最新人教版八年级数学上册第十一章教案

11.1.1三角形的边

教学对象:八年级(4)、(6)班 备课时间:2016/9/1

教学用具:PPT 课件、教案、课本等 教学目标:

1、知识与技能:了解三角形的意义, 认识三角形的边、内角、顶点,能用符号语言表示三角形 ;理解三角形三边不等的关系,会判断三条线段能否构成一个三角形, 并能运用它解决有关的问题。

2、过程与方法:在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯。

3、情感态度与价值观:体会数学与现实生活的联系,增强克服困难的勇气和信心。 教学重点:

三角形的有关概念和符号表示,三角形三边间的不等关系是重点 教学难点:

用三角形三边不等关系判定三条线段可否组成三角形是难点 教学过程: 一、情景导入

三角形是一种最常见的几何图形,]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。

那么什么叫做三角形呢?

c 二、三角形及有关概念

不在一条直线上的三条线段首尾顺次相接组成的图形叫做

A 三角形。 C (1)

注意:三条线段必须①不在一条直线上,②首尾顺次相接。

组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。

三角形ABC 用符号表示为△ABC 。三角形ABC 的顶点C 所对的边AB 可用c 表示, 顶点B 所对的边AC 可用b 表示, 顶点A 所对的边BC 可用a 表示. 三、三角形三边的不等关系

探究:任意画一个△ABC, 假设有一只小虫要从B 点出发, 沿三角形的边爬到C, 它有几种路线可以选择? 各条路线的长一样吗? 为什么?

有两条路线:(1)从B→C,(2)从B→A→C;不一样, AB+AC >BC ①;因为两点之间线段最短。

同样地有 AC+BC>AB ② AB+BC>AC ③

B

由式子①②③我们可以知道什么? 三角形的任意两边之和大于第三边. 四、三角形的分类

我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。

按角分类:

三角形直角三角形 ⎧

斜三角形锐角三角形 ⎧⎩

钝角三角形

那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。 三边都相等的三角形叫做等边三角形; 有两条边相等的三角形叫做等腰三角形;

三边都不相等的三角形叫做不等边三角形。 显然,等边三角形是特殊的等腰三角形。

按边分类:

三角形不等边三角形 底角 ⎧底角

⎨底边 ⎩等腰三角形底和腰不等的等腰三角形 ⎧

⎨等边三角形 ⎩

例题

例 :用一条长为18㎝的细绳围成一个等腰三角形。(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边长为4㎝的等腰三角形吗?为什么?

分析:(1)等腰三角形三边的长是多少?若设底边长为x ㎝,则腰长是多少?(2)“边长为4㎝”是什么意思?

解:(1)设底边长为x ㎝,则腰长2 x㎝。 x+2x+2x=18 解得x=3.6

所以,三边长分别为3.6㎝,7.2㎝,7.2㎝.

(2)如果长为4㎝的边为底边,设腰长为x ㎝,则 4+2x=18 解得x=7

如果长为4㎝的边为腰,设底边长为x ㎝,则 2×4+x=18 解得x=10

因为4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是4㎝的等腰三角形。 由以上讨论可知,可以围成底边长是4㎝的等腰三角形。 五、课堂练习

课本4頁练习1、2题。 六、课堂小结

1、三角形及有关概念; 2、三角形的分类;

3、三角形三边的不等关系及应用。 八、作业:

课本8頁1、2、6;

11.1.2 三角形的高、中线与角平分线

教学对象:八年级(4)、(6)班 备课时间:2016/9/1

教学用具:PPT 课件、教案、课本等 教学目标:

1、知识与技能:经历画图的过程,认识三角形的高、中线与角平分线;会画三角形的高、中线与角平分线;了解三角形的三条高所在的直线, 三条中线, 三条角平分线分别交于一点。

2、过程与方法:在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯。

3、情感态度与价值观:体会数学与现实生活的联系,增强克服困难的勇气和信心。 教学重点:

三角形的高、中线与角平分线是重点 教学难点:

三角形的角平分线与角的平分线的区别,画钝角三角形的高是难点 教学过程 一、导入新课

我们已经知道什么是三角形,也学过三角形的高。三角形的主要线段除高外,还有中线和角平分线值得我们研究。 二、三角形的高

请你在图中画出△ABC 的一条高并说说你画法。

从△ABC 的顶点A 向它所对的边BC 所在的直线画垂线,垂足为D ,所得线段AD 叫做△ABC 的边BC 上的高,表示为AD ⊥BC 于点D 。

注意:高与垂线不同,高是线段,垂线是直线。

请你再画出这个三角形AB 、AC 边上的高,看看有什么发现? 三角形的三条高相交于一点。

如果△ABC 是直角三角形、钝角三角形,上面的结论还成立吗? 现在我们来画钝角三角形三边上的高,如图。

E

C

显然,上面的结论成立。

请你画一个直角三角形,再画出它三边上的高。 上面的结论还成立。 三、三角形的中线

如图,我们把连结△ABC 的顶点A 和它的对边BC 的中点D ,所得线段AD 叫做△ABC 的边BC 上的中线,表示为BD=DC或BD=DC=1/2BC或2BD=2DC=BC.

请你在图中画出△ABC 的另两条边上的中线,看看有什么发现? 三角的三条中线相交于一点。

如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。 上面的结论还成立。 四、三角形的角平分线

如图,画∠A 的平分线AD ,交∠A 所对的边BC 于点D ,所得线段AD 叫做△ABC 的角平分线, 表示为∠BAD=∠CAD 或∠BAD=∠CAD =1/2∠BAC 或2∠BAD=2∠CAD =∠BAC 。

思考:三角形的角平分线与角的平分线是一样的吗?

