细胞生物学瞿中和第三版课后题答案总结

第一章名词(细胞基本知识)

4、细胞学说:细胞学说是施莱登和施旺所提出:一切植物、动物都是由细胞组成的,细胞是一切动植物体的基本单位。基本内容有:① 细胞是有机体, 一切动植物都是由单细胞发育而来,即生物是由细胞和细胞的产物所组成;②每个细胞作为一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命有所助益。③新细胞是由已存在的细胞繁殖产生;④所有细胞在结构和组成上基本相似。

11、细胞社会学:细胞社会学是从系统论的观点出发,研究细胞整体和细胞群体中细胞间的社会行为(包括细胞间识别、通讯、集合和相互作用等) ,以及整体和细胞群对细胞的生长、分化和死亡等活动的调节控制。细胞社会学主要是在体外研究细胞的社会行为,用人工的细胞组合研究不同发育时期的相同细胞或不同细胞的行为; 研究细胞之间的识别、粘连、通讯以及由此产生的相互作用、作用本质、以及对形态发生的影响等。

第二章名词(细胞生物学研究方法)

1、细胞全能性:细胞经分裂和分化后仍具有产生完整有机体的潜能和特性,目前只在植物中获得成功。

2、①细胞培养:把机体内的组织取出后经过分散变为单个细胞,在人工培养的条件下,使其生存、生长、繁殖、传代,观察其生长、繁殖、接触抑制、衰老等生命现象的过程称为细胞培养。

6、杂交瘤技术:把小鼠骨髓瘤细胞,和用绵羊红细胞免疫过的小鼠B 淋巴细胞,在仙台病毒的介导下发生融合。

7、单克隆抗体:由1个B 淋巴细胞和1个骨髓瘤细胞融合后产生的杂交瘤细胞,经有丝分裂形成的后代细胞群称克隆细胞系,其培养后产生的单一抗体被称为单克隆抗体。单克隆抗体混杂在一起就构成了多克隆抗体。

9、①原代培养细胞:培养直接来自动物机体的细胞群,在实际应用中一般将第1~10代的细胞称为原代培养细胞; ②传代细胞:细胞群已经过数代培养,转到另一培养条件下培养的细胞群;

③细胞株:从原代培养细胞群中筛选出的具有特定性质或标志的细胞群,一般可以顺利地传40~50代,它保持染色体二倍体的数量及接触抑制行为;

④细胞系:在体外培养条件下能无限制地传递下去的传代细胞叫细胞系,丧失接触抑制行为;

第三章名词(细胞质膜、跨膜运输、信号转导、细胞社会连接通讯)

1、细胞质膜(细胞膜):指围绕在细胞最外层,由脂质和蛋白质组成的生物膜。生物膜主要由膜脂和膜蛋白构成。

(1)膜脂:膜脂主要包括磷脂、糖脂、胆固醇。膜质分子有4种热运动的方式:沿膜平面的侧向运动;脂分子围绕轴心的自旋运动;脂分子尾部的摆动;双层脂分子之间的翻转运动。

(2)膜蛋白:脂膜上的蛋白质。分为:

①外在膜蛋白:水溶性蛋白,靠离子键或其他键与膜表面的膜蛋白分子或膜脂分子结合,因此只要改变溶液的离子强度甚至提高温度就可以从膜上分离下来,但膜结构并不被破坏;

②内在膜蛋白:或称整合膜蛋白,全部或部分与磷脂双层的疏水核相互作用、牢固连接的膜结合蛋白,多数为跨膜蛋白,也有些插入脂双层中。只有用去垢剂处理才能将其从膜上移去,功能多为载体、受体、酶等;

③脂锚定膜蛋白:是通过与之共价相连的脂分子(如脂肪酸或糖脂)插入膜的脂双分子中,从而锚定在细胞质膜上。

2、脂质体:是根据磷脂分子可在水相中自我装配成稳定的脂双层膜的球形结构的趋势而制备的人工球形脂质小囊。

9、红细胞血影:指红细胞丢失细胞质后剩余的质膜部分。将红细胞低渗处理后,质膜会破裂,释放出血红蛋白和其他胞内可溶性蛋白,这时红细胞的质膜与膜骨架蛋白组成的结构使红细胞仍然保持原来的形状和大小,称为红细胞血影。

10、膜转运蛋白:分为载体蛋白和通道蛋白。

(1)载体蛋白:细胞膜的脂质双分子区中分布着一类镶嵌蛋白,其肽链穿越脂双层,属于跨膜蛋白。载体蛋白运转物质进出细胞是依赖该蛋白与待转运物质结合后引发空间构象改变而实现的。载体蛋白既能主动转运又参与被动运输;

(2)通道蛋白:细胞膜上的脂质双分子层中存在着一类能形成孔道,供某些分子进出细胞的特殊蛋白质(跨膜蛋白)。通道蛋白只进行物质的被动转运。离子通道并非连续性开放而是门控的

11、跨膜运输有三种途径:被动运输、主动运输、胞吞作用和胞吐作用

(1)被动运输:是指通过简单扩散或协助扩散实现物质由高浓度向低浓度方向的跨膜转运。动力来自物质的浓度梯度,不需要细胞提供代谢能量;

①简单扩散:又称自由扩散,指脂溶性物质或分子质量小且不带电荷的物质在膜内外存在浓度差的条件下沿着浓度梯度通过细胞质膜的现象,不需要细胞提供能量,也不需要膜蛋白的协助;

②协助扩散:各种极性分子和无机离子等顺其浓度梯度或电化学梯度的跨膜转运,该过程不需要细胞提供能量,需特异性的膜转运蛋白协助。

(2)主动运输:是由载体蛋白所介导的物质逆浓度梯度或电化学梯度由低浓度的一侧向高浓度的一侧进行跨膜转运的方式,需要能量。可分为:①A TP 驱动泵(分为:P 型质子泵(钠钾泵、钙泵等) 、V 型质子泵、F 型质子泵 、ABC

超家族);②耦联转运蛋白③光驱动泵。

(3)胞吞:通过细胞质膜内陷形成囊泡,称胞吞泡,将外界物质裹进并输入细胞的过程。可分为胞饮和吞噬作用。

(4)胞吐:与胞吞相反,它是将细胞内的分泌泡或其他某些膜泡中的物质通过细胞质膜转运出细胞的过程。

13、膜泡运输:指真核细胞通过胞吞作用和胞吐作用完成大分子与颗粒性物质的跨膜运输,在转运过程中,物质包裹在脂双层膜围绕的囊泡中故称为膜泡运输,因涉及到膜的融合与断裂,耗能,因此属于主动运输。

12、协同运输(耦联主动运输):一类靠间接消耗A TP 所完成的主动运输方式。物质跨膜运动所需要的能量来自膜两

+十十侧离子电化学浓度梯度,而维持这种电化学梯度的是Na -K 泵(或H 泵)。可分为同向转运和反向转运(指物质跨

膜转运的方向与离子转移的方向相反)。

14、细胞连接:指在细胞质膜的特化区域,通过膜蛋白、细胞支架蛋白或者胞外基质形成的细胞与细胞间、细胞与胞外基质间的连接结构。可分为:封闭连接,锚定连接,通讯连接。

(1)封闭连接:紧密连接是封闭连接的主要形式。上皮细胞顶部周围,细胞之间形成的密封连接。质膜中的封闭蛋白和密封蛋白与相邻细胞中的互相焊接,形成条索网,将细胞间隙密封;

(2)锚定连接:通过细胞骨架系统将相邻细胞或细胞与胞外基质连接形成一个坚挺、有序的细胞群体。有两种形式: a. 与中间纤维相连的桥粒和半桥粒:

①桥粒:细胞内锚蛋白形成独特的盘状胞质致密斑,一侧与细胞内的中间丝相连,另一侧与跨膜的粘连蛋白相连,在两个细胞之间形成纽扣样结构,将相邻细胞铆接形成一个整体,同时还增强了细胞抵抗外界压力与张力的机械强度。 ②半桥粒:半桥粒与桥粒形态类似,但功能和化学组成不同。它通过细胞质膜上的整联蛋白将上皮细胞固着在基底膜上,在半桥粒中,中间纤维不是穿过而是终止于半桥粒的致密斑内。

b. 与肌动蛋白纤维相连的黏合带与黏合斑:

①黏合带:位于上皮细胞紧密连接的下方,依靠钙黏着蛋白与肌动蛋白相互作用,将两个相邻细胞间形成的连续的带状结构;

②黏合斑:通过整联蛋白锚定到细胞外基质上的一种动态的锚定型细胞连接,细胞与非细胞性基底物间形成的粘附结构。质膜中的整联蛋白分子的胞外结构域与细胞外基质组分相连,胞内结构域通过接合器蛋白与微丝相连,是细胞与胞外基质之间的连接方式。

(3)通讯连接:一种特殊的细胞连接方式。它除了有机械的细胞连接作用之外, 还可以在细胞间形成电偶联或代谢偶联, 以此来传递信息。主要包括以下三种方式:

①间隙连接:位于细胞之间的通讯连接,其功能是保证相邻细胞代谢的统一,其基本组成单位为连接子,由6个相同的蛋白质环绕而成,相邻两个细胞膜上的两个连接子对接形成一个间隙连接单位,其允许小于1000Da 的小分子通过;②胞间连丝:是高等植物细胞中独有的通讯连接组织结构,胞间连丝穿越细胞壁,由相互连接的相邻细胞的细胞膜共同组成直径为20-40nm 的管状结构,中央链管结构是由内质网延伸而成。通过胞间连丝可完成植物细胞间的通讯联络;③化学突触:存在于可兴奋细胞之间的细胞连接方式,通过释放神经递质来传导神经冲动。

15、细胞识别:是指细胞通过其表面的受体与胞外信号物质分子(配体)选择性地相互作用,从而导致胞内一系列生理生化变化,最终表现为细胞整体的生物学效应的过程。

8、细胞黏着:动物细胞通过细胞表面的黏附分子介导细胞之间或细胞与细胞外基质之间的粘附。在细胞识别的基础上,同类细胞发生聚集形成细胞团或组织的过程叫细胞黏着。通过细胞黏着,使具有相同表面特性的细胞聚集在一起形成器官。

7、①信号转导:细胞外信号分子与表面受体结合,通过一定的机制将外部信号转为内部信号,这一过程称为信号转导。 ②信号传导:指任何细胞经分泌、膜电位变化、细胞粘附或细胞运动等活动,将信号传递给其他细胞的过程。

