哈工程传感器与检测技术压电式加速度传感器

传感器与检测技术研究小论文

“传感器与检测技术”研究小论文

基于压电式传感器的加速度测量

姓名:何靓文 班级:20110815 学号:2011081509 2014 年 4 月 13 日

-I-

传感器与检测技术研究小论文

目录

一、 二、 三、 四、 五、 六、 压电式传感器原理 ............................................................................ 3 市场常见压电式加速度传感器 ........................................................ 5 总体方案设计 .................................................................................... 6 单元设计与特性分析 ........................................................................ 7 总结 .................................................................................................. 10 参考文献 .......................................................................................... 11

- II -

传感器与检测技术研究小论文

一、 压电式传感器原理

1、 压电效应

某些离子型晶体电介质(如石英、酒石酸钾钠、钛酸钡等)沿着某 一个方向受力而发生机械变形 ( 压缩或伸长 ) 时,其内部将发生极化现 象,而在其某些表面上会产生电荷。当外力去掉后,它又会重新回到不 带电的状态,此现象称为“压电效应”。压电式传感器的原理是基于某 些晶体材料的压电效应。

2、 压电式加速度传感器测量原理

压电式加速度传感器又称为压电加速度计,它也属于惯性式传感 器。它是典型的有源传感器。利用某些物质如石英晶体、人造压电陶瓷 的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变 化。压电敏感元件是力敏元件,在外力作用下,压电敏感元件的表面上 产生电荷,从而实现非电量电测量的目的。 压电加速度传感器的原理框图如下图 1 所示。 待测加速 度 弹性 转换元 件 测量电 路 输出信号

辅助电 源 图 1 压电加速度传感器原理框图 实际测量时,将图 2 中的支座与待测物刚性地固定在一起。当待测 物运动时,支座与待测物以同一加速度运动,压电元件受到质量块与加 速度相反方向的惯性力的作用,在晶体的两个表面上产生交变电荷 ( 电 压)。当振动频率远低于传感器的固有频率时,传感器的输出电荷 (电压) 与作用力成正比。电信号经前置放大器放大,即可由一般测量仪器测试 出电荷(电压)大小,从而得出物体的加速度。

-3-

传感器与检测技术研究小论文

质量块

压电元件

输出引线

支座 图2 压电加速度传感器的压敏元件采用具有压电效应的压电材料,换能 元件是以压电材料受力后在其表面产生电荷的压电效应为转换原理。这 些压电材料,当沿着一定方向对其施力而使它变形时,内部就产生极化 现

象,同时在它的两个相对的表面上便产生符号相反的电荷;当外力去 掉后,又重新恢复不带电的状态;当作用力的方向改变时,电荷的极性 也随着改变。其中弹性体是传感器的核心,其结构决定着传感器的各种 性能和测量精度,弹性体结构设计的优劣对加速度传感器性能的好坏至 关重要。 压电材料可分为压电晶体和压电陶瓷两大类,因压电陶瓷的压电系 数比压电晶体的大,且采用压电陶瓷制作的压电式传感器的灵敏度较 高,故本系统压电元件采用压电陶瓷,极化方向在厚度方向(z 方向)。当 加速度传感器和被测物一起受到冲击振动时,压电元件受质量块惯性力 的作用,根据牛顿第二定律,此惯性力是加速度的函数。设质量块作用 于压电元件的力为 F 上,支座作用于压电元件的力为 F 下,则有 F 上 =Ma F 下 =(M+m)a

-4-

传感器与检测技术研究小论文

式中 M 为质量块质量;m 为晶片质量;a 为物体振动加速度。 由上面两式可得晶片中厚度方向(z 方向)任一截面上的力为 F=Ma+ma(1-z/d) 式中 d 为晶片厚度。则平均力为