三角形的角平分线是线段,而角的平分线是射线,是不一样的。 请你在图中再画出另两个角的平分线,看看有什么发现? 三角形三个角的平分线相交于一点。

如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。 上面的结论还成立。

想一想:三角形的三条高、三条中线、三条角平分线的交点有什么不同?

三角形的三条中线的交点、三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。 五、课堂练习

课本5頁练习1、2题。 六、课堂小结

1、三角形的高、中线、角平分线的概念和画法。

2、三角形的三条高、三条中线、三条角平分线及交点的位置规律。 八、作业:

课本8頁3、4;

B

D

A

C

11.1.3三角形的稳定性

教学对象:八年级(4)、(6)班 备课时间:2016/9/2

教学用具:PPT 课件、教案、课本等 教学目标:

1、知识与技能:知道三角形具有稳定性,四边形没有稳定性;了解三角形的稳定性在生产、生活中的应用。

2、过程与方法:在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯。

3、情感态度与价值观:体会数学与现实生活的联系,增强克服困难的勇气和信心。 教学重点:

三角形稳定性及应用 教学难点:

三角形稳定性及应用 教学过程 一、情景导入

盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉为什么要这样做呢?

二、三角形的稳定性

〔实验〕1、把三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?

一根木条,

(2)

不会改变。

2、把四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗? 会改变。

3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?

不会改变。

从上面的实验中,你能得出什么结论? 三角形具有稳定性,而四边形不具有稳定性。 三、三角形稳定性和四边形不稳定的应用

三角形具有稳定性固然好,四边形不具有稳定性也未必不好,它们在生产和生活中都有广泛的应用。如:

钢架桥、屋顶钢架和起重机都是利用三角形的稳定性,活动挂架则是利用四边形的不稳定性。 你还能举出一些例子吗? 四、课堂练习

1、下列图形中具有稳定性的是()

A 正方形 B 长方形 C 直角三角形 D 平行四边形 2、要使下列木架稳定各至少需要多少根木棍?

3、课本7頁练习。 五、作业:

8頁5;9頁10题。

11.2.1三角形的内角

教学对象:八年级(4)、(6)班 备课时间:2016/9/2

教学用具:PPT 课件、教案、课本等 教学目标:

1、知识与技能:掌握三角形内角和定理。

2、过程与方法:在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯。

3、情感态度与价值观:体会数学与现实生活的联系,增强克服困难的勇气和信心。 教学重点:

三角形内角和定理是重点; 教学难点:

三角形内角和定理的证明是难点。 教学过程: 一、导入新课

我们在小学就知道三角形内角和等于1800,这个结论是通过实验得到的,这个命题是不是真命题还需要证明,怎样证明呢? 二、三角形内角和的证明

回顾我们小学做过的实验,你是怎样操作的?

把一个三角形的两个角剪下拼在第三个角的顶点处,用量角器量出 ∠BCD 的度数,可得到∠A+∠B+∠ACB=180。

图1

想一想,还可以怎样拼?

①剪下∠A ,按图(2)拼在一起,可得到∠A+∠B+∠ACB=180。

图2

②把∠B 和∠C

剪下按图(3)拼在一起,可得到∠A+∠B+∠ACB=180。

如果把上面移动的角在图上进行转移,由图1你能想到证明三角形内角和等于180的方法吗?

已知△ABC ,求证:∠A+∠B+∠C=180。 证明一

过点C 作C M ∥AB ,则∠A=∠ACM ,∠B=∠DCM , 又∠ACB+∠ACM+∠DCM=180 ∴∠A+∠B+∠ACB=180。 即:三角形的内角和等于180。

由图2、图3你又能想到什么证明方法?请说说证明过程。 三、例题

例如图,C 岛在A 岛的北偏东500方向,B 岛在A 岛的北偏东800方向,C 岛在B 岛的北偏西400方向,从C 岛看A 、B 两岛的视角∠ACB 是多少度?

分析:怎样能求出∠ACB 的度数?

根据三角形内角和定理,只需求出∠CAB 和∠CBA 的度数即可。 ∠CAB 等于多少度?怎样求∠CBA 的度数? 解:∠CBA=∠BAD-∠CAD=80-50=30 ∵AD ∥BE ∴∠BAD+∠ABE=180 ∴∠ABE=180-∠BAD=180-80=100 ∴∠ABC=∠ABE-∠EBC=100-40=60 ∴∠ACB=180-∠ABC-∠CAB=180-60-30=90

00

答:从C 岛看AB 两岛的视角∠ACB=180是90。 四、课堂练习

课本13頁1、2题。 五、作业:

16頁1、3、4;

00

11.2.2三角形的外角

教学对象:八年级(4)、(6)班 备课时间:2016/9/4

教学用具:PPT 课件、教案、课本等 教学目标:

1、知识与技能:理解三角形的外角;2、掌握三角形外角的性质,能利用三角形外角的性质解决问题。

2、过程与方法:在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯

3、情感态度与价值观:体会数学与现实生活的联系,增强克服困难的勇气和信心 教学重点:

三角形的外角和三角形外角的性质是重点。 教学难点:

理解三角形的外角是难点。 教学过程] 一、导入新课

如图,△ABC 的三个内角是什么?它们有什么关是∠A 、∠B 、∠C ,它们的和是1800。

若延长BC 至D ,则∠ACD 是什么角?这个角与△ABC 的三个内角有什么关系? 二、三角形外角的概念

∠ACD 叫做△ABC 的外角。也就是,三角形一边与另一边的延长线组成的角,叫做三角形的外角。

想一想,三角形的外角共有几个? 共有六个。

注意:每个顶点处有两个外角,它们是对顶角。研究与三角形外角有关的问题时,通常每个顶点处取一个外角.

系?

三、三角形外角的性质

容易知道,三角形的外角∠ACD 与相邻的内角∠ACB 是邻补角,那与另外两个角有怎样的数量关系呢?

