: ...

  • 空气成分测定习题1
  • 由多种物质组成的空气 一.空气成分的测定 1.空气的物理性质: 2.如图,用红磷燃烧来测定空气中氧气的含量实验探究: 实验步骤: (1)连接仪器(顺序: ),检查装置 . (2)点燃红磷,迅速伸入瓶中,塞紧瓶塞. 原因: (3) 待集气瓶冷却到常温时,打开止水夹,观察现象. 原因: 实验现象: (3 ...

  • 空气在哪里
  • <空气在哪里>教学设计及反思 一.教学目标: 1.认知目标:通过实验.游戏,让学生知道我们周围存在空气,了解空气在生活中的应用. 2.技能目标:培养学生用实验方法研究事物的能力. 3.情感目标:培养学生探究空气的兴趣. 二.教学重点和难点 重点:通过实验.游戏,让学生知道我们周围存在空气 ...

  • 空气污染调查报告优秀范文
  • 空气污染调查报告优秀范文 一.研究动机 1.近年来,空气污染非常严重,空气污染就是其中之一.汽车.飞机.轮船排放的废气,工厂排放的烟尘废气„„都会造成严重的空气污染. 二.研究目的 因为空气污染越来越严重,所以我想知道空气污染的严重程度. 三.研究内容 工厂排放的烟尘废气,汽车.飞机.轮船排放的废气 ...

  • 2.冷空气和热空气
  • 2.冷空气和热空气 教学目标: 过程与技能 1.用实验并借助想象.联想,认识冷热空气的流动规律. 2.继续学习借助其他物体觉察空气的认识方法. 科学知识 1.知道同体积的热空气比冷空气轻,热空气上升的原理. 2.知道地球表面空气的冷热不匀是形成自然风风的主要原因. 3.了解人类对热空气的应用. 情感 ...

  • 空气污染对人体健康影响研究的进展
  • 空气污染对人体健康影响研究的进展 魏复盛 胡 伟 滕恩江吴国平 100029 中同环境监测总站北京 摘要本文简要评述r室内.室外卒气污染对人体呼吸健康及儿童肿功能牛K发育影响的研究现状及发 J徒趋势.审气颗粒物(PM¨PM:一).气体污染物(sOz.NO,.0t)及挥发忡仃机物是士要污染川了.窄.t ...

  • 青岛版小学科学[瓶吞鸡蛋的秘密]精品教案
  • 瓶"吞"鸡蛋. 师:老师这儿有一个广口瓶,一个剥了皮的煮鸡蛋,现在,现在老师把鸡蛋放在广口瓶上,同学们,看到了什么? 生:鸡蛋大,瓶口小,鸡蛋没有掉下去. 师:哪为同学把鸡蛋按一下,看能按下去吗?(生按) 师:按下去了吗? 生:没按下去. 师:你再来按一下? 师:还是没有按下去. ...

  • 室内环境检测的重要性和现状
  • 室内环境检测的重要性和现状 2008-08-19 13:46:08| 分类: 室内空气净化工程 |字号 订阅 室内环境监测的重要性 据世界银行估计,中国每年因室内空气污染所造成的经济损失约32亿美元.另据国际有关组织调查统计,世界上30%的建筑物中存在有害于健康的室内空气.这些有害气体已经引起全球性 ...