F= 1 d 1  Ma+ma(1  z / d )dz  (M  m)a  0 d 2

因晶片为压电陶瓷,极化方向在厚度方向(z 方向),作用力沿着 z 方 向,故此时外加应力只有 T3,不等于零,其平均值为

T3  1 1 ( M  m) a A 2

式中 A 为晶片电极面面积。 选用 D 型压电常数矩阵,得电荷

1 Q  d33 T3 A  d 33 ( M  m)a 2

式中 d33 为压电常数。由于质量块一般采用质量大的金属钨或其他金 属制成,而晶片很薄,即有 M>>m,故上式通常写为

Q  d33 Ma

故可知,压电元件的 Q 和 d33、M 成正比,根据测量电荷量就可得到 加速度。

二、 市场常见压电式加速度传感器

产品 性能 电荷灵敏度高,频率范围大, 幅 值 线 性 为 5000g ( ± 10%) ,重量体积小,使用温 度范围为 -40 ~ +80 ℃。内部 结构为中心压缩。 价格

YD-5 压电式加速度传感器

¥688.00

-5-

传感器与检测技术研究小论文

结构先进,品种齐全,性能 AFT 压电式加速度传感器 稳定,环境特性好,使用寿 命长,安装方便。产品主要 应用领域对,铁路、桥梁、 建筑、车船、机械、水利电 力、石油、地质、环境保 护、地震监测等部门。 在多点长线测量中,对长线 的要求低(长线距离可达千 YD 型压电式加速度传感器 米以上) , 性 价比 高, 抗 潮 湿,抗粉尘等环境特性好, 各种型号有对地绝缘型传感 器,提高了系统的测试可靠 性和环境是应性。 ¥849.00 ¥680.00

三、 总体方案设计

1、 总体设计原理

本方案采用压电式加速度传感器达到采集加速度的目的。主要利用其 当待测物有位移时,支座与待测物以相同的方式运动,压电

元件受到惯性力 的作用,它与质量块的与加速度相反方向,晶体的两个表面形成了交变电压 来测量加速度。由于压电传感器本身的内阻抗很高,而输出能量较小,因 此,它的测量电路通常需接入一个高输入阻抗的前置放大器来放大传感器 输出的微弱信号。本设计中前置放大器采用电荷放大器。将从放大电路出 来的模拟量,送入ADC0809转换成数字量,ADC0809连接于单片机,把信号 送入单片机。显示电路连接于单片机用于显示加速度的大小。该显示接口 用一片MC14499和单片机连接以驱动数码管。

-6-

传感器与检测技术研究小论文

2、 系统框图

系统总体流程框图如下所示:

被测物 理量 传感器 放大器 A/D 转 换器

显示设 备

单片机

控制器

图3

总体系统框图

被测物理量:主要是指非电的物理量,此系统中为加速度。 传感器:将输入的物理量转换成相应的电信号输出,实现非电量 到电量的变换。传感器的精度直接影响到整个系统的性能,所以是系 统中一个重要的部件。 放大:传感器的输出信号一般不适合直接去转换数字量,通常要 进行放大环节的预处理来完成。 A/D 转换器:实现将模拟量转换成数字量 ,此系统采用逐次逼近 式 A/D 转换。 单片机:目前的数据采集系统功能和性能日趋完善,因此主控部 分一般都采用单片机。 显示设备:在此用到 8 段数码管。 控制设备:控制电动机的运行或关闭。

四、 单元设计与特性分析

1、 传感器设计:将电压转化成电信号部分

由压电元件的工作原理可知,压电式传感器可看作一个电荷发生器。 同时,它也是一个电容器,晶体上聚集正负电荷的两表面相当于电容的两 个极板,极板间物质等效于一种介质,则其电容量为

-7-

传感器与检测技术研究小论文

Ca 

 r 0 A

d

式中A为晶片电极面面积; Ԑ r 为压电材料的相对介电常数; Ԑ 0 为真空介电 常数。因此,压电传感器可以等效为一个与电容相串联的电荷源。压电传 感器在实际使用时与测量仪器或测量电路相连接,因此还需考虑连接电缆 的等效电容Cc、放大器的输入电阻Ri、输人电容Ci及压电传感器的泄漏电阻 Ra,这样压电传感器在测量系统中的实际等效电路如图4所示。

图 4 测量电路 图4中,Ak为运算放大器增益。由于运算放大器的 Ri极高,而Ra=109 ~ 1014欧姆,所以可认为Ri和Ra是开路的。设运算放大器输人电压为Ui,输出 电压为U0,根据运算放大器理论和电路理论得电荷量为