如图,这是我们证明三角形内角和定理时画的辅助线,你能就此图说明∠ACD 与∠A 、∠B 的关系吗?

∵C E ∥AB , ∴∠A=∠1,∠B=∠2 又∠ACD=∠1+∠2 ∴∠ACD=∠A+∠B

你能用文字语言叙述这个结论吗?

三角形的一个外角等于与它不相邻的两个内角之和。 由加数与和的关系你还能知道什么?

三角形的一个外角大于与它不相邻的任何一个内角。 即∠ACD >∠A ,∠ACD >∠B 。 四、例题

例如图,∠1、∠2、∠3是三角形ABC 的三个外角,它们的和是多少?

分析:∠1与∠BAC 、∠2与∠ABC 、∠3与∠ACB 有什么关系?∠BAC 、ABC 、∠ACB 有什么关系?

解:∵∠1+∠BAC=1800,∠2+∠ABC=1800,∠3+∠ACB=1800,

∴∠1+∠BAC+∠2+∠ABC+∠3+∠ACB=5400 又∠BAC+∠ABC+∠ACB=1800

∴∠1+∠2+∠3==3600。 你能用语言叙述本例的结论吗? 三角形外角的和等于360。 五、课堂练习

课本15頁练习; 六、课堂小结

1、什么是三角形外角? 2、三角形的外角有哪些性质? 八、作业

课本12頁5、6;

11.3.1 多边形

教学对象:八年级(4)、(6)班 备课时间:2016/9/7

教学用具:PPT 课件、教案、课本等 教学目标:

1、 知识与技能:了解多边形及有关概念,理解正多边形的概念,区别凸多边形与凹多边形。 2、过程与方法:在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯。

3、情感态度与价值观:体会数学与现实生活的联系,增强克服困难的勇气和信心。 教学重点:

多边形及有关概念、正多边形的概念是重点 教学难点:

区别凸多边形与凹多边形是难点 教学过程: 一、情景导入

看下面的图片,你能从中找出由一些线段围成的图形吗?

二、多边形及有关概念

这些图形有什么特点?

由几条线段组成;它们不在同一条直线上;首尾顺次相接.

这种在平面内,由一些不在同一条直线上的线段首尾顺次相接组成的图形叫做多边形。

多边形按组成它的线段的条数分成三角形、四边形、五边形„„、n 边形。这就是说,一个多边形由几条线段组成,就叫做几边形,三角形是最简单的多边形。

与三角形类似地,多边形相邻两边组成的角叫做多边形的内角,如图中的∠A 、∠B 、∠C 、∠D 、∠E 。多边形的边与它的邻边的延长线组成的角叫做多边形的外角.如图中的∠1是五边形ABCDE 的一个外角。]

连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线. 四边形有几条对角线?五边形有几条对角线?画图看看。 你能猜想n 边形有多少条对角线吗?说说你的想法。

n 边形有1/2n(n -3)条对角线。因为从n 边形的一个顶点可以引n -3条对角线,n 个顶点共引n (n -3)条对角线,又由于连接任意两个顶点的两条对角线是相同的,所以,n 边形有1/2n(n -3)条对角线。

三、凸多边形和凹多边形

]如图,下面的两个多边形有什么不同?

在图(1)中,画出四边形ABCD 的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD 所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形。

注意:今后我们讨论的多边形指的都是凸多边形.

四、正多边形的概念

我们知道,等边三角形、正方形的各个角都相等,各条边都相等,像这样各个角都相等,各条边都相等的多边形叫做正多边形。

下面是正多边形的一些例子。

五、课堂练习

课本21頁练习1、2。

3、有五个人在告别的时候相互各握了一次手,他们共握了多少次手?你能找到一个几何模型来说明吗? 六、课堂小结

1、多边形及有关概念。 2、区别凸多边形和凹多边形。 3、正多边形的概念。

4、n 边形对角线有1/2n(n -3)条。 八、作业:

课本24頁1。

11.3.2 多边形的内角和

教学对象:八年级(4)、(6)班 备课时间:2016/9/7

教学用具:PPT 课件、教案、课本等 教学目标:

1、 知识与技能:了解多边形的内角、外角等概念,能通过不同方法探索多边形的内角和与

外角和公式,并会应用它们进行有关计算。

2、过程与方法:在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯。

3、情感态度与价值观; 体会数学与现实生活的联系,增强克服困难的勇气和信心。 教学重点:

多边形的内角和与多边形的外角和公式是重点 教学难点:

多边形的内角和定理的推导是难点 教学过程:

一、复习导入

我们已经证明了三角形的内角和为180°,在小学我们用量角器量过四边形的内角的度数,知道四边形内角的和为360°,现在你能利用三角形的内角和定理证明吗? 二、多边形的内角和

如图,从四边形的一个顶点出发可以引几条对角线?它们将四边形

分成几个三角形?那么四边形的内角和等于多少度?

可以引一条对角线;它将四边形分成两个三角形;因此,四边形的D 内角和=△ABD 的内角和+△BDC 的内角和=2×180°=360°。

类似地,你能知道五边形、六边形„„ n边形的内角和是多少度吗? C 观察下面的图形,填空:

五边形 六边形

从五边形一个顶点出发可以引对角线,它们将五边形分成三角形,五边形的内角和等于;

从六边形一个顶点出发可以引对角线,它们将六边形分成三角形,六边形的内角和等于; 从n 边形一个顶点出发,可以引对角线,它们将n 边形分成三角形,n 边形的内角和等于。 n 边形的内角和等于(n 一2)·180°.

从上面的讨论我们知道,求n 边形的内角和可以将n 边形分成若干个三角形来求。现在以五边形为例,你还有其它的分法吗?