20、细胞外基质:指分布于细胞外空间,由细胞分泌的蛋白和多糖所构成的网络结构。包括胶原、弹性蛋白、糖胺聚糖和蛋白聚糖、纤连蛋白和层粘连蛋白,基膜与细胞外被。

21、第二信使学说:胞外化学物质(第一信使)不能进入细胞,它作用于细胞表面受体,而导致产生胞内第二信使,从而激发一系列生化反应,最后产生一定的生理效应,第二信使的降解使其信号作用中止。

25、SH 结构域:是Src 同源结构域的缩写,这种结构域能够与受体酪氨酸激酶磷酸化残基紧密结合,形成多蛋白的复合物进行信号转导。

第四章名词(真核细胞内膜系统、蛋白质分选与膜泡运输)

1、细胞内膜系统:指在结构、功能乃至发生上相互关联由膜包被的细胞器或细胞结构,主要包括内质网、高尔基体、溶酶体、胞内体和分泌泡等。

3、细胞质膜系统:细胞质膜系统是指细胞内那些在生物发生上与质膜相关的细胞器,显然不包括线粒体、叶绿体和过氧化物媒体,因为这几种细胞器的膜是逐步长大的,而不直接利用质膜。

5、内吞膜泡(网格膜泡):通过内吞运输蛋白质的包被膜泡。

6、被膜小窝:是披网格蛋白小泡形成过程中的一个中间体。在胞吞过程中,吞入物先同膜表面特异受体结合,然后网格蛋白装配的亚基结合上去,使膜凹陷成小窝状。

7、内吞作用:细胞表面的蛋白质内聚,在包被膜泡中转移到细胞内部的过程。

8、受体介导内吞:大分子首先同质膜上的受体相结合,然后质膜内陷成衣被小窝,继之形成衣被小泡。

9、①胞吐作用:运输小泡通过与细胞质膜的融合将内容物释放到细胞外基质的过程成为胞吐作用;

②吞噬作用:只限于几种特殊的细胞类型,例如,变形虫和一些单细胞的真核生物通过吞噬作用从周围环境中摄取营养。在高等动物细胞中,具有一些特化的吞噬细胞,包括巨噬细胞和中性粒细胞。它们通过吞噬菌体摄取和消灭感染的细菌等。吞噬也是一种需要信号触发的过程,被吞噬的颗粒必须同吞噬细胞的表面结合。吞噬细胞表面有特化的受体,被激活的受体向细胞内传递吞噬信号。

10、转胞吞作用:转胞吞作用是一种特殊的内吞作用,受体和配体在内吞中并未作任何处理,只是经细胞内转运到相反的方向,然后通过胞吐作用,将内吞物释放到细胞外。

11、①自噬作用:自噬作用普遍存在于真核细胞中,是溶酶体对自身结构的吞噬降解,是细胞内的再循环系统。自噬作用主要是清除降解细胞内受损伤的细胞结构、衰老的细胞器,以及不再需要的生物大分子等。自噬作用在消化的同时,也为细胞内细胞器的构建提供原料,即细胞结构的再循环;

②自溶作用:是细胞的自我毁灭,即溶酶体将酶释放出来将自身细胞降解。手指或脚趾的形成同溶酶体有关。

13、跨膜运输:胞质溶胶中合成的蛋白质进入到内质网、线粒体、叶绿体和过氧化物酶体是通过一种跨膜机制进行定位的,需要膜上运输蛋白帮助。

14、小泡运输:蛋白质从内质网转运到高尔基体以及从高尔基体转运到溶酶体、分泌泡、细胞质膜、细胞外等则是由小泡介导的,成为运输小泡。

15、内质网(ER ):分为糙面内质网(RER )和光面内质网(SER )。

①糙面内质网:多呈扁囊状,排列较为整齐,其膜表面分布着大量的核糖体,它是内质网与核糖体共同形成的复合机能结构,其主要功能是蛋白质合成,蛋白质修饰加工,蛋白质的折叠组装和运输。(为核糖体提供支架;蛋白质在核糖体上合成以后,进入内质网腔,在内质网腔中进行蛋白质的糖基化,然后以芽生方式从糙面内质网膜上碰触,脱落形成小囊泡,小囊泡将这些蛋白质定向地转运到高尔基复合体进一步加工修饰);

②光面内质网:无核糖体附着的内质网,所占区域较小,往往作为出芽的位点,将内质网上合成的蛋白质或脂质转移到高尔基体内。通常为小的膜管和小的膜囊状,而非扁平膜囊状。光面内质网的功能是脂质和胆固醇的合成与运输,解毒,糖原代谢,储存和调节Ca2+浓度进行肌肉收缩。

16、分子伴侣:细胞中的蛋白质分子可以识别正在合成的多肽或部分折叠的多肽并与多肽的某些部位相结合,从而帮助这些多肽转运、折叠或组装,这类分子本身并不参与最终产物的形成。

17、微粒体:微粒体是细胞被匀浆破碎时,内膜系统的膜结构破裂后自己重新封闭起来的小囊泡。

18、①信号识别颗粒SRP 是一种核糖核酸蛋白复合体,其上有三个功能部位:翻译暂停结构域、信号肽识别结合位点、SRP 受体蛋白结合位点。是一种分子伴侣,可与信号肽结合,帮助多肽转运,又可防止新生肽畸变或成熟前折叠或组装;②停靠蛋白DP 是SRP 在内质网膜上的受体蛋白,它能够与结合由信号序列的SRP 牢牢地结合,使正在合成蛋白质的核糖体停靠到内质网上来。

21、M6P 受体蛋白:M6P 受体蛋白是反面高尔基网络上的膜整合蛋白,能够识别溶酶体水解酶上的M6P 信号并与之结合,从而将溶酶体的酶蛋白分选出来,然后通过出芽的方式将溶酶体的酶蛋白装入分泌小泡。

26、蛋白质的分选:绝大多数蛋白均在细胞质基质中的核糖体上开始合成,然后转运至细胞的特定部位,并装配成结构与功能的复合体,参与细胞生命活动,此过程称为蛋白质的分选。三条途径是门控运输,跨膜运输,膜泡运输。

第五章名词(线粒体与叶绿体)

5、①氧化磷酸化:是电子从NADH 或FADH2经呼吸链传递给氧形成水时,同时伴有ADP 磷酸化形成A TP ;

②光合磷酸化:是由光照所引起的电子传递与磷酸化作用相耦联而生成A TP 的最初过程,电子供体是H2O ,最终电子受体是NADP+。

第六章名词(细胞核与染色体)

1、核纤层:是细胞核内核膜下的纤维蛋白网络,由1-3种核纤层蛋白组成,外与内核膜结合,内和染色质相连。核纤层与IF (中间丝)、核骨架相互联结,形成贯穿于细胞核与细胞质的骨架结构体系。

2、核孔复合体:间期细胞核的核被膜上沟通细胞核与细胞质的通道结构,由多种核孔蛋白组成,是控制核质交流的重要的双向选择性亲水通道。

10、①着丝粒:在有丝分裂染色体上两条姐妹染色单体相连区域的一种高度有序的整合结构,由串联重复的卫星DNA

序列组成,是动粒的形成部分;

②动粒(着丝点):是在主溢痕处2条染色单体的外侧表层部位的特殊结构,由多种蛋白质在有丝分裂染色体着丝粒部位形成的一种盘状结构,微管与之连接,参与了染色体向两极的运动。

11、①端粒:端粒是染色体两个端部特化结构。通常由富含鸟嘌呤核苷酸(G )的短的串联重复序列DNA 组成。端粒的作用在于维持染色体完整性和个体性,且参与染色体在核内的空间排布及减数分裂时同源染色体配对;

②端粒酶:具有反转录酶性质的核糖核蛋白复合物,以内在的RNA 为模板,将合成的端粒重复序列加到染色体的3’端避免了因新合成的DNA 链的5’端RNA 引物切除引起的染色体末端缩短的问题。

第八章名词(细胞骨架)

1、细胞骨架:是指真核细胞中的蛋白纤维网架体系。广义的细胞骨架包括细胞核骨架,细胞质骨架,细胞膜骨架和细胞外基质。狭义的细胞骨架是指细胞质骨架,包括微丝(MF )、微管(MT )和中间纤维(中间丝,IF )。细胞骨架在细胞质内形成的网络结构支撑维持细胞的形状,并在细胞运动、物质运输和细胞分裂等方面发挥一定的作用。

4、踏车行为:微管或微丝的负极发生解聚而缩短,正极发生聚合而延长的现象叫做踏车行为。

5、分子马达:指细胞内能利用A TP 提供能量产生推动力,进行细胞内物质运输或细胞运动的蛋白质分子。已经发现的分子马达分为:驱动蛋白、胞质动力蛋白和肌球蛋白。

第九章名词(细胞增殖及其调控)

1、细胞周期:从上一次细胞分裂结束开始,经过物质积累过程,直到下一次细胞分裂结束为止,成为一个细胞周期。分为分裂期(M )和间期。间期又可分为G1、S 、G2三个时期。

3、细线期:染色体呈细线状,凝集于核的一侧;偶线期:同源染色体开始配对,联会复合体开始形成,并且合成剩余0.3%的DNA ;粗线期:染色体联会完成,进一步缩短为粗线状结构;双线期:配对的同源染色体相互排斥,开始分离,交叉端化,部分位点还在相连。

6、联会:在减数分裂中同源染色体相互配对的现象。一般发生在减数分裂I 前期的偶线期。

7、同源染色体:在减数分裂过程中,两两配对的染色体,其中一条来自附体,一条来自母体。它们的形大小一般相同,带有相应的遗传信息,两者相配成对的染色体叫同源染色体。

9、MPF :即CDK1激酶。是一种使多种底物蛋白磷酸化的蛋白激酶,能促使细胞由G2期进入M 期。由两个亚基组成,一种是细胞周期蛋白,另一个是周期蛋白依赖性的蛋白激酶,其中周期蛋白为调节亚基。

第十章名词(细胞分化与基因表达调控)

1、①管家基因:是指所有细胞中均表达的一类基因,其产物是维持细胞基本生命活动所必需的;

②奢侈基因:又称组织特异性基因,指不同类型细胞中特异性表达的基因,其产物赋予各种类型细胞特异的形态结构特征与功能。

2、①细胞分化:是指在个体发育中由一种相同的细胞类群经细胞分裂后逐渐在形态、结构和功能上形成稳定性差异,产生各不相同的细胞类群的过程;

②转分化:一种类型分化的细胞转变成另一种类型的分化细胞的现象;