Q  Ui (Ca  Cc  Ci )  (Ui  Uo )CF

式中CF为反馈电容。将 U0   AKUi 代入上式得

U0 

AK Q (Ca  Cc  Ci )  (1  A)CF

若放大器开环增益足够大,满足 (1  AK )CF 

Ca  Cc  Ci ,上式可表示为

Uo   Q CF

-8-

故可知,在一定情况下,电荷放大器的输出电压与传感器的电荷量成

传感器与检测技术研究小论文

正此,并且与电缆分布电容无关。因此,采用电荷放大器时,即使联接电 缆长度在百米以上,其灵敏度也无明显变化,这是电荷放大器的突出优 点。

2、 信号调节电路设计

压电传感器本身的内阻抗很高,而输出能量较小,因此,它的测量电 路通常需接入一个高输入阻抗的前置放大器(本设计中前置放大器采用电 荷放大器) 。其作用如下: (1)把它的高输出阻抗变换为低输出阻抗。 (2)放大传感器输出的微弱信号。

3、 使用条件和误差补偿

理想的单轴压电传感器,应该仅敏感其轴向的作用力,而对横向作用 力不敏感。如对于压缩式压电传感器,就要求压电元件的敏感轴(电 极 向)与传感器轴线(受力向)完全一致。但实际的压电传感器由于压电切 片、极化方向的偏差,压电片各作用面的粗糙度或各作用面的不平行,以 及装配、安装不精确等种种原因,都会造成压电传感器电轴向与力轴向不 重合。产生横向灵敏度的必要条件:一是伴随轴向作用力的同时,存在横 向力;二是压电元件本身具有横向压电效应。因此,消除横向灵敏度的技 术途径也相应有二:一是从设计、工艺和 使用诸方面确保力与电轴的一 致;二是尽量采用剪切型力-电转换方式。一只较好的压电传感器,最大 横向灵敏度不大于5%。 环境温度对压电传感器工作性能的影响主要通过三个因素:①压电材 料的特性参数;②某些压电材料的热释电效应;③传感器结构。环境温度 变化将使压电材料的压电常数d、介电常数ε 、电阻率ρ 和弹性系数k等机 电特性参数发生变化。 d 和 k 的变化将影响传感器的输出灵敏度; ε 和 ρ 的变化会导致时间常数 τ =RC的变化,从而使传感器的低频响应变坏。在

-9-

传感器与检测技术研究小论文

必须考虑温度——尤其是高温对传感器低频特性 影响的情况下,采用电 荷放大器将会得到满意的低频响应。环境湿度主要影响压电元件的绝缘电 阻,使其明显下降,造成传感器低频响应变坏。因此在高湿度环境中工作 的压电传感器,必须选用高绝缘材料,并采取防潮密封措施。 压电元件是高阻抗、小功率元件,及易受外界机、电振动引起的噪声 干扰,主要有声场、电源和接地回路噪声等。压电传感器在强声中工作将 受到声波振动激励而产生寄生电信号输出,谓之声噪声。目前大多数压电 传感器设计成隔离基 座和独立外壳结构,声噪声影响极小。电缆噪声是 同轴电缆在振动或弯曲变形时,电缆

屏蔽层、绝缘层和芯线间将引起局部 相对滑 移摩擦和分离,而在分离层之间产生的静电感应电荷干扰,它将 混入主信号中被放大。减小电缆噪声的方法:一是在使用中固定好传感器 的引出电缆;二是选用低噪声同轴电缆。接地回路噪声是压电传感器接入 二次测量线路或仪表而构成测试系统后,由于不同电位处的多点接地,形 成了接地回路和回路电流所致。克服的根本途径是消除接地回路。常用的 方法是在安装传感器时,使其与接地的被测试件绝缘连接,并在测试系统 的末端一点接地。这样就大大消除了接地回路噪声。

五、 总结

通过这次独立完成的压电式传感器课题学习,提高了自我学习的能 力。通过查阅相关书籍以及利用互联网查阅相关资料,对知识进行消化, 我初步了解的压电式传感器的工作原理,以及在测量加速度上的应用原 理。通过思考,对压电式传感器有了自己的理解和看法,会对今后的传感 器的学习有一定帮助,对以后传感器的选择以及使用也起到一定辅助作 用。在之前小组合作的基础上,自身的自学能力、阅读能力以及报告的撰 写能力都有所提高,因此,这一次单独完成课题研究有了良好的基础。