分法一 如图1,在五边形ABCDE 内任取一点O ,连结OA 、OB 、OC 、OD 、OE ,则得五个三角形。

∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°。

E

图1 图2

分法二 如图2,在边AB 上取一点O ,连OE 、OD 、OC ,则可以(5-1)个三角形。 ∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°

如果把五边形换成n 边形,用同样的方法可以得到n 边形内角和=(n 一2)×180°. 三、例题

例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系? 如图,已知四边形ABCD 中,∠A +∠C =180°,求∠B 与∠D 的关系.

分析:∠A 、∠B 、∠C 、∠D 有什么关系?

解:∵∠A+∠B+∠C+∠D=(4-2)×180°=360° 又∠A +∠C =180°

∴∠B +∠D= 360°-(∠A +∠C )=180°

这就是说,如果四边形一组对角互补,那么另一组对角也互补.

例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?

如图,已知∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF 的外角,求∠1+∠2+∠3+∠4+∠5+∠6的值.

分析:多边形的一个外角同与它相邻的内角有什么关系?六边形的内角和是多少度?

A 6

B

F

5

C

D

解:∵∠1+∠BAF=180° ∠2+∠ABC=180° ∠3+∠BAD=180°

∠4+∠CDE=180° ∠5+∠DEF=180° ∠6+∠EFA=180°

∴∠1+∠BAF+∠2+∠ABC+∠3+∠BAD+∠4+∠CDE+∠5+∠DEF+∠6+∠EFA=6×180° 又∠1+∠2+∠3+∠4+∠5+∠6=4×180°

∴∠BAF+∠ABC+∠BAD+∠CDE+∠DEF+∠EFA=6×180°-4×180°=360° 这就是说,六边形形的外角和为360°。 如果把六边形换成n 边形可以得到同样的结果: n 边形的外角和等于360°。 四、课堂练习

课本24頁1、2、3题。 五、课堂小结

n 边形的内角和是多少度?

n 边形的外角和是多少度? 六、作业:

课本24頁2、3;

十一章、小结与复习

教学对象:八年级(4)、(6)班 备课时间:2016/9/8

教学用具:PPT 课件、教案、课本等 一、知识结构

二、回顾与思考

1、什么是三角形?什么是多边形?什么是正多边形? 三角形是不是多边形?

2、什么是三角形的高、中线、角平分线?什么是对角线? 三角形有对角线吗?n 边形的的对角线有多少条?

3、三角形的三条高,三条中线,三条角平分线各有什么特点? 4、三角形的内角和是多少?n 边形的内角和是多少? 你能用三角形的内角和说明n 边形的内角和吗? 5、三角形的外角和是多少?n 边形的外角和是多少? 你能说明为什么多边形的外角和与边数无关吗?

6、怎样才算是平面镶嵌?平面镶嵌的条件是什么?能单独进行平面镶嵌的多边形有哪些?

你能举一个几个多边形进行平面镶嵌的例子吗?

三、例题导引

例1 如图,在△ABC 中,∠A ︰∠B ︰∠C=3︰4︰5,BD 、CE 分别是边AC 、AB 上的高,BD 、CE 相交于点H ,求∠BHC 的度数。

B E

D

C

例2 如图,把△ABC 沿DE 折叠,当点A 落在四边形BCDE 内部时,探索∠A 与∠1+∠2有什么数量关系?并说明理由。

B

E D

A

C

例3 如图所示, 在△ABC 中, △ABC 的内角平分线与外角平分线交于点P, 试说明∠P =1/2∠A.

A

P

(2)

C

四、巩固练习

课本28—29頁复习题7(第3题可不做).

11.1.1三角形的边

教学对象:八年级(4)、(6)班 备课时间:2016/9/1

教学用具:PPT 课件、教案、课本等 教学目标:

1、知识与技能:了解三角形的意义, 认识三角形的边、内角、顶点,能用符号语言表示三角形 ;理解三角形三边不等的关系,会判断三条线段能否构成一个三角形, 并能运用它解决有关的问题。

2、过程与方法:在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯。

3、情感态度与价值观:体会数学与现实生活的联系,增强克服困难的勇气和信心。 教学重点:

三角形的有关概念和符号表示,三角形三边间的不等关系是重点 教学难点:

用三角形三边不等关系判定三条线段可否组成三角形是难点 教学过程: 一、情景导入

三角形是一种最常见的几何图形,]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。

那么什么叫做三角形呢?

c 二、三角形及有关概念

不在一条直线上的三条线段首尾顺次相接组成的图形叫做

A 三角形。 C (1)

注意:三条线段必须①不在一条直线上,②首尾顺次相接。

组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。

三角形ABC 用符号表示为△ABC 。三角形ABC 的顶点C 所对的边AB 可用c 表示, 顶点B 所对的边AC 可用b 表示, 顶点A 所对的边BC 可用a 表示. 三、三角形三边的不等关系

探究:任意画一个△ABC, 假设有一只小虫要从B 点出发, 沿三角形的边爬到C, 它有几种路线可以选择? 各条路线的长一样吗? 为什么?

有两条路线:(1)从B→C,(2)从B→A→C;不一样, AB+AC >BC ①;因为两点之间线段最短。

同样地有 AC+BC>AB ② AB+BC>AC ③

B

由式子①②③我们可以知道什么? 三角形的任意两边之和大于第三边. 四、三角形的分类

我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。

按角分类:

三角形直角三角形 ⎧

斜三角形锐角三角形 ⎧⎩

钝角三角形

那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。 三边都相等的三角形叫做等边三角形; 有两条边相等的三角形叫做等腰三角形;

三边都不相等的三角形叫做不等边三角形。 显然,等边三角形是特殊的等腰三角形。

按边分类:

三角形不等边三角形 底角 ⎧底角

⎨底边 ⎩等腰三角形底和腰不等的等腰三角形 ⎧

⎨等边三角形 ⎩

例题

例 :用一条长为18㎝的细绳围成一个等腰三角形。(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边长为4㎝的等腰三角形吗?为什么?