③再分化:在分化诱导剂存在时,恶性肿瘤细胞被诱导而重新向正常细胞的方向演变分化,最终完全转变成正常细胞,这种现象称为再分化;

④去分化:已经分化的细胞失去特有的结构与功能,恢复分化前的状态的过程。

3、干细胞:分化程度相对较低、具有不断增殖和分化能力的细胞叫做干细胞。

第十一章名词(细胞衰老与凋亡)

1①细胞凋亡:是一个主动的由基因决定的自动结束生命的过程,也称为细胞程序性死亡;

②细胞衰老:一般是指复制衰老,即体外培养的正常细胞经过有限次数的分裂后,停止分裂,细胞形态和生理代谢活动发生显著改变的现象。

细胞坏死:是由剧烈的作用引起的细胞死亡,细胞质膜发生渗漏,细胞内容物释放到胞外,导致炎症反应。

第一章大题(细胞基本知识)

2、细胞生物学的概念和研究内容

答:概念:细胞生物学是以细胞为研究对象, 从细胞的整体水平、亚显微水平、分子水平等三个层次,以动态的观点, 研究细胞和细胞器的结构和功能、细胞的生活史和各种生命活动规律的学科。细胞生物学是现代生命科学的前沿分支学科之一,主要是从细胞的不同结构层次来研究细胞的生命活动的基本规律。从生命结构层次看,细胞生物学位于分子生物学与发育生物学之间,同它们相互衔接,互相渗透。

研究内容:细胞生物学的主要研究内容主要包括两个大方面:细胞结构与功能、细胞重要生命活动。涵盖九个方面的内容:⑴细胞核、染色体以及基因表达的研究;⑵生物膜与细胞器的研究;⑶细胞骨架体系的研究;⑷细胞增殖

及其调控;⑸细胞分化及其调控;⑹细胞的衰老与凋亡;⑺细胞的起源与进化;⑻细胞工程;⑼细胞信号转导。

第二章大题(细胞生物学研究方法)

2、细胞组分的分离与分析有哪些基本的实验技术?哪些技术可用于生物大分子在在细胞内的定性与定位研究?

答:(1)①分离:差速离心、密度梯度离心、速度沉降、等密度沉降、流式细胞仪。②定性分析:组织化学、细胞化学、免疫荧光、免疫电镜、原位杂交等。③定量分析:分光光度计、流式细胞仪。④同位素标记结合放射自显影技术可研究生物大分子在细胞内的动态变化。

(2)蛋白质分子:免疫荧光纤维技术,免疫电镜技术,蛋白质印迹技术;

核酸分子:原位杂交,印迹杂交(southern 和northern )

第三章大题(细胞质膜、跨膜运输、信号转导、细胞社会连接通讯)

6、比较胞饮作用与吞噬作用的异同:

答:(1)不同点:①细胞类型不同:胞饮作用见于几乎所有真核细胞;吞噬作用对于原生动物是一种获取营养的方式,仅见于特殊的细胞(如巨噬细胞)②摄入物:胞饮作用摄入溶液,吞噬作用摄入大的颗粒性物质。③胞吞泡的大小不同,胞饮泡直径一般小于150 nm,而吞噬泡直径往往大于250 nm。④摄入的过程:胞饮作用是一个连续发生的组成型过程,无需信号刺激;吞噬作用是一个信号触发过程。⑤胞吞泡形成机制:胞饮作用需要网格蛋白形成包被、接合素蛋白连接;吞噬作用需要微丝及其结合蛋白的参与, 如果用降解微丝的药物(细胞松弛素B )处理细胞,则可阻断吞噬泡的形成,但胞饮作用仍可继续进行。

(2)相同点:均是细胞完成大分子物质与颗粒性物质运输的方式;均要通过膜的内部并形成胞吞泡;胞吞泡的形成均有蛋白质的参与。

5. 何谓信号转导中的分子开关蛋白?举例说明其作用机制。

答:在细胞内一系列信号传递的级联反应中,必须有正、负两种相辅相成的反馈机制进行精确调控。对每一个反应既要求有激活装置还要求有失活机制,负责这种正、负调控的蛋白成为分子开关。一类是通过蛋白激酶使之磷酸化而激活,通过蛋白磷酸酯酶使之去磷酸化而失活。另一类是GTPase 开关蛋白,结合GTP 活化,结合GDP 失活。

Ras 蛋白就是一个典型的分子开关蛋白,通过其他蛋白质的作用使得GTP 与其结合而处于激活状态。一种GTP 酶激活蛋白可促进将结合的GTP 水解为GDP ,Ras 的工作就类似于电路开关。如果Ras 分子开关失去控制一直处于激活状态,下游MAPK 一直活跃,使得细胞有丝分裂失去控制,从而导致癌变。

6. 简要比较G 蛋白耦联受体介导的信号通路。

答: G 蛋白耦联受体是细胞表面由单条多肽经7次跨膜形成的受体,该信号通路是指配体-受体复合物与靶细胞的作用要通过与G 蛋白的耦联,在细胞内产生第二信使,从而将胞外信号跨膜传递到胞内,影响细胞的行为。根据产生第二信使的不同,它可分为cAMP 信号通路和磷脂酰肌醇信号通路:

(1)cAMP 信号通路的主要效应是激活靶细胞和开启基因表达,这时通过蛋白激酶A 完成的。该信号途径涉及的反应链可表示为激素→G 蛋白耦联受体→G 蛋白→腺苷酸环化酶→cAMP →cAMP 依赖的蛋白激酶A →基因调控蛋白→基因转录。

(2)磷脂酰肌醇信号通路的最大特点是胞外信号被膜受体接收后,同时产生两个胞外信使,分别启动两个信号传递途径即IP3/Ca2+和DAG/PKC途径,实现细胞对外界信号的应答,因此,这一信号系统又称为“双信使系统”。可表示为:

细胞外信号分子→G-蛋白耦联型受体→G 蛋白→磷脂酶C →磷脂酰肌醇(PIP2) :

→IP3→胞内钙离子浓度升高→钙离子与钙调蛋白结合→钙调蛋白激酶

→DAG+Ca2+ →激活PKC →靶蛋白磷酸化或促Na+/H+交换使胞内pH 值升高

(3)相同:膜受体与效应酶之间的作用都是通过G 蛋白耦联的。

不同:化学信号分子、膜受体结构、G 蛋白组分、效应酶均不相同。前者效应酶为腺苷酸环化酶AC, 后者效应酶为磷脂酶C ;第二信使不同,前者为cAMP ,后者为IP3和DAG 。

3,细胞粘着分子有哪些,分别有什么功能?

答:动物细胞表面介导细胞同细胞或细胞外基质黏附的蛋白质分子。均为整合膜蛋白,包括:整联蛋白、钙黏着蛋白、选择素、免疫球蛋白超家族。黏着分子多数需要依赖Ca 或Mg 才起作用,这些分子介导的细胞识别与黏着还能在细胞骨架的参与下,形成细胞连接,如桥粒等。

①钙黏蛋白:是一种同亲型结合的黏着因子、Ca2+依赖的细胞黏着糖蛋白,对胚胎发育中的细胞识别、迁移和组织分化以及成体组织器官构成具有重要作用;

②整联蛋白:异亲型细胞结合,Ca2+或Mg2+依赖性的细胞黏着分子,由α和β两个亚基形成的异二聚体糖蛋白,可介导细胞与细胞及细胞与细胞外基质的粘附链接;

③选择素:一类异亲型结合、Ca2+依赖的细胞黏着分子,能与特异糖基识别并结合。选择素是跨膜蛋白,其胞外部分

具有凝集素样结构域。凝集素:是动物细胞和植物细胞都能够合成和分泌的、能与糖结合的蛋白质,在细胞识别和黏着反应中其重要作用,主要是促进细胞间的黏着;

④免疫球蛋白超家族:同亲性或异亲性、不依赖Ca 2+,含有免疫球蛋白类似(Ig )结构域。参与免疫功能;介导细胞间的黏着作用。

4. 细胞连接有哪几种类型,各有何功能?

答:①封闭连接:紧密连接是封闭连接的主要形式。紧密连接可阻止可溶性物质从上皮细胞层一端扩散到另一端,因此起到重要封闭作用;同时还将上皮细胞的游离端与基底面细胞膜上的膜蛋白相互隔离,以行使其各自不同的膜功能,因此紧密连接还具有隔离和一定的支持功能。

②锚定连接:通过细胞骨架系统将相邻细胞或细胞与胞外基质,连接形成一个坚挺、有序的细胞群体。根据参与的细胞骨架成分的不同分为与中间丝相连的锚定连接(如桥粒和半桥粒)、与肌动蛋白微丝相连的锚定连接(如粘合带和黏合斑)。主要功能为分散细胞间或者细胞与胞外基质间的作用力。

③通讯连接:是多细胞有机体中相邻细胞之间连接的一大类型组织结构,包括间隙连接、植物细胞中的胞间连丝以及化学突触三种形式。主要功能除具有细胞间连接作用外,还具有细胞间小分子物质交换和信号传递作用。

1、比较载体蛋白与通道蛋白的特点。

答:载体蛋白相当于结合在细胞质膜上的酶,有特异性结合位点,可同特异性底物结合,一种特异性载体只转运一种类型的分子或离子;转运过程具有类似于酶与底物作用的饱和动力学特征;既可被底物类似物竞争性地抑制,又可被某种抑制剂非竞争性抑制以及对pH 有依赖性等,因此有人将载体蛋白称为通透酶。与酶不同的是,载体蛋白对转运的溶质分子不进行任何共价修饰。

通道蛋白所介导的被动运输不需与溶质分子结合,允许大小和带电荷适宜的离子通过。绝大多数的通道蛋白形成有离子选择性的、门控的跨膜通道。因为这些通道蛋白几乎都与离子的转运有关,所以又称为离子通道。与载体蛋白相比,有三个显著特征:具有极高的转运速率,离子通道没有饱和值,离子通道是门控的。

2、比较P-型离子泵、V-型质子泵、F-型质子泵和ABC 超家族。

答:①P-型离子泵是载体蛋白利用ATP 使自身磷酸化,发生构象的改变来转移质子或其他离子,如植物细胞膜上的H+泵、动物细胞的钠钾泵、钙泵、H+-K+ATP酶。

②V-型质子泵位于溶酶体膜、动物细胞胞内体、高尔基体的囊泡膜、植物液泡膜上,由许多亚基构成,利用ATP 水解产生能量,但不发生自磷酸化。

③ F-型质子泵是由许多亚基构成的管状结构,H+沿浓度梯度运动,所释放的能量与ATP 合成耦联起来,所以又叫ATP 合成酶。F 是氧化磷酸化或光合磷酸化耦联因子的缩写。F-型质子泵位于细胞质膜、线粒体内膜和叶绿体的类囊体膜上,不仅可以利用质子动力势将ADP 转化成A TP ,也可以利用水解ATP 释放的能量转移质子。

④ ABC 超家族含有几百种不同的转运蛋白,广泛分布于从细菌到人类的各种生物体中。每种ABC 超家族对于单一底物或相关底物的基团具有特异性。ABC 超家族共有的核心结构域:2个跨膜结构域,形成运输分子的跨膜通道并决定每个ABC 蛋白底物的特异性;2个胞质侧A TP 结合域,成员之间享有30%-40%的同源序列。

1、生物膜的基本结构特征是什么?这些特征与它的生理功能有什么联系?