- 10 -

传感器与检测技术研究小论文

六、 参考文献

【1】徐科军.传感器与检测技术(第二版).电子工业出版社,2008 【2】阎石.数字电子技术基础(第五版).北京高等教育出版社 【3】孟立凡,郑宾主.传感器原理及技术[M].国防工业出版社,2005

- 11 -

传感器与检测技术研究小论文

“传感器与检测技术”研究小论文

基于压电式传感器的加速度测量

姓名:何靓文 班级:20110815 学号:2011081509 2014 年 4 月 13 日

-I-

传感器与检测技术研究小论文

目录

一、 二、 三、 四、 五、 六、 压电式传感器原理 ............................................................................ 3 市场常见压电式加速度传感器 ........................................................ 5 总体方案设计 .................................................................................... 6 单元设计与特性分析 ........................................................................ 7 总结 .................................................................................................. 10 参考文献 .......................................................................................... 11

- II -

传感器与检测技术研究小论文

一、 压电式传感器原理

1、 压电效应

某些离子型晶体电介质(如石英、酒石酸钾钠、钛酸钡等)沿着某 一个方向受力而发生机械变形 ( 压缩或伸长 ) 时,其内部将发生极化现 象,而在其某些表面上会产生电荷。当外力去掉后,它又会重新回到不 带电的状态,此现象称为“压电效应”。压电式传感器的原理是基于某 些晶体材料的压电效应。

2、 压电式加速度传感器测量原理

压电式加速度传感器又称为压电加速度计,它也属于惯性式传感 器。它是典型的有源传感器。利用某些物质如石英晶体、人造压电陶瓷 的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变 化。压电敏感元件是力敏元件,在外力作用下,压电敏感元件的表面上 产生电荷,从而实现非电量电测量的目的。 压电加速度传感器的原理框图如下图 1 所示。 待测加速 度 弹性 转换元 件 测量电 路 输出信号

辅助电 源 图 1 压电加速度传感器原理框图 实际测量时,将图 2 中的支座与待测物刚性地固定在一起。当待测 物运动时,支座与待测物以同一加速度运动,压电元件受到质量块与加 速度相反方向的惯性力的作用,在晶体的两个表面上产生交变电荷 ( 电 压)。当振动频率远低于传感器的固有频率时,传感器的输出电荷 (电压) 与作用力成正比。电信号经前置放大器放大,即可由一般测量仪器测试 出电荷(电压)大小,从而得出物体的加速度。

-3-

传感器与检测技术研究小论文

质量块

压电元件

输出引线

支座 图2 压电加速度传感器的压敏元件采用具有压电效应的压电材料,换能 元件是以压电材料受力后在其表面产生电荷的压电效应为转换原理。这 些压电材料,当沿着一定方向对其施力而使它变形时,内部就产生极化 现

象,同时在它的两个相对的表面上便产生符号相反的电荷;当外力去 掉后,又重新恢复不带电的状态;当作用力的方向改变时,电荷的极性 也随着改变。其中弹性体是传感器的核心,其结构决定着传感器的各种 性能和测量精度,弹性体结构设计的优劣对加速度传感器性能的好坏至 关重要。 压电材料可分为压电晶体和压电陶瓷两大类,因压电陶瓷的压电系 数比压电晶体的大,且采用压电陶瓷制作的压电式传感器的灵敏度较 高,故本系统压电元件采用压电陶瓷,极化方向在厚度方向(z 方向)。当 加速度传感器和被测物一起受到冲击振动时,压电元件受质量块惯性力 的作用,根据牛顿第二定律,此惯性力是加速度的函数。设质量块作用 于压电元件的力为 F 上,支座作用于压电元件的力为 F 下,则有 F 上 =Ma F 下 =(M+m)a

-4-

传感器与检测技术研究小论文

式中 M 为质量块质量;m 为晶片质量;a 为物体振动加速度。 由上面两式可得晶片中厚度方向(z 方向)任一截面上的力为 F=Ma+ma(1-z/d) 式中 d 为晶片厚度。则平均力为