分析:(1)等腰三角形三边的长是多少?若设底边长为x ㎝,则腰长是多少?(2)“边长为4㎝”是什么意思?

解:(1)设底边长为x ㎝,则腰长2 x㎝。 x+2x+2x=18 解得x=3.6

所以,三边长分别为3.6㎝,7.2㎝,7.2㎝.

(2)如果长为4㎝的边为底边,设腰长为x ㎝,则 4+2x=18 解得x=7

如果长为4㎝的边为腰,设底边长为x ㎝,则 2×4+x=18 解得x=10

因为4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是4㎝的等腰三角形。 由以上讨论可知,可以围成底边长是4㎝的等腰三角形。 五、课堂练习

课本4頁练习1、2题。 六、课堂小结

1、三角形及有关概念; 2、三角形的分类;

3、三角形三边的不等关系及应用。 八、作业:

课本8頁1、2、6;

11.1.2 三角形的高、中线与角平分线

教学对象:八年级(4)、(6)班 备课时间:2016/9/1

教学用具:PPT 课件、教案、课本等 教学目标:

1、知识与技能:经历画图的过程,认识三角形的高、中线与角平分线;会画三角形的高、中线与角平分线;了解三角形的三条高所在的直线, 三条中线, 三条角平分线分别交于一点。

2、过程与方法:在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯。

3、情感态度与价值观:体会数学与现实生活的联系,增强克服困难的勇气和信心。 教学重点:

三角形的高、中线与角平分线是重点 教学难点:

三角形的角平分线与角的平分线的区别,画钝角三角形的高是难点 教学过程 一、导入新课

我们已经知道什么是三角形,也学过三角形的高。三角形的主要线段除高外,还有中线和角平分线值得我们研究。 二、三角形的高

请你在图中画出△ABC 的一条高并说说你画法。

从△ABC 的顶点A 向它所对的边BC 所在的直线画垂线,垂足为D ,所得线段AD 叫做△ABC 的边BC 上的高,表示为AD ⊥BC 于点D 。

注意:高与垂线不同,高是线段,垂线是直线。

请你再画出这个三角形AB 、AC 边上的高,看看有什么发现? 三角形的三条高相交于一点。

如果△ABC 是直角三角形、钝角三角形,上面的结论还成立吗? 现在我们来画钝角三角形三边上的高,如图。

E

C

显然,上面的结论成立。

请你画一个直角三角形,再画出它三边上的高。 上面的结论还成立。 三、三角形的中线

如图,我们把连结△ABC 的顶点A 和它的对边BC 的中点D ,所得线段AD 叫做△ABC 的边BC 上的中线,表示为BD=DC或BD=DC=1/2BC或2BD=2DC=BC.

请你在图中画出△ABC 的另两条边上的中线,看看有什么发现? 三角的三条中线相交于一点。

如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。 上面的结论还成立。 四、三角形的角平分线

如图,画∠A 的平分线AD ,交∠A 所对的边BC 于点D ,所得线段AD 叫做△ABC 的角平分线, 表示为∠BAD=∠CAD 或∠BAD=∠CAD =1/2∠BAC 或2∠BAD=2∠CAD =∠BAC 。

思考:三角形的角平分线与角的平分线是一样的吗?

三角形的角平分线是线段,而角的平分线是射线,是不一样的。 请你在图中再画出另两个角的平分线,看看有什么发现? 三角形三个角的平分线相交于一点。

如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。 上面的结论还成立。

想一想:三角形的三条高、三条中线、三条角平分线的交点有什么不同?

三角形的三条中线的交点、三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。 五、课堂练习

课本5頁练习1、2题。 六、课堂小结

1、三角形的高、中线、角平分线的概念和画法。

2、三角形的三条高、三条中线、三条角平分线及交点的位置规律。 八、作业:

课本8頁3、4;

B

D

A

C

11.1.3三角形的稳定性

教学对象:八年级(4)、(6)班 备课时间:2016/9/2

教学用具:PPT 课件、教案、课本等 教学目标:

1、知识与技能:知道三角形具有稳定性,四边形没有稳定性;了解三角形的稳定性在生产、生活中的应用。

2、过程与方法:在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯。

3、情感态度与价值观:体会数学与现实生活的联系,增强克服困难的勇气和信心。 教学重点:

三角形稳定性及应用 教学难点:

三角形稳定性及应用 教学过程 一、情景导入

盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉为什么要这样做呢?

二、三角形的稳定性

〔实验〕1、把三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?

一根木条,

(2)

不会改变。

2、把四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗? 会改变。

3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?

不会改变。

从上面的实验中,你能得出什么结论? 三角形具有稳定性,而四边形不具有稳定性。 三、三角形稳定性和四边形不稳定的应用

三角形具有稳定性固然好,四边形不具有稳定性也未必不好,它们在生产和生活中都有广泛的应用。如:

钢架桥、屋顶钢架和起重机都是利用三角形的稳定性,活动挂架则是利用四边形的不稳定性。 你还能举出一些例子吗? 四、课堂练习

1、下列图形中具有稳定性的是()

A 正方形 B 长方形 C 直角三角形 D 平行四边形 2、要使下列木架稳定各至少需要多少根木棍?