答:⑴结构特征:

①由膜脂与膜蛋白构成。具有极性头部和非极性头部尾部的磷脂分子在水中具有自发形成封闭的膜系统的性质。磷脂分子以疏水性非极性尾部相对、极性头部朝向水相的磷脂双分子层,它是组成生物膜的基本结构成分。

②蛋白分子以不同的方式镶嵌在脂双层分子中或结合在其表面。

③可看成是蛋白质在双层分子中的二维溶液。

(2)功能:①为细胞的生命活动提供相对稳定的内环境;②选择性的物质运输,包括代谢底物的输人与代谢产物的排除,其中伴随着能量的传递;③提供细胞识别位点,并完成细胞内外信息跨膜传递;④为多种酶提供结合位点,使酶促反应高效而有序地进行;⑤介导细胞与细胞、细胞与基质之间的连接;⑥质膜参与形成具有不同功能的细胞表面特化结构。

(3)关系:各种不同的膜蛋白与膜脂分子的协同作用不仅为细胞生命活动提供了稳定的内环境,而且还行使着物质转运、信号传递、细胞识别等多种复杂的功能。流动性和不对称性是生物膜的基本特征,也是完成其生理功能的重要保证。

2、生物膜的基本特征

答:(1)流动性

①膜脂流动性:指脂分子的侧向运动。影响因素如下:脂肪酸链长度长,流动性低;脂肪酸链的饱和度高,流动性大;温度;胆固醇。

②膜蛋白的流动性:在脂双层二维溶液中的自发的热运动,不需要代谢产物参加,也不需要提供能量。

(2)不对称性

①膜脂的不对称性:指同一种膜脂分子在膜的脂双层中呈不均匀分布。糖脂只分布于细胞膜的外表面。

②膜蛋白的不对称性:每种膜蛋白分在在细胞膜上都具有特定的方向性和区域性。糖蛋白只分布于细胞膜的外表面。膜蛋白的不对称性是生物膜执行复杂的、时空调控有序的各种生理活动的保证。

6. 比较组成型胞吐途径和调节性胞吐途径的特点及其生物学意义。

答; 胞吐作用是将细胞内的分泌泡或其他膜泡中的物质通过细胞质膜运出细胞的过程。根据其过程是否连续将其分为组成型胞吐途径和调节型胞吐途径。

①组成型胞吐途径是指细胞从高尔基体反面管网状区分泌的囊泡向质膜流动并与之融合的稳定过程。新合成的囊泡膜的蛋白和膜类脂不断供应质膜更新,确保细胞分裂前质膜的生化功能,囊泡内可溶性蛋白分泌到细胞外,有的成为质膜外周蛋白,有的形成胞外基质组分,有的作为营养成分或信号分子扩散到胞外液。

②调节型胞吐途径是指分泌细胞产生的分泌物(如激素、糖液、消化酶)储存在分泌泡内,当细胞受到胞外信号刺激时,分泌泡与质膜融合并将其内含物释放出去的过程。调节型胞吐途径存在于特殊机能的细胞中,如已知脑垂体细胞分泌肾上腺皮质激素,胰岛的β细胞分泌胰岛素,胰腺的腺泡细胞分泌胰蛋白酶原,这三种分泌产物均分布在各自细胞的可调节性分泌泡中,只有在相应信号刺激下向细胞外分泌,保证特殊生理功能的可调节性。

8、概述受体酪氨酸激酶介导的信号通路的组成,特点及其主要功能

答:受体酪氨酸激酶(RTK ):一类重要的使酪氨酸磷酸化的细胞表面受体成员,包括6个亚族。其胞内域具有酪氨酸特异性的蛋白激酶活性。当它与特异配体结合后,可以导致该激酶酪氨酸残基磷酸化,这种磷酸化可启动细胞内信号通路。通路可概括为如下模式:配体→RTK →接头蛋白←GEF →Ras →Raf (MAPKKK )→MAPKK →MAPK →进入细胞核→其他激酶或基因调控蛋白(转录因子)的磷酸化修饰,对基因表达产生多种效应。

功能:RTK-Ras 信号通路是这类受体所介导的重要信号通路,具有广泛的功能,包括调节细胞的增值与分化,促进细胞的存货,以及细胞代谢过程中的调节与校正。

7. 试述细胞信号传导中细胞表面受体的主要种类和基本特点。

答:(1)离子通道耦联受体是由多亚基组成的,受体-离子通道复合体,本身既有信号结合位点,又是离子通道,其跨膜信号转导中无需中间步骤。

(2)G 蛋白耦联的受体是细胞表面由单条多肽经七次跨膜形成的受体,该信号通路是指配体-受体复合物与靶蛋白的作用必须通过G 蛋白耦联,在细胞内产生第二信使,从而将胞外信号跨膜传递到胞内,影响细胞的行为。

(3)与酶连接的受体,是跨膜蛋白,胞外部分有同配体结合的结构域,胞内结构域可以作为酶或同其他的一些蛋白质组成复合物后行使酶的作用。其传导反应比较慢,并且需要许多细胞内转换步骤。

(4)细胞表面整联蛋白介导的信号转导,跨膜蛋白受体为异二聚体,它是细胞外环境信号调控细胞内活性的渠道,又是介导细胞附着在胞外基质上的跨膜蛋白。

6. 半桥粒和黏着斑有哪些不同?

答:半桥粒与黏着斑这两种细胞黏着结构在不同基膜上形成。半桥粒是在成熟的上皮细胞与基膜的黏着结构,而黏着斑是在结缔组织及爬行的细胞与基膜的黏着结构,组成它们结构的细胞骨架蛋白是不同的,半桥粒与细胞内的中间纤维角蛋白相关联,而黏着斑与细胞内肌动蛋白纤维相关联。

5. 黏着斑与黏着带的根本区别:

答:黏着斑是细胞与细胞外基质进行连接,而黏着带是细胞与细胞间的黏着连接。参与黏着带连接的膜整合蛋白是钙黏着蛋白,而参与黏着斑连接的是整联蛋白;黏着带连接实际上是两个相邻细胞膜上的钙黏着蛋白之间的连接,而黏着斑连接是整联蛋白与细胞外基质中的纤连蛋白的连接,因整联蛋白是纤连蛋白的受体,所以黏着斑连接是受体与配体的结合所介导的。在黏着斑连接中,整联蛋白的胞质部分同样通过细胞质斑的介导与细胞骨架的肌动蛋白纤维相连。不过细胞质斑中的蛋白质成分与黏着带连接有所不同,它含有踝蛋白,这种蛋白质在其他的细胞斑中是不存在的。

3、胞外基质的组成、分子结构及生物学功能是什么?

答:(1)胶原

结构:基本结构单元为原胶原,原胶原分子间共价交联,呈1/4交替平行排列,形成胶原纤维。

功能:含量高,刚性和抗张力强度最大,构成细胞外基质的骨架结构,并与其他组分结合形成结构与功能的复合体;参与形成结缔组织;参与细胞外基质信号传递。

(2)弹性蛋白:

结构:是高度疏水的非糖基化蛋白,富含甘氨酸和脯氨酸;构象呈无规则卷曲状态,通过Lys 残基相互交联呈网状结构。

功能:与胶原纤维共同存在,弹性纤维赋予组织弹性,而胶原纤维赋予组织抗张性;在老年个体中表现最为明显。

(3)糖胺聚糖:

结构:由重复二糖单位构成的长链多糖,二糖单位为氨基几糖和糖醛酸。

功能:吸引大量的阳离子,吸水产生膨压,赋予胞外基质抗压的能力;在细胞外形成多孔的水和胶状体,提供机械支持作用。

(4)蛋白聚糖:

结构:由糖胺聚糖和核心蛋白共价连接形成的巨分子,是糖和蛋白质的复合物,含糖量达90%-95%。

功能:形成多孔、吸水的胶状物,保护细胞,抗挤压;可与成纤维细胞成长因子、转化生长因子结合,有利于激素分子与细胞表面受体结合,完成信号转导;部分蛋白聚糖参与基膜的构成。

(5)纤连蛋白

结构:高分子量糖蛋白,由2个亚基组成,在C端形成2个二硫键

功能:介导细胞的黏着;参与维持细胞形态,涉及细胞的癌变与迁移,参与胚胎发育\创伤修复,促进细胞的迁移。 (6)层粘连蛋白

结构:是一种高分子糖蛋白,由3条肽链借二硫键交联成的十字形分子。

功能:是各种动物胚胎和成体组织基膜的主要构成组分,在细胞表面形成网络结构并将细胞固定在基膜上,在胚胎发育组织分化中具有重要作用。

第四章大题(真核细胞内膜系统、蛋白质分选与膜泡运输)

2. 结合高尔基体的结构特征,谈谈它是怎样行使其生理功能的。

答:高尔基体是一种极性细胞器,由很多膜囊构成,它们在细胞中有相对固定的位置,靠近细胞核的一面为高尔基体顺面膜囊及顺面管网状结构,面向细胞膜的一面为高尔基体反面膜囊及反面管网状结构,二者之间为高尔基体中间膜囊。

高尔基体的主要功能是将内质网合成的多种蛋白质进行加工、分类与包装,然后分门别类地运送到细胞特定的部位或分泌到细胞外。内质网上合成的一部分脂质也要通过高尔基体向细胞膜和溶酶体膜等部位运输,因此可以说,高尔基体是细胞内大分子运输的一个主要交通枢纽。高尔基体还是细胞内糖类合成的工厂。