F= 1 d 1  Ma+ma(1  z / d )dz  (M  m)a  0 d 2

因晶片为压电陶瓷,极化方向在厚度方向(z 方向),作用力沿着 z 方 向,故此时外加应力只有 T3,不等于零,其平均值为

T3  1 1 ( M  m) a A 2

式中 A 为晶片电极面面积。 选用 D 型压电常数矩阵,得电荷

1 Q  d33 T3 A  d 33 ( M  m)a 2

式中 d33 为压电常数。由于质量块一般采用质量大的金属钨或其他金 属制成,而晶片很薄,即有 M>>m,故上式通常写为

Q  d33 Ma

故可知,压电元件的 Q 和 d33、M 成正比,根据测量电荷量就可得到 加速度。

二、 市场常见压电式加速度传感器

产品 性能 电荷灵敏度高,频率范围大, 幅 值 线 性 为 5000g ( ± 10%) ,重量体积小,使用温 度范围为 -40 ~ +80 ℃。内部 结构为中心压缩。 价格

YD-5 压电式加速度传感器

¥688.00

-5-

传感器与检测技术研究小论文

结构先进,品种齐全,性能 AFT 压电式加速度传感器 稳定,环境特性好,使用寿 命长,安装方便。产品主要 应用领域对,铁路、桥梁、 建筑、车船、机械、水利电 力、石油、地质、环境保 护、地震监测等部门。 在多点长线测量中,对长线 的要求低(长线距离可达千 YD 型压电式加速度传感器 米以上) , 性 价比 高, 抗 潮 湿,抗粉尘等环境特性好, 各种型号有对地绝缘型传感 器,提高了系统的测试可靠 性和环境是应性。 ¥849.00 ¥680.00

三、 总体方案设计

1、 总体设计原理

本方案采用压电式加速度传感器达到采集加速度的目的。主要利用其 当待测物有位移时,支座与待测物以相同的方式运动,压电

元件受到惯性力 的作用,它与质量块的与加速度相反方向,晶体的两个表面形成了交变电压 来测量加速度。由于压电传感器本身的内阻抗很高,而输出能量较小,因 此,它的测量电路通常需接入一个高输入阻抗的前置放大器来放大传感器 输出的微弱信号。本设计中前置放大器采用电荷放大器。将从放大电路出 来的模拟量,送入ADC0809转换成数字量,ADC0809连接于单片机,把信号 送入单片机。显示电路连接于单片机用于显示加速度的大小。该显示接口 用一片MC14499和单片机连接以驱动数码管。

-6-

传感器与检测技术研究小论文

2、 系统框图

系统总体流程框图如下所示:

被测物 理量 传感器 放大器 A/D 转 换器

显示设 备

单片机

控制器

图3

总体系统框图

被测物理量:主要是指非电的物理量,此系统中为加速度。 传感器:将输入的物理量转换成相应的电信号输出,实现非电量 到电量的变换。传感器的精度直接影响到整个系统的性能,所以是系 统中一个重要的部件。 放大:传感器的输出信号一般不适合直接去转换数字量,通常要 进行放大环节的预处理来完成。 A/D 转换器:实现将模拟量转换成数字量 ,此系统采用逐次逼近 式 A/D 转换。 单片机:目前的数据采集系统功能和性能日趋完善,因此主控部 分一般都采用单片机。 显示设备:在此用到 8 段数码管。 控制设备:控制电动机的运行或关闭。

四、 单元设计与特性分析

1、 传感器设计:将电压转化成电信号部分

由压电元件的工作原理可知,压电式传感器可看作一个电荷发生器。 同时,它也是一个电容器,晶体上聚集正负电荷的两表面相当于电容的两 个极板,极板间物质等效于一种介质,则其电容量为

-7-

传感器与检测技术研究小论文

Ca 

 r 0 A

d

式中A为晶片电极面面积; Ԑ r 为压电材料的相对介电常数; Ԑ 0 为真空介电 常数。因此,压电传感器可以等效为一个与电容相串联的电荷源。压电传 感器在实际使用时与测量仪器或测量电路相连接,因此还需考虑连接电缆 的等效电容Cc、放大器的输入电阻Ri、输人电容Ci及压电传感器的泄漏电阻 Ra,这样压电传感器在测量系统中的实际等效电路如图4所示。