3、课本7頁练习。 五、作业:

8頁5;9頁10题。

11.2.1三角形的内角

教学对象:八年级(4)、(6)班 备课时间:2016/9/2

教学用具:PPT 课件、教案、课本等 教学目标:

1、知识与技能:掌握三角形内角和定理。

2、过程与方法:在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯。

3、情感态度与价值观:体会数学与现实生活的联系,增强克服困难的勇气和信心。 教学重点:

三角形内角和定理是重点; 教学难点:

三角形内角和定理的证明是难点。 教学过程: 一、导入新课

我们在小学就知道三角形内角和等于1800,这个结论是通过实验得到的,这个命题是不是真命题还需要证明,怎样证明呢? 二、三角形内角和的证明

回顾我们小学做过的实验,你是怎样操作的?

把一个三角形的两个角剪下拼在第三个角的顶点处,用量角器量出 ∠BCD 的度数,可得到∠A+∠B+∠ACB=180。

图1

想一想,还可以怎样拼?

①剪下∠A ,按图(2)拼在一起,可得到∠A+∠B+∠ACB=180。

图2

②把∠B 和∠C

剪下按图(3)拼在一起,可得到∠A+∠B+∠ACB=180。

如果把上面移动的角在图上进行转移,由图1你能想到证明三角形内角和等于180的方法吗?

已知△ABC ,求证:∠A+∠B+∠C=180。 证明一

过点C 作C M ∥AB ,则∠A=∠ACM ,∠B=∠DCM , 又∠ACB+∠ACM+∠DCM=180 ∴∠A+∠B+∠ACB=180。 即:三角形的内角和等于180。

由图2、图3你又能想到什么证明方法?请说说证明过程。 三、例题

例如图,C 岛在A 岛的北偏东500方向,B 岛在A 岛的北偏东800方向,C 岛在B 岛的北偏西400方向,从C 岛看A 、B 两岛的视角∠ACB 是多少度?

分析:怎样能求出∠ACB 的度数?

根据三角形内角和定理,只需求出∠CAB 和∠CBA 的度数即可。 ∠CAB 等于多少度?怎样求∠CBA 的度数? 解:∠CBA=∠BAD-∠CAD=80-50=30 ∵AD ∥BE ∴∠BAD+∠ABE=180 ∴∠ABE=180-∠BAD=180-80=100 ∴∠ABC=∠ABE-∠EBC=100-40=60 ∴∠ACB=180-∠ABC-∠CAB=180-60-30=90

00

答:从C 岛看AB 两岛的视角∠ACB=180是90。 四、课堂练习

课本13頁1、2题。 五、作业:

16頁1、3、4;

00

11.2.2三角形的外角

教学对象:八年级(4)、(6)班 备课时间:2016/9/4

教学用具:PPT 课件、教案、课本等 教学目标:

1、知识与技能:理解三角形的外角;2、掌握三角形外角的性质,能利用三角形外角的性质解决问题。

2、过程与方法:在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯

3、情感态度与价值观:体会数学与现实生活的联系,增强克服困难的勇气和信心 教学重点:

三角形的外角和三角形外角的性质是重点。 教学难点:

理解三角形的外角是难点。 教学过程] 一、导入新课

如图,△ABC 的三个内角是什么?它们有什么关是∠A 、∠B 、∠C ,它们的和是1800。

若延长BC 至D ,则∠ACD 是什么角?这个角与△ABC 的三个内角有什么关系? 二、三角形外角的概念

∠ACD 叫做△ABC 的外角。也就是,三角形一边与另一边的延长线组成的角,叫做三角形的外角。

想一想,三角形的外角共有几个? 共有六个。

注意:每个顶点处有两个外角,它们是对顶角。研究与三角形外角有关的问题时,通常每个顶点处取一个外角.

系?

三、三角形外角的性质

容易知道,三角形的外角∠ACD 与相邻的内角∠ACB 是邻补角,那与另外两个角有怎样的数量关系呢?

如图,这是我们证明三角形内角和定理时画的辅助线,你能就此图说明∠ACD 与∠A 、∠B 的关系吗?

∵C E ∥AB , ∴∠A=∠1,∠B=∠2 又∠ACD=∠1+∠2 ∴∠ACD=∠A+∠B

你能用文字语言叙述这个结论吗?

三角形的一个外角等于与它不相邻的两个内角之和。 由加数与和的关系你还能知道什么?

三角形的一个外角大于与它不相邻的任何一个内角。 即∠ACD >∠A ,∠ACD >∠B 。 四、例题

例如图,∠1、∠2、∠3是三角形ABC 的三个外角,它们的和是多少?

分析:∠1与∠BAC 、∠2与∠ABC 、∠3与∠ACB 有什么关系?∠BAC 、ABC 、∠ACB 有什么关系?

解:∵∠1+∠BAC=1800,∠2+∠ABC=1800,∠3+∠ACB=1800,

∴∠1+∠BAC+∠2+∠ABC+∠3+∠ACB=5400 又∠BAC+∠ABC+∠ACB=1800

∴∠1+∠2+∠3==3600。 你能用语言叙述本例的结论吗? 三角形外角的和等于360。 五、课堂练习

课本15頁练习; 六、课堂小结

1、什么是三角形外角? 2、三角形的外角有哪些性质? 八、作业

课本12頁5、6;

11.3.1 多边形

教学对象:八年级(4)、(6)班 备课时间:2016/9/7

教学用具:PPT 课件、教案、课本等 教学目标:

1、 知识与技能:了解多边形及有关概念,理解正多边形的概念,区别凸多边形与凹多边形。 2、过程与方法:在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯。

3、情感态度与价值观:体会数学与现实生活的联系,增强克服困难的勇气和信心。 教学重点:

多边形及有关概念、正多边形的概念是重点 教学难点:

区别凸多边形与凹多边形是难点 教学过程: 一、情景导入

看下面的图片,你能从中找出由一些线段围成的图形吗?

二、多边形及有关概念

这些图形有什么特点?

由几条线段组成;它们不在同一条直线上;首尾顺次相接.