高尔基体不同膜囊的膜上和腔中分别具有不同的酶和其他转运蛋白组分,帮助它们分别完成其不同的功能。如在高尔基体的顺面膜囊的膜上具有KDEL 受体,可将逃逸出来的内质网驻留蛋白捕获并送回内质网,实现蛋白的初步分拣。其中含有的N-乙酰葡萄糖胺磷酸转移酶和N-乙酰葡萄糖胺磷酸糖苷酶可将溶酶体酶上的甘露糖进行磷酸化,形成M6P ,其可被TGN 区的特异性地识别并结合,实现溶酶体酶的分选。中间膜囊含有多种糖基转移酶,可对蛋白进行复杂的糖基化修饰。反面膜囊上含有不同的蛋白酶和受体蛋白,在对蛋白进行分类包装和水解等加工过程后,将成熟蛋白转运到细胞的不同部位。

4. 试述溶酶体的形成过程及其基本功能。

答:(1)溶酶体酶具有信号区/信号斑,CGN 区中的磷酸转移酶识别溶酶体蛋白的信号斑,并对其上的甘露糖进行磷酸化,形成M6P ,TGN 区的M6P 受体特异性地识别并结合M6P ,引起溶酶体酶聚积,然后出芽形成有被小泡,有被小泡脱去包被形成无被运输小泡,无被小泡与前溶酶体逐渐融合,在前溶酶体中的酸性环境下,M6P 受体与M6P 分离,溶酶体酶释放到腔中,形成成熟酶,此时初级溶酶体形成了。

(2)功能:①消化作用,溶酶体可以消化分解多种外源性和内源性物质,据物质的来源不同,分为异噬作用、自噬作用、粒溶作用②自溶作用与器官发育,如蝌蚪尾巴的消失③参与受精作用④参与激素的生成,甲状腺素是溶酶体的参与下形成的⑤在骨质更新中的作用,破骨细胞的溶酶体酶能释放到细胞外,分解和消除旧的骨基质,这时骨质更新的重要步骤。

4、已知的膜泡运输有哪几种类型:各自的功能是什么?

答:膜泡运输包括COP II有被小泡运输、COP I有被小泡运输、网格蛋白有被小泡运输。网格蛋白有被小泡负责蛋白质由高尔基体TGN 到质膜、胞内体或溶酶体和植物液泡的运输,在受体介导的细胞内吞途径中负责将物质从质膜运到细胞质,以及从胞内体到溶酶体的运输。COP I有被小泡 负责回收、转运内质网逃逸蛋白质返回内质网。COP II有被小泡介导从内质网到高尔基体的物质运输,

1、细胞内蛋白质合成部位及其去向如何?

答:细胞中由核基因编码的所有蛋白质的合成皆起始于细胞质基质之中的核糖体上。其中某些蛋白在细胞质基质中完成多肽链合成,然后被转运到细胞质基质的特定部位或细胞核、过氧化物酶体、内质网和线粒体/叶绿体等由膜包围的细胞器中。

另一些蛋白,如分泌蛋白、膜整合蛋白和某些细胞器(内质网、溶酶体、液泡、线粒体/叶绿体和高尔基体)的驻留蛋白,它们在起始合成不久后被转移到糙面内质网膜上,继续完成蛋白质合成。这些蛋白被分泌到细胞外、整合到膜结构或运输到上述细胞器的腔中。线粒体/叶绿体基因编码且利用它们自身核糖体合成的蛋白则在这两种细胞器的腔内完成,然后到达膜上或保留在基质液中。

3. 蛋白质糖基化的基本类型、特征及生物学意义是什么?

答:(1)糖基化由两种形式,即N-连接糖基化和O-连接糖基化。

①N-连接糖基化中寡糖连接到蛋白质天冬酰胺的酰胺氮原子上,这发生在糙面内质网和高尔基体中,成熟的N-连接的寡糖链都含有2个N-乙酰葡萄糖胺和3个甘露糖残基;②O-连接糖基化中寡糖与蛋白质丝氨酸、苏氨酸或在胶原纤维中羟赖氨酸或羟脯氨酸的羟基上,这在高尔基体中进行,由不同的糖基转移酶催化,每次加上1个单糖。最后一步是在高尔基体反面膜囊和TGN 中加上唾液酸残基。

(2)意义:给蛋白加上标志,利于高尔基体的分类与包装,保证糖蛋白从RER 至高尔基体膜囊单方向转移;影响多肽构象,促使其正确折叠,侧链上的多羟基糖还可以影响蛋白的水溶性及所带电荷的性质;增强蛋白稳定性,低于水解酶降解;在细胞表面形成糖萼,起细胞识别和保护质膜作用。

6. 为什么说高尔基体是一种极性细胞器?

答:极性包含两层含义:结构上的极性和功能上的极性。

结构上的极性:高尔基体可分为几个不同的功能区室。(1)靠近内质网的一面是由一些管状囊泡形成的网络结构,称为顺面,又称顺面高尔基网络(CGN )(2)高尔基体中间膜囊由扁平囊和管道组成,形成不同的区室,但功能上是连续的、完整的膜体系。多数糖基修饰、糖脂的形成,以及与高尔基体有关的多糖的合成都发生在中间膜囊中(3)反面高尔基网络(TGN ),是高尔基复合体最外面一侧的管状和小泡状物质组成的网络解耦,是高尔基复合体的组成部分,并且是最后的区室。它的主要功能是参与蛋白质的分类与包装,并输出高尔基体。

功能上的极性:高尔基体虽然是由膜囊构成的复合体,但是不同的膜囊有不同的功能,上一道工序完成了,才能进行下一道,即为高尔基体的功能极性。

7. 溶酶体酶如何经M6P 分选途径进行分选?

答:溶酶体形成的M6P 分选途径的主要过程是:具有M6P 标记的溶酶体酶在反面高尔基体网络与受体结合后,在网格蛋白帮助下形成具有网格蛋白外被的溶酶体酶分泌小泡,网格蛋白解聚后的溶酶体酶分泌小泡与内体融合,与M6P 受体结合的溶酶体酶与受体脱离,释放到内体中;接着,由次级内体中的磷酸酶使溶酶体酶脱磷酸,防止溶酶体酶与M6P 受体重新结合。融合后的次级内体可以通过出芽形成两种类型的小跑,一种含有溶酶体酶蛋白但不含M6P 受体,即是成熟的溶酶体;另一种小泡只含有M6P 受体,不含有酶,它们主要是同反面高尔基体膜融合。

第五章大题(线粒体与叶绿体)

4. 比较氧化磷酸化和光合磷酸化的异同。

答:(1)相同:需要通过电子传递链中的质子载体建立跨膜的H+浓度梯度;需要完整膜结构维持跨膜的H_浓度梯度;ATP 的生成都是由质子动力势驱动的H+流过ATP 合酶而推动的;ATP 合酶复合体的结构十分相似,都具有F1头部和F0基部,且F1催化ATP 形成。

(2)不同:光合磷酸化 氧化磷酸化

发生部位 叶绿体中的类囊体膜;线粒体的内膜

电子传递链组成 PS I、PS II、PQ 、 Cyt b6f复合物;复合物I 、II 、III 、IV 、CoQ

最初电子来源:水光解;NADH 或FADH2

最终电子受体:NADP+;O2

ATP 生成时H+流向:类囊体腔流向基质;膜间隙流向基质

驱动力:主要靠H+浓度差驱动;电位差和浓度差

终产物:NADPH 、ATP 和O2;ATP 和水

生成1个ATP 需H+数:2;3

第六章大题(细胞核与染色体)

2、试述核孔复合体的结构及其功能。

答:(1)结构:核孔复合体由胞质环、核质环、辐和中央栓四部分组成。

(2)功能:是核质交换的双功能、双向性亲水通道,主要进行核质间的物质交换和信息交流。双向性表现在既介导蛋白质的入核转运,又介导RNA 、核糖核蛋白颗粒的出核转运。双功能表现在它有两种运输方式:被动扩散与主动运输。在物质交换的过程中,通过信息物质的出核和入核转运并同细胞核内或细胞质内相关受体结合,实现核质间的信息交流。

1、分析中期染色体DNA 的3种功能元件及其作用

答:自主复制DNA 序列:确保染色体在细胞周期中能够自我复制;着丝粒DNA 序列:保证染色体平均分配到子细胞中;端粒DNA 序列:DNA 末端的高度重复序列,保持染色体的独立性和稳定性。包装功能基因在复制过程中不被切除,从而能够正常向下代传递。

1. 概述核仁的结构及其功能。

答:核仁是真核细胞间期核中最明显的结构。它通常是单一的或者多个匀质的球形小体。没有被膜包裹,包括:纤维中心、致密纤维阻止和颗粒组分。核仁的主要功能涉及核糖体的生物发生,包括r RNA合成、加工和核糖体亚单位的装配。

2. 组蛋白与非组蛋白如何参与表观遗传的调控?

答:表观遗传是指由非DNA 序列变化引起的彪形变化,主要是由DNA 化学修饰导致的。

组蛋白主要参与核小体形成,形成染色质的高级结构,位于核小体上的DNA 的转录活性受组蛋白和DNA 间结合状态的影响。组蛋白通过甲基化、乙酰化和磷酸化而导致和DNA 的结合改变,当二者之间的结合变紧密时,基因转录活性下降或不能转录,当变疏松时,基因转录活性增强或激活,从而影响表观遗传。

非组蛋白可以和DNA 上的特异位点结合,引起DNA 构象变化,导致DNA 和其他非组蛋白以及组蛋白的结合发生变化。最终促使DNA 解螺旋,DNA 和组蛋白分离使染色质结构疏松,或引起基因的失活或激活,从而影响表观遗传。

第八章大题(细胞骨架)

1、试述三种胞质细胞骨架的主要成分、形态结构,功能及特异性药物。

答:细胞骨架:是指真核细胞中的蛋白纤维网架体系。广义的细胞骨架包括细胞核骨架,细胞质骨架,细胞膜骨架和细胞外基质。狭义的细胞骨架是指细胞质骨架,包括微丝(MF )、微管(MT )和中间纤维(中间丝,IF )。细胞骨架在细胞质内形成的网络结构支撑维持细胞的形状,并在细胞运动、物质运输和细胞分裂等方面发挥一定的作用。

(1)微管的结构:中空圆柱状,直径15nm ,一般长几微米,微管蛋白是与肌动蛋白相似的一种酸性蛋白质,常以二聚体存在(α、β-微管蛋白)

微管功能:支架:维持细胞形态,固定细胞器;细胞收缩,伪足运动,如纤毛,鞭毛;细胞器位移、染色体分裂与位移;胞质内物质运输。

微管药物:紫杉酚:与微管结合使之稳定,促进微管的聚合、抑制微管解聚;秋水仙素:一种生物碱,与微管蛋白亚基结合,抑制微管装配;长春花碱:抑制微管形成和破坏纺锤体的作用。

(2)微丝结构:微丝存在很普遍,具有可变结构,直径6微米,由肌动蛋白组成,与微管共同构成细胞支架。

微丝功能:与微管共同形成细胞支架,以维持细胞形状;具有运动功能,与细胞质的运动紧密相关;与细胞器关系密切;细胞内信号传递、蛋白质合成支架。

微丝药物:鬼笔环肽:特异性与微丝侧面结合,增强器稳定性,抑制微丝解聚,对微丝具有稳定作用;细胞松弛素:可以切断微丝,并结合在微丝正极阻抑肌动蛋白聚合,因而可以破坏微丝的三维网络,特异性的抑制微丝装配。

(3)中间纤维:大小介于微管和微丝之间,结构复杂。中间纤维具有严格的组织特异性,不同类型细胞含有不同IF 。可分为5类:角蛋白纤维:为上皮细胞特有,具有α和β两类,β角蛋白存在于细胞中,α角蛋白形成头发、指甲等坚韧结构; 波形纤维:存在于间充质细胞及中胚层来源的细胞中; 神经胶质纤维:存在于星形神经胶质细胞; 结蛋白纤维:存在于肌肉细胞; 神经元纤维:存在于神经元中; 此外细胞核中的核纤层蛋白也是一种中间纤维。 功能:中间纤维的组织特异性,可应用于肿瘤细胞的组织来源鉴别。

第九章大题(细胞增殖及其调控)

1、什么是细胞周期?细胞周期各时期主要变化是什么?