图 4 测量电路 图4中,Ak为运算放大器增益。由于运算放大器的 Ri极高,而Ra=109 ~ 1014欧姆,所以可认为Ri和Ra是开路的。设运算放大器输人电压为Ui,输出 电压为U0,根据运算放大器理论和电路理论得电荷量为

Q  Ui (Ca  Cc  Ci )  (Ui  Uo )CF

式中CF为反馈电容。将 U0   AKUi 代入上式得

U0 

AK Q (Ca  Cc  Ci )  (1  A)CF

若放大器开环增益足够大,满足 (1  AK )CF 

Ca  Cc  Ci ,上式可表示为

Uo   Q CF

-8-

故可知,在一定情况下,电荷放大器的输出电压与传感器的电荷量成

传感器与检测技术研究小论文

正此,并且与电缆分布电容无关。因此,采用电荷放大器时,即使联接电 缆长度在百米以上,其灵敏度也无明显变化,这是电荷放大器的突出优 点。

2、 信号调节电路设计

压电传感器本身的内阻抗很高,而输出能量较小,因此,它的测量电 路通常需接入一个高输入阻抗的前置放大器(本设计中前置放大器采用电 荷放大器) 。其作用如下: (1)把它的高输出阻抗变换为低输出阻抗。 (2)放大传感器输出的微弱信号。

3、 使用条件和误差补偿

理想的单轴压电传感器,应该仅敏感其轴向的作用力,而对横向作用 力不敏感。如对于压缩式压电传感器,就要求压电元件的敏感轴(电 极 向)与传感器轴线(受力向)完全一致。但实际的压电传感器由于压电切 片、极化方向的偏差,压电片各作用面的粗糙度或各作用面的不平行,以 及装配、安装不精确等种种原因,都会造成压电传感器电轴向与力轴向不 重合。产生横向灵敏度的必要条件:一是伴随轴向作用力的同时,存在横 向力;二是压电元件本身具有横向压电效应。因此,消除横向灵敏度的技 术途径也相应有二:一是从设计、工艺和 使用诸方面确保力与电轴的一 致;二是尽量采用剪切型力-电转换方式。一只较好的压电传感器,最大 横向灵敏度不大于5%。 环境温度对压电传感器工作性能的影响主要通过三个因素:①压电材 料的特性参数;②某些压电材料的热释电效应;③传感器结构。环境温度 变化将使压电材料的压电常数d、介电常数ε 、电阻率ρ 和弹性系数k等机 电特性参数发生变化。 d 和 k 的变化将影响传感器的输出灵敏度; ε 和 ρ 的变化会导致时间常数 τ =RC的变化,从而使传感器的低频响应变坏。在

-9-

传感器与检测技术研究小论文

必须考虑温度——尤其是高温对传感器低频特性 影响的情况下,采用电 荷放大器将会得到满意的低频响应。环境湿度主要影响压电元件的绝缘电 阻,使其明显下降,造成传感器低频响应变坏。因此在高湿度环境中工作 的压电传感器,必须选用高绝缘材料,并采取防潮密封措施。 压电元件是高阻抗、小功率元件,及易受外界机、电振动引起的噪声 干扰,主要有声场、电源和接地回路噪声等。压电传感器在强声中工作将 受到声波振动激励而产生寄生电信号输出,谓之声噪声。目前大多数压电 传感器设计成隔离基 座和独立外壳结构,声噪声影响极小。电缆噪声是 同轴电缆在振动或弯曲变形时,电缆

屏蔽层、绝缘层和芯线间将引起局部 相对滑 移摩擦和分离,而在分离层之间产生的静电感应电荷干扰,它将 混入主信号中被放大。减小电缆噪声的方法:一是在使用中固定好传感器 的引出电缆;二是选用低噪声同轴电缆。接地回路噪声是压电传感器接入 二次测量线路或仪表而构成测试系统后,由于不同电位处的多点接地,形 成了接地回路和回路电流所致。克服的根本途径是消除接地回路。常用的 方法是在安装传感器时,使其与接地的被测试件绝缘连接,并在测试系统 的末端一点接地。这样就大大消除了接地回路噪声。