这种在平面内,由一些不在同一条直线上的线段首尾顺次相接组成的图形叫做多边形。

多边形按组成它的线段的条数分成三角形、四边形、五边形„„、n 边形。这就是说,一个多边形由几条线段组成,就叫做几边形,三角形是最简单的多边形。

与三角形类似地,多边形相邻两边组成的角叫做多边形的内角,如图中的∠A 、∠B 、∠C 、∠D 、∠E 。多边形的边与它的邻边的延长线组成的角叫做多边形的外角.如图中的∠1是五边形ABCDE 的一个外角。]

连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线. 四边形有几条对角线?五边形有几条对角线?画图看看。 你能猜想n 边形有多少条对角线吗?说说你的想法。

n 边形有1/2n(n -3)条对角线。因为从n 边形的一个顶点可以引n -3条对角线,n 个顶点共引n (n -3)条对角线,又由于连接任意两个顶点的两条对角线是相同的,所以,n 边形有1/2n(n -3)条对角线。

三、凸多边形和凹多边形

]如图,下面的两个多边形有什么不同?

在图(1)中,画出四边形ABCD 的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD 所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形。

注意:今后我们讨论的多边形指的都是凸多边形.

四、正多边形的概念

我们知道,等边三角形、正方形的各个角都相等,各条边都相等,像这样各个角都相等,各条边都相等的多边形叫做正多边形。

下面是正多边形的一些例子。

五、课堂练习

课本21頁练习1、2。

3、有五个人在告别的时候相互各握了一次手,他们共握了多少次手?你能找到一个几何模型来说明吗? 六、课堂小结

1、多边形及有关概念。 2、区别凸多边形和凹多边形。 3、正多边形的概念。

4、n 边形对角线有1/2n(n -3)条。 八、作业:

课本24頁1。

11.3.2 多边形的内角和

教学对象:八年级(4)、(6)班 备课时间:2016/9/7

教学用具:PPT 课件、教案、课本等 教学目标:

1、 知识与技能:了解多边形的内角、外角等概念,能通过不同方法探索多边形的内角和与

外角和公式,并会应用它们进行有关计算。

2、过程与方法:在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯。

3、情感态度与价值观; 体会数学与现实生活的联系,增强克服困难的勇气和信心。 教学重点:

多边形的内角和与多边形的外角和公式是重点 教学难点:

多边形的内角和定理的推导是难点 教学过程:

一、复习导入

我们已经证明了三角形的内角和为180°,在小学我们用量角器量过四边形的内角的度数,知道四边形内角的和为360°,现在你能利用三角形的内角和定理证明吗? 二、多边形的内角和

如图,从四边形的一个顶点出发可以引几条对角线?它们将四边形

分成几个三角形?那么四边形的内角和等于多少度?

可以引一条对角线;它将四边形分成两个三角形;因此,四边形的D 内角和=△ABD 的内角和+△BDC 的内角和=2×180°=360°。

类似地,你能知道五边形、六边形„„ n边形的内角和是多少度吗? C 观察下面的图形,填空:

五边形 六边形

从五边形一个顶点出发可以引对角线,它们将五边形分成三角形,五边形的内角和等于;

从六边形一个顶点出发可以引对角线,它们将六边形分成三角形,六边形的内角和等于; 从n 边形一个顶点出发,可以引对角线,它们将n 边形分成三角形,n 边形的内角和等于。 n 边形的内角和等于(n 一2)·180°.

从上面的讨论我们知道,求n 边形的内角和可以将n 边形分成若干个三角形来求。现在以五边形为例,你还有其它的分法吗?

分法一 如图1,在五边形ABCDE 内任取一点O ,连结OA 、OB 、OC 、OD 、OE ,则得五个三角形。

∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°。

E

图1 图2

分法二 如图2,在边AB 上取一点O ,连OE 、OD 、OC ,则可以(5-1)个三角形。 ∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°

如果把五边形换成n 边形,用同样的方法可以得到n 边形内角和=(n 一2)×180°. 三、例题

例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系? 如图,已知四边形ABCD 中,∠A +∠C =180°,求∠B 与∠D 的关系.

分析:∠A 、∠B 、∠C 、∠D 有什么关系?

解:∵∠A+∠B+∠C+∠D=(4-2)×180°=360° 又∠A +∠C =180°

∴∠B +∠D= 360°-(∠A +∠C )=180°

这就是说,如果四边形一组对角互补,那么另一组对角也互补.

例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?

如图,已知∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF 的外角,求∠1+∠2+∠3+∠4+∠5+∠6的值.

分析:多边形的一个外角同与它相邻的内角有什么关系?六边形的内角和是多少度?

A 6

B

F

5

C

D

解:∵∠1+∠BAF=180° ∠2+∠ABC=180° ∠3+∠BAD=180°

∠4+∠CDE=180° ∠5+∠DEF=180° ∠6+∠EFA=180°

∴∠1+∠BAF+∠2+∠ABC+∠3+∠BAD+∠4+∠CDE+∠5+∠DEF+∠6+∠EFA=6×180° 又∠1+∠2+∠3+∠4+∠5+∠6=4×180°

∴∠BAF+∠ABC+∠BAD+∠CDE+∠DEF+∠EFA=6×180°-4×180°=360° 这就是说,六边形形的外角和为360°。 如果把六边形换成n 边形可以得到同样的结果: n 边形的外角和等于360°。 四、课堂练习

课本24頁1、2、3题。 五、课堂小结

n 边形的内角和是多少度?

n 边形的外角和是多少度? 六、作业:

课本24頁2、3;

十一章、小结与复习

教学对象:八年级(4)、(6)班 备课时间:2016/9/8

教学用具:PPT 课件、教案、课本等 一、知识结构

二、回顾与思考

1、什么是三角形?什么是多边形?什么是正多边形? 三角形是不是多边形?