答:从上一次细胞分裂结束开始,经过物质积累过程,直到下一次细胞分裂结束为止,称为一个细胞周期。它包括细胞生长、DNA 复制和细胞分裂,最终将细胞遗传物质和其他内含物分配给两个子代细胞。

一个细胞周期可分为G1、S 、G2和M 四个时期。主要变化如下:

①G1期:G1期细胞的物质代谢活跃,进行RNA 和蛋白质的合成,细胞体积增大,dNTP 积累,为细胞进入S 期做准备。在G1晚期由检验点,检验前次有丝分裂是否完成、外界环境条件是否合适、细胞是否充分长大、DNA 是否有损伤。多数细胞的细胞周期时间长短主要由G1期决定

②S 期。主要事件是DNA 复制,常染色质与异染色质的复制不同步进行,DNA 量加倍

③G2期。合成大量的蛋白质,但此期合成的蛋白与前两期的不同,主要为细胞进入M 期做好充分准备,如合成着丝粒蛋白质、成熟促进因子、细胞周期蛋白B 和微管蛋白等

④M 期。核膜破裂,核仁消失,染色质形成染色体,子染色体移向两级,在两级形成子核,胞质分裂,形成两个子细胞。

2、什么是干细胞?它分哪几种类型,各型的特征是什么?什么是肿瘤干细胞?

答:分化程度相对较低、具有不断增殖和分化能力的细胞叫做干细胞。根据分化的潜能大小,干细胞可以分为多能干细胞和单能干细胞。前者可以分化出多种类型的细胞,后者只能分化出一种类型的细胞。根据来源和分化潜能,干细胞也可以分为胚胎干细胞和成体干细胞。胚胎干细胞具有分化成各种细胞类型的潜能,例如囊胚期时,囊胚内细胞团的细胞即为胚胎干细胞。

肿瘤干细胞即生长不受控制、可以自我更新并多向分化、具有迁移至某些特定组织和排除有毒化学因子能力、在肿瘤组织内数量较少的一群细胞。

2、组织特异性基因的表达是如何调控的?

答:组织特异性基因通过组合调控而引发表达。即每种类型的细胞的分化是由多种调控蛋白共同调控完成的。如果调控蛋白数是n ,那么调控的组合在理论上就可以启动分化的细胞类型为2^n。然而在启动细胞分化的各类调控蛋白组合中,其中往往只有一两种起决定性的因子。这样,单一的调控蛋白就有可能启动整个细胞的分化过程。这时一种高效而经济的细胞分化启动机制。复杂的有机体正是通过这一原则的重复运用逐渐完成形态建成的。

4、说明癌症的发生与癌基因和抑癌基因的关系。

答:癌的生成涉及多种基因和基因以外的变化,单独一种基因的突变不足以致癌,多种基因变化的积累才能引起控制细胞生长和分化的机制紊乱,使细胞的增生失控而癌变。在这些基因的变化中最常发生的两类基因的异常变化时癌基因及抑癌基因变化。癌基因是指其编码的产物与细胞的肿瘤性转化有关的基因。它以显性的方式作用,对细胞生长起阳性作用,并促进细胞转化。抑癌基因正常时起抑制细胞增殖和肿瘤发生的作用。许多肿瘤均发现抑癌基因的两个等位基因缺失或失活,失去细胞增生的阴性调节因素,从而对肿瘤细胞的转化和异常增生起作用。细胞的生长是推动细胞周期进行的基因产物与抑制其进行的基因产物之间微妙平衡的结果。任何一种产物的异常表达,如一种癌基因的过度表达,或一种抑癌基因的失活,都可能导致细胞生长的失控。癌的生成是一个涉及多种癌基因活化和抑癌基因失活的多步骤累积变化的过程。

5、简述癌细胞的主要特征

答:细胞生长和分裂失去控制,表现为核质比增大,分裂速度加快;具有浸润性和扩散性,表现为细胞黏着性下降;细胞间的相互作用发生变化,异常表达一些膜受体蛋白,便于和别处的细胞黏着生长,并借此逃脱免疫监控;转录谱系发生变化。

第十一章大题(细胞衰老与凋亡)

1. 细胞凋亡的概念、形态特征及其与坏死的区别是什么?

答;(1)细胞凋亡是一个主动的由基因决定的自动结束生命的过程,也称为细胞程序性死亡。凋亡细胞将被吞噬细胞吞噬。细胞凋亡时在细胞、亚细胞和分子水平上发生了特征性改变。这种改变包括细胞核的改变、细胞器的改变、细胞膜成分的改变和细胞形态的改变等,其中细胞核改变最明显。

(2)首先出现的是细胞体积缩小,连接消失,与周围的细胞脱离,然后是细胞质密度增加,核质浓缩,核膜核仁破碎,胞膜由小泡状形成,胞膜结构仍然完整,最终可将凋亡细胞遗骸分割包裹为几个凋亡小体,无内容物外溢。凋亡小体可迅速被周围专职或非专职吞噬细胞吞噬。

(3)细胞凋亡由基因决定;由强烈的刺激产生;胞膜及细胞器相对完整,细胞皱缩,核固缩,有凋亡小体形成;溶酶体相对完整,局部无炎症反应;存在病理变化。

细胞坏死:不由基因决定;较弱的刺激引发;细胞结构全面溶解、破坏,细胞肿胀;溶酶体破裂,局部有炎症;存在生理或病理变化。

4、动物细胞凋亡的基本途径有哪些?

答:可以分为死亡受体介导的细胞凋亡途径和线粒体介导的细胞凋亡途径。

(1)死亡受体介导的细胞凋亡途径

当细胞接受凋亡信号分子(Fas 、TNF 等)后,凋亡细胞表面信号分子受体相互聚集并与细胞内的接头蛋白结合,这些接头蛋白又募集Procaspase 聚集在受体部位,Procaspase 相互活化并产生级联反应,使细胞凋亡。下游Procaspase 活化后,作用底物:裂解核纤层蛋白,导致细胞核形成凋亡小体;裂解DNase 结合蛋白,使DNase 释放,降解DNA 形成DNA ladder;裂解参与细胞连接或附着的骨架和其他蛋白,使凋亡细胞皱缩、脱落,便于细胞吞噬;导致膜脂PS 重排,便于吞噬细胞识别并吞噬。

(2)线粒体介导的细胞凋亡途径

当Caspase-8活化后,它一方面作用于Caspase-3,另一方面使Bid 裂解成2个片段,其中含BH3结构域的C 端片段被运送到线粒体,与Bcl-2/Bax的BH3结构域形成复合物,导致细胞色素c 释放。Cyt c与胞质中Ced4同源物Apaf-1结合并活化Apaf-1,活化的Apaf-1再活化Caspase-9,最后引起细胞凋亡。

近年,还有人提出的了细胞凋亡的溶酶体途径,认为溶酶体可介导细胞的凋亡。

第一章名词(细胞基本知识)

4、细胞学说:细胞学说是施莱登和施旺所提出:一切植物、动物都是由细胞组成的,细胞是一切动植物体的基本单位。基本内容有:① 细胞是有机体, 一切动植物都是由单细胞发育而来,即生物是由细胞和细胞的产物所组成;②每个细胞作为一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命有所助益。③新细胞是由已存在的细胞繁殖产生;④所有细胞在结构和组成上基本相似。

11、细胞社会学:细胞社会学是从系统论的观点出发,研究细胞整体和细胞群体中细胞间的社会行为(包括细胞间识别、通讯、集合和相互作用等) ,以及整体和细胞群对细胞的生长、分化和死亡等活动的调节控制。细胞社会学主要是在体外研究细胞的社会行为,用人工的细胞组合研究不同发育时期的相同细胞或不同细胞的行为; 研究细胞之间的识别、粘连、通讯以及由此产生的相互作用、作用本质、以及对形态发生的影响等。

第二章名词(细胞生物学研究方法)

1、细胞全能性:细胞经分裂和分化后仍具有产生完整有机体的潜能和特性,目前只在植物中获得成功。

2、①细胞培养:把机体内的组织取出后经过分散变为单个细胞,在人工培养的条件下,使其生存、生长、繁殖、传代,观察其生长、繁殖、接触抑制、衰老等生命现象的过程称为细胞培养。

6、杂交瘤技术:把小鼠骨髓瘤细胞,和用绵羊红细胞免疫过的小鼠B 淋巴细胞,在仙台病毒的介导下发生融合。

7、单克隆抗体:由1个B 淋巴细胞和1个骨髓瘤细胞融合后产生的杂交瘤细胞,经有丝分裂形成的后代细胞群称克隆细胞系,其培养后产生的单一抗体被称为单克隆抗体。单克隆抗体混杂在一起就构成了多克隆抗体。

9、①原代培养细胞:培养直接来自动物机体的细胞群,在实际应用中一般将第1~10代的细胞称为原代培养细胞; ②传代细胞:细胞群已经过数代培养,转到另一培养条件下培养的细胞群;

③细胞株:从原代培养细胞群中筛选出的具有特定性质或标志的细胞群,一般可以顺利地传40~50代,它保持染色体二倍体的数量及接触抑制行为;