五、 总结

通过这次独立完成的压电式传感器课题学习,提高了自我学习的能 力。通过查阅相关书籍以及利用互联网查阅相关资料,对知识进行消化, 我初步了解的压电式传感器的工作原理,以及在测量加速度上的应用原 理。通过思考,对压电式传感器有了自己的理解和看法,会对今后的传感 器的学习有一定帮助,对以后传感器的选择以及使用也起到一定辅助作 用。在之前小组合作的基础上,自身的自学能力、阅读能力以及报告的撰 写能力都有所提高,因此,这一次单独完成课题研究有了良好的基础。

- 10 -

传感器与检测技术研究小论文

六、 参考文献

【1】徐科军.传感器与检测技术(第二版).电子工业出版社,2008 【2】阎石.数字电子技术基础(第五版).北京高等教育出版社 【3】孟立凡,郑宾主.传感器原理及技术[M].国防工业出版社,2005

- 11 -


相关内容

  • 基于压电传感器振动测量及信号调理电路
  • 目 录 目 录-----------------------------------------------------------------------------1 摘 要------------------------------------------------------------- ...

  • 加速度传感器
  • 加速度传感器 班级:xxxxxxx 学号:xxxxxxxxxxxx 姓名:xxxx 摘要:近年来传感器得到了较大的发展,经过学习可知,测量加速度的传感器有很多种,比如,动圈式振动加速度传感器,电位器式加速度传感器,应变式加速度传感器,压电式加速度传感器,电容式加速度传感器等.本文分别介绍压电式加速度 ...

  • 新型压电扭矩传感器的结构与标定
  • 2006年 第5期 仪表技术与传感器 Instrument Technique and Sensor2006 No15 新型压电扭矩传感器的结构与标定 高长银1,赵 辉1,马龙梅1,王金凤1,孙宝元2 (1.郑州航空工业管理学院机电工程系,河南 郑州,450015;2.大连理工大学机械工程学院,辽宁 ...

  • 机械工程测试技术试卷1,有答案
  • <机械工程测试技术基础> 章节测试题 第一章 信号及其描述 (一)填空题 1. 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来 传输的.这些物理量就是 信号 ,其中目前应用最广泛的是电信号. 2. 信号的时域描述,以 时间 为独立变量:而信号的频域描述,以频 ...

  • 压电陶瓷材料及应用
  • 压电陶瓷材料及应用 一.概述 1.1电介质 电介质材料的研究与发展成为一个工业领域和学科领域,是在20世纪随着电气工业的发展而形成的.国际上电介质学科是在20世纪20年代至30年代形成的,具有标志性的事件是:电气及电子工程师学会(IEEE)在1920年开始召开国际绝缘介质会议,以后又建立了相应的分会 ...

  • 压电材料的应用
  • 压电材料的应用 专业:材料科学与工程 学号:1101900102 班级:1019001 姓名:金祖儿 摘要:本文阐述了各种新型压电材料的性能和各种特性的应用.从压电材料的压电效应入手, 介绍了压电材料的分类及结构组成.针对不同压电材料在生产实践中的应用情况,综述了近年来压电材料的研究现状, 并系统介 ...

  • 微压电式振动能量采集器的研究进展_孙健
  • M EM S 器件与技术 M EMS Device &Technolo gy 微压电式振动能量采集器的研究进展 孙 健1, 李以贵1, 刘景全1, 杨春生1, 何丹农2 (1. 上海交通大学微纳科学技术研究院, 薄膜与微细技术教育部重点实验室, 微米/纳米加工 技术国家级重点实验室 上海 2 ...

  • 超声波测试(检测)用压电换能器的选择与使用
  • 超声波检测(测试)常用换能器 作者:Sundance Http://www.pieic.com E-mail:[email protected] yahoo.com.cnxiaoxians@[email protected] 以压电效应实现电能与声能相互转换的器件称为压电换能器. 压电陶 ...

  • 铁电材料及其在存储器领域的应用
  • 目 录 摘 要„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„1 Abstract „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„1 1 前言„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„1 2 压电材料„„„„„„„„„„„„„„„„„„„„„„„„„„ ...