2、什么是三角形的高、中线、角平分线?什么是对角线? 三角形有对角线吗?n 边形的的对角线有多少条?

3、三角形的三条高,三条中线,三条角平分线各有什么特点? 4、三角形的内角和是多少?n 边形的内角和是多少? 你能用三角形的内角和说明n 边形的内角和吗? 5、三角形的外角和是多少?n 边形的外角和是多少? 你能说明为什么多边形的外角和与边数无关吗?

6、怎样才算是平面镶嵌?平面镶嵌的条件是什么?能单独进行平面镶嵌的多边形有哪些?

你能举一个几个多边形进行平面镶嵌的例子吗?

三、例题导引

例1 如图,在△ABC 中,∠A ︰∠B ︰∠C=3︰4︰5,BD 、CE 分别是边AC 、AB 上的高,BD 、CE 相交于点H ,求∠BHC 的度数。

B E

D

C

例2 如图,把△ABC 沿DE 折叠,当点A 落在四边形BCDE 内部时,探索∠A 与∠1+∠2有什么数量关系?并说明理由。

B

E D

A

C

例3 如图所示, 在△ABC 中, △ABC 的内角平分线与外角平分线交于点P, 试说明∠P =1/2∠A.

A

P

(2)

C

四、巩固练习

课本28—29頁复习题7(第3题可不做).


相关内容

  • 2014最新人教版六年级数学上册教案(一)表格式
  • 六年级上册 数学 教者:范婷婷 花果畈小学 六年级上册教学计划 执教:范婷婷 一.学情分析 本班共有学生48人.本班女生多,好管理,但思维欠活跃.从上学年的知识质量验收的情况看,学生成绩整体水平不高,后进生的面很大大,针对这些情况,本学年在重点抓好基础知识教学的同时,加强后进生的辅导和优等生的指导工 ...

  • 最新人教版六年级上册分数除法教案
  • 第三单元 分数除法 单元教学内容:课本28页--47页,倒数的认识和分数除法的意义与计算以及解决相关的实际问题. 单元教学目标: 知识与技能: 1. 使学生理解倒数的的意义,掌握求一个数的倒数的方法. 2. 使学生体会分数除法的意义,理解并掌握分数除法的计算方法,会进行分数除法的计算. 3. 使学生 ...

  • 猫]第一课时教学实录
  • 小学教案人教课标7册-<猫>第一课时教学实录之一 - 教案中心语文数学英语科学体育美术品德各科 - 多彩教育网分享到QQ空间新浪微博百度搜藏人人网腾讯微博开心网腾讯朋友百度空间豆瓣网搜狐微博MSNQQ收藏淘江湖百度贴吧谷歌Buzz更多...百度分享游客,您好 免费注册 用户登录 我来发表 ...

  • 最新人教版初中语文教案全集
  • 最新人教版初中语文教案全集 附件 人教版七年级上教案合集.rar (61.56 KB) 人教版七年级下教案合集.rar (277.75 KB) 人教版八年级语文(上)教案全集.rar (293.41 KB) 人教版八年级语文下册教案全集.rar (221.12 KB) 人教版九年级上册语文教案全册( ...

  • 最新人教版三年级数学上册[毫米的认识]优秀教学设计
  • <毫米的认识>教案 教学内容:教科书第2-3页的例1及做一做,练习一第1.2.3题. 教学目标: 1.使学生经历测量的过程,知道毫米产生的实际意义. 2.使学生通过观察,明确毫米与厘米间的关系,会进行简单的换算. 3.使学生在操作中学会用毫米作单位进行测量. 4.使学生建立1毫米的长度观 ...

  • 最新人教版年二年级数学上册教学计划
  • 2013-2014学年第一学期人教版二年级上册教学及进度计划 ----王栋 一.指导思想: 严格遵循党的教育方针,爱岗敬业,正确传授学生知识,并对学生进行适当的思想教育,培养其成为新时期现代化建设的接班人和建设者.以县教科局和学校教学工作计划为指导思想和依据,认真贯彻其精神,培养学生数感,提高其计算 ...

  • 小学语文电子课本
  • 首页 小升初 课程信息 重点中学 奥数题库 超常儿童 一年级 二年级 三年级 四年级 五年级 六年级 小学数学网 互动:小升初论坛 竞赛考级 作文投稿 e度访谈 杯赛:华杯赛 迎春杯 学而思杯 走美杯 希望杯 重点中学:人大附中 北京四中 实验中学 更多 新闻资讯 名校资讯 占坑 简历 专家 面试 ...

  • 小学一年级数学上册口算练习题
  • 更多精彩内容 >小教>一年级上 一年级上 一年级下 二年级上 二年级下 三年级上 三年级下 四年级上 四年级下 五年级上 五年级下 六年级上 六年级下 小学一年级数学上册口算练习题 小精灵儿童网站 2013-01-31 班级:         姓名:     学号: 7 5=       ...

  • [视频课件]初中各学科教案课件大全
  • ☆人教版七年级语文上册教案☆ ☆人教版七年级语文下册教案☆ ☆人教版八年级语文上册教案☆ ☆人教版八年级语文下册教案☆ ☆人教版九年级语文上册教案☆ ☆人教版九年级语文下册教案☆ ☆人教版七年级数学上册教案☆ ☆人教版七年级数学下册教案☆ ☆人教版八年级数学上册教案☆ ☆人教版八年级数学下册教案☆ ...

  • PEP小学英语四年级上册基本句型练习题
  • 2014-04-14  | 英语 练习 小学 PEP四年级上册各单元句型总汇 第一单元 What's in the classroom? 教室里有什么? This is Zhang Peng, our new classmate. 这是张朋,我们的新同学. We have a new classro ...