④细胞系:在体外培养条件下能无限制地传递下去的传代细胞叫细胞系,丧失接触抑制行为;

第三章名词(细胞质膜、跨膜运输、信号转导、细胞社会连接通讯)

1、细胞质膜(细胞膜):指围绕在细胞最外层,由脂质和蛋白质组成的生物膜。生物膜主要由膜脂和膜蛋白构成。

(1)膜脂:膜脂主要包括磷脂、糖脂、胆固醇。膜质分子有4种热运动的方式:沿膜平面的侧向运动;脂分子围绕轴心的自旋运动;脂分子尾部的摆动;双层脂分子之间的翻转运动。

(2)膜蛋白:脂膜上的蛋白质。分为:

①外在膜蛋白:水溶性蛋白,靠离子键或其他键与膜表面的膜蛋白分子或膜脂分子结合,因此只要改变溶液的离子强度甚至提高温度就可以从膜上分离下来,但膜结构并不被破坏;

②内在膜蛋白:或称整合膜蛋白,全部或部分与磷脂双层的疏水核相互作用、牢固连接的膜结合蛋白,多数为跨膜蛋白,也有些插入脂双层中。只有用去垢剂处理才能将其从膜上移去,功能多为载体、受体、酶等;

③脂锚定膜蛋白:是通过与之共价相连的脂分子(如脂肪酸或糖脂)插入膜的脂双分子中,从而锚定在细胞质膜上。

2、脂质体:是根据磷脂分子可在水相中自我装配成稳定的脂双层膜的球形结构的趋势而制备的人工球形脂质小囊。

9、红细胞血影:指红细胞丢失细胞质后剩余的质膜部分。将红细胞低渗处理后,质膜会破裂,释放出血红蛋白和其他胞内可溶性蛋白,这时红细胞的质膜与膜骨架蛋白组成的结构使红细胞仍然保持原来的形状和大小,称为红细胞血影。

10、膜转运蛋白:分为载体蛋白和通道蛋白。

(1)载体蛋白:细胞膜的脂质双分子区中分布着一类镶嵌蛋白,其肽链穿越脂双层,属于跨膜蛋白。载体蛋白运转物质进出细胞是依赖该蛋白与待转运物质结合后引发空间构象改变而实现的。载体蛋白既能主动转运又参与被动运输;

(2)通道蛋白:细胞膜上的脂质双分子层中存在着一类能形成孔道,供某些分子进出细胞的特殊蛋白质(跨膜蛋白)。通道蛋白只进行物质的被动转运。离子通道并非连续性开放而是门控的

11、跨膜运输有三种途径:被动运输、主动运输、胞吞作用和胞吐作用

(1)被动运输:是指通过简单扩散或协助扩散实现物质由高浓度向低浓度方向的跨膜转运。动力来自物质的浓度梯度,不需要细胞提供代谢能量;

①简单扩散:又称自由扩散,指脂溶性物质或分子质量小且不带电荷的物质在膜内外存在浓度差的条件下沿着浓度梯度通过细胞质膜的现象,不需要细胞提供能量,也不需要膜蛋白的协助;

②协助扩散:各种极性分子和无机离子等顺其浓度梯度或电化学梯度的跨膜转运,该过程不需要细胞提供能量,需特异性的膜转运蛋白协助。

(2)主动运输:是由载体蛋白所介导的物质逆浓度梯度或电化学梯度由低浓度的一侧向高浓度的一侧进行跨膜转运的方式,需要能量。可分为:①A TP 驱动泵(分为:P 型质子泵(钠钾泵、钙泵等) 、V 型质子泵、F 型质子泵 、ABC

超家族);②耦联转运蛋白③光驱动泵。

(3)胞吞:通过细胞质膜内陷形成囊泡,称胞吞泡,将外界物质裹进并输入细胞的过程。可分为胞饮和吞噬作用。

(4)胞吐:与胞吞相反,它是将细胞内的分泌泡或其他某些膜泡中的物质通过细胞质膜转运出细胞的过程。

13、膜泡运输:指真核细胞通过胞吞作用和胞吐作用完成大分子与颗粒性物质的跨膜运输,在转运过程中,物质包裹在脂双层膜围绕的囊泡中故称为膜泡运输,因涉及到膜的融合与断裂,耗能,因此属于主动运输。

12、协同运输(耦联主动运输):一类靠间接消耗A TP 所完成的主动运输方式。物质跨膜运动所需要的能量来自膜两

+十十侧离子电化学浓度梯度,而维持这种电化学梯度的是Na -K 泵(或H 泵)。可分为同向转运和反向转运(指物质跨

膜转运的方向与离子转移的方向相反)。

14、细胞连接:指在细胞质膜的特化区域,通过膜蛋白、细胞支架蛋白或者胞外基质形成的细胞与细胞间、细胞与胞外基质间的连接结构。可分为:封闭连接,锚定连接,通讯连接。

(1)封闭连接:紧密连接是封闭连接的主要形式。上皮细胞顶部周围,细胞之间形成的密封连接。质膜中的封闭蛋白和密封蛋白与相邻细胞中的互相焊接,形成条索网,将细胞间隙密封;

(2)锚定连接:通过细胞骨架系统将相邻细胞或细胞与胞外基质连接形成一个坚挺、有序的细胞群体。有两种形式: a. 与中间纤维相连的桥粒和半桥粒:

①桥粒:细胞内锚蛋白形成独特的盘状胞质致密斑,一侧与细胞内的中间丝相连,另一侧与跨膜的粘连蛋白相连,在两个细胞之间形成纽扣样结构,将相邻细胞铆接形成一个整体,同时还增强了细胞抵抗外界压力与张力的机械强度。 ②半桥粒:半桥粒与桥粒形态类似,但功能和化学组成不同。它通过细胞质膜上的整联蛋白将上皮细胞固着在基底膜上,在半桥粒中,中间纤维不是穿过而是终止于半桥粒的致密斑内。

b. 与肌动蛋白纤维相连的黏合带与黏合斑:

①黏合带:位于上皮细胞紧密连接的下方,依靠钙黏着蛋白与肌动蛋白相互作用,将两个相邻细胞间形成的连续的带状结构;

②黏合斑:通过整联蛋白锚定到细胞外基质上的一种动态的锚定型细胞连接,细胞与非细胞性基底物间形成的粘附结构。质膜中的整联蛋白分子的胞外结构域与细胞外基质组分相连,胞内结构域通过接合器蛋白与微丝相连,是细胞与胞外基质之间的连接方式。

(3)通讯连接:一种特殊的细胞连接方式。它除了有机械的细胞连接作用之外, 还可以在细胞间形成电偶联或代谢偶联, 以此来传递信息。主要包括以下三种方式:

①间隙连接:位于细胞之间的通讯连接,其功能是保证相邻细胞代谢的统一,其基本组成单位为连接子,由6个相同的蛋白质环绕而成,相邻两个细胞膜上的两个连接子对接形成一个间隙连接单位,其允许小于1000Da 的小分子通过;②胞间连丝:是高等植物细胞中独有的通讯连接组织结构,胞间连丝穿越细胞壁,由相互连接的相邻细胞的细胞膜共同组成直径为20-40nm 的管状结构,中央链管结构是由内质网延伸而成。通过胞间连丝可完成植物细胞间的通讯联络;③化学突触:存在于可兴奋细胞之间的细胞连接方式,通过释放神经递质来传导神经冲动。

15、细胞识别:是指细胞通过其表面的受体与胞外信号物质分子(配体)选择性地相互作用,从而导致胞内一系列生理生化变化,最终表现为细胞整体的生物学效应的过程。

8、细胞黏着:动物细胞通过细胞表面的黏附分子介导细胞之间或细胞与细胞外基质之间的粘附。在细胞识别的基础上,同类细胞发生聚集形成细胞团或组织的过程叫细胞黏着。通过细胞黏着,使具有相同表面特性的细胞聚集在一起形成器官。

7、①信号转导:细胞外信号分子与表面受体结合,通过一定的机制将外部信号转为内部信号,这一过程称为信号转导。 ②信号传导:指任何细胞经分泌、膜电位变化、细胞粘附或细胞运动等活动,将信号传递给其他细胞的过程。

20、细胞外基质:指分布于细胞外空间,由细胞分泌的蛋白和多糖所构成的网络结构。包括胶原、弹性蛋白、糖胺聚糖和蛋白聚糖、纤连蛋白和层粘连蛋白,基膜与细胞外被。

21、第二信使学说:胞外化学物质(第一信使)不能进入细胞,它作用于细胞表面受体,而导致产生胞内第二信使,从而激发一系列生化反应,最后产生一定的生理效应,第二信使的降解使其信号作用中止。

25、SH 结构域:是Src 同源结构域的缩写,这种结构域能够与受体酪氨酸激酶磷酸化残基紧密结合,形成多蛋白的复合物进行信号转导。

第四章名词(真核细胞内膜系统、蛋白质分选与膜泡运输)

1、细胞内膜系统:指在结构、功能乃至发生上相互关联由膜包被的细胞器或细胞结构,主要包括内质网、高尔基体、溶酶体、胞内体和分泌泡等。

3、细胞质膜系统:细胞质膜系统是指细胞内那些在生物发生上与质膜相关的细胞器,显然不包括线粒体、叶绿体和过氧化物媒体,因为这几种细胞器的膜是逐步长大的,而不直接利用质膜。

5、内吞膜泡(网格膜泡):通过内吞运输蛋白质的包被膜泡。

6、被膜小窝:是披网格蛋白小泡形成过程中的一个中间体。在胞吞过程中,吞入物先同膜表面特异受体结合,然后网格蛋白装配的亚基结合上去,使膜凹陷成小窝状。

7、内吞作用:细胞表面的蛋白质内聚,在包被膜泡中转移到细胞内部的过程。

8、受体介导内吞:大分子首先同质膜上的受体相结合,然后质膜内陷成衣被小窝,继之形成衣被小泡。

9、①胞吐作用:运输小泡通过与细胞质膜的融合将内容物释放到细胞外基质的过程成为胞吐作用;

②吞噬作用:只限于几种特殊的细胞类型,例如,变形虫和一些单细胞的真核生物通过吞噬作用从周围环境中摄取营养。在高等动物细胞中,具有一些特化的吞噬细胞,包括巨噬细胞和中性粒细胞。它们通过吞噬菌体摄取和消灭感染的细菌等。吞噬也是一种需要信号触发的过程,被吞噬的颗粒必须同吞噬细胞的表面结合。吞噬细胞表面有特化的受体,被激活的受体向细胞内传递吞噬信号。

10、转胞吞作用:转胞吞作用是一种特殊的内吞作用,受体和配体在内吞中并未作任何处理,只是经细胞内转运到相反的方向,然后通过胞吐作用,将内吞物释放到细胞外。

11、①自噬作用:自噬作用普遍存在于真核细胞中,是溶酶体对自身结构的吞噬降解,是细胞内的再循环系统。自噬作用主要是清除降解细胞内受损伤的细胞结构、衰老的细胞器,以及不再需要的生物大分子等。自噬作用在消化的同时,也为细胞内细胞器的构建提供原料,即细胞结构的再循环;

②自溶作用:是细胞的自我毁灭,即溶酶体将酶释放出来将自身细胞降解。手指或脚趾的形成同溶酶体有关。

13、跨膜运输:胞质溶胶中合成的蛋白质进入到内质网、线粒体、叶绿体和过氧化物酶体是通过一种跨膜机制进行定位的,需要膜上运输蛋白帮助。

14、小泡运输:蛋白质从内质网转运到高尔基体以及从高尔基体转运到溶酶体、分泌泡、细胞质膜、细胞外等则是由小泡介导的,成为运输小泡。

15、内质网(ER ):分为糙面内质网(RER )和光面内质网(SER )。

①糙面内质网:多呈扁囊状,排列较为整齐,其膜表面分布着大量的核糖体,它是内质网与核糖体共同形成的复合机能结构,其主要功能是蛋白质合成,蛋白质修饰加工,蛋白质的折叠组装和运输。(为核糖体提供支架;蛋白质在核糖体上合成以后,进入内质网腔,在内质网腔中进行蛋白质的糖基化,然后以芽生方式从糙面内质网膜上碰触,脱落形成小囊泡,小囊泡将这些蛋白质定向地转运到高尔基复合体进一步加工修饰);

②光面内质网:无核糖体附着的内质网,所占区域较小,往往作为出芽的位点,将内质网上合成的蛋白质或脂质转移到高尔基体内。通常为小的膜管和小的膜囊状,而非扁平膜囊状。光面内质网的功能是脂质和胆固醇的合成与运输,解毒,糖原代谢,储存和调节Ca2+浓度进行肌肉收缩。

16、分子伴侣:细胞中的蛋白质分子可以识别正在合成的多肽或部分折叠的多肽并与多肽的某些部位相结合,从而帮助这些多肽转运、折叠或组装,这类分子本身并不参与最终产物的形成。

17、微粒体:微粒体是细胞被匀浆破碎时,内膜系统的膜结构破裂后自己重新封闭起来的小囊泡。

18、①信号识别颗粒SRP 是一种核糖核酸蛋白复合体,其上有三个功能部位:翻译暂停结构域、信号肽识别结合位点、SRP 受体蛋白结合位点。是一种分子伴侣,可与信号肽结合,帮助多肽转运,又可防止新生肽畸变或成熟前折叠或组装;②停靠蛋白DP 是SRP 在内质网膜上的受体蛋白,它能够与结合由信号序列的SRP 牢牢地结合,使正在合成蛋白质的核糖体停靠到内质网上来。

21、M6P 受体蛋白:M6P 受体蛋白是反面高尔基网络上的膜整合蛋白,能够识别溶酶体水解酶上的M6P 信号并与之结合,从而将溶酶体的酶蛋白分选出来,然后通过出芽的方式将溶酶体的酶蛋白装入分泌小泡。

26、蛋白质的分选:绝大多数蛋白均在细胞质基质中的核糖体上开始合成,然后转运至细胞的特定部位,并装配成结构与功能的复合体,参与细胞生命活动,此过程称为蛋白质的分选。三条途径是门控运输,跨膜运输,膜泡运输。

第五章名词(线粒体与叶绿体)

5、①氧化磷酸化:是电子从NADH 或FADH2经呼吸链传递给氧形成水时,同时伴有ADP 磷酸化形成A TP ;

②光合磷酸化:是由光照所引起的电子传递与磷酸化作用相耦联而生成A TP 的最初过程,电子供体是H2O ,最终电子受体是NADP+。

第六章名词(细胞核与染色体)

1、核纤层:是细胞核内核膜下的纤维蛋白网络,由1-3种核纤层蛋白组成,外与内核膜结合,内和染色质相连。核纤层与IF (中间丝)、核骨架相互联结,形成贯穿于细胞核与细胞质的骨架结构体系。

2、核孔复合体:间期细胞核的核被膜上沟通细胞核与细胞质的通道结构,由多种核孔蛋白组成,是控制核质交流的重要的双向选择性亲水通道。

10、①着丝粒:在有丝分裂染色体上两条姐妹染色单体相连区域的一种高度有序的整合结构,由串联重复的卫星DNA

序列组成,是动粒的形成部分;

②动粒(着丝点):是在主溢痕处2条染色单体的外侧表层部位的特殊结构,由多种蛋白质在有丝分裂染色体着丝粒部位形成的一种盘状结构,微管与之连接,参与了染色体向两极的运动。

11、①端粒:端粒是染色体两个端部特化结构。通常由富含鸟嘌呤核苷酸(G )的短的串联重复序列DNA 组成。端粒的作用在于维持染色体完整性和个体性,且参与染色体在核内的空间排布及减数分裂时同源染色体配对;

②端粒酶:具有反转录酶性质的核糖核蛋白复合物,以内在的RNA 为模板,将合成的端粒重复序列加到染色体的3’端避免了因新合成的DNA 链的5’端RNA 引物切除引起的染色体末端缩短的问题。

第八章名词(细胞骨架)

1、细胞骨架:是指真核细胞中的蛋白纤维网架体系。广义的细胞骨架包括细胞核骨架,细胞质骨架,细胞膜骨架和细胞外基质。狭义的细胞骨架是指细胞质骨架,包括微丝(MF )、微管(MT )和中间纤维(中间丝,IF )。细胞骨架在细胞质内形成的网络结构支撑维持细胞的形状,并在细胞运动、物质运输和细胞分裂等方面发挥一定的作用。

4、踏车行为:微管或微丝的负极发生解聚而缩短,正极发生聚合而延长的现象叫做踏车行为。

5、分子马达:指细胞内能利用A TP 提供能量产生推动力,进行细胞内物质运输或细胞运动的蛋白质分子。已经发现的分子马达分为:驱动蛋白、胞质动力蛋白和肌球蛋白。

第九章名词(细胞增殖及其调控)

1、细胞周期:从上一次细胞分裂结束开始,经过物质积累过程,直到下一次细胞分裂结束为止,成为一个细胞周期。分为分裂期(M )和间期。间期又可分为G1、S 、G2三个时期。

3、细线期:染色体呈细线状,凝集于核的一侧;偶线期:同源染色体开始配对,联会复合体开始形成,并且合成剩余0.3%的DNA ;粗线期:染色体联会完成,进一步缩短为粗线状结构;双线期:配对的同源染色体相互排斥,开始分离,交叉端化,部分位点还在相连。

6、联会:在减数分裂中同源染色体相互配对的现象。一般发生在减数分裂I 前期的偶线期。

7、同源染色体:在减数分裂过程中,两两配对的染色体,其中一条来自附体,一条来自母体。它们的形大小一般相同,带有相应的遗传信息,两者相配成对的染色体叫同源染色体。

9、MPF :即CDK1激酶。是一种使多种底物蛋白磷酸化的蛋白激酶,能促使细胞由G2期进入M 期。由两个亚基组成,一种是细胞周期蛋白,另一个是周期蛋白依赖性的蛋白激酶,其中周期蛋白为调节亚基。

第十章名词(细胞分化与基因表达调控)

1、①管家基因:是指所有细胞中均表达的一类基因,其产物是维持细胞基本生命活动所必需的;

②奢侈基因:又称组织特异性基因,指不同类型细胞中特异性表达的基因,其产物赋予各种类型细胞特异的形态结构特征与功能。

2、①细胞分化:是指在个体发育中由一种相同的细胞类群经细胞分裂后逐渐在形态、结构和功能上形成稳定性差异,产生各不相同的细胞类群的过程;

②转分化:一种类型分化的细胞转变成另一种类型的分化细胞的现象;

③再分化:在分化诱导剂存在时,恶性肿瘤细胞被诱导而重新向正常细胞的方向演变分化,最终完全转变成正常细胞,这种现象称为再分化;

④去分化:已经分化的细胞失去特有的结构与功能,恢复分化前的状态的过程。

3、干细胞:分化程度相对较低、具有不断增殖和分化能力的细胞叫做干细胞。

第十一章名词(细胞衰老与凋亡)

1①细胞凋亡:是一个主动的由基因决定的自动结束生命的过程,也称为细胞程序性死亡;

②细胞衰老:一般是指复制衰老,即体外培养的正常细胞经过有限次数的分裂后,停止分裂,细胞形态和生理代谢活动发生显著改变的现象。

细胞坏死:是由剧烈的作用引起的细胞死亡,细胞质膜发生渗漏,细胞内容物释放到胞外,导致炎症反应。

第一章大题(细胞基本知识)

2、细胞生物学的概念和研究内容

答:概念:细胞生物学是以细胞为研究对象, 从细胞的整体水平、亚显微水平、分子水平等三个层次,以动态的观点, 研究细胞和细胞器的结构和功能、细胞的生活史和各种生命活动规律的学科。细胞生物学是现代生命科学的前沿分支学科之一,主要是从细胞的不同结构层次来研究细胞的生命活动的基本规律。从生命结构层次看,细胞生物学位于分子生物学与发育生物学之间,同它们相互衔接,互相渗透。

研究内容:细胞生物学的主要研究内容主要包括两个大方面:细胞结构与功能、细胞重要生命活动。涵盖九个方面的内容:⑴细胞核、染色体以及基因表达的研究;⑵生物膜与细胞器的研究;⑶细胞骨架体系的研究;⑷细胞增殖

及其调控;⑸细胞分化及其调控;⑹细胞的衰老与凋亡;⑺细胞的起源与进化;⑻细胞工程;⑼细胞信号转导。

第二章大题(细胞生物学研究方法)

2、细胞组分的分离与分析有哪些基本的实验技术?哪些技术可用于生物大分子在在细胞内的定性与定位研究?

答:(1)①分离:差速离心、密度梯度离心、速度沉降、等密度沉降、流式细胞仪。②定性分析:组织化学、细胞化学、免疫荧光、免疫电镜、原位杂交等。③定量分析:分光光度计、流式细胞仪。④同位素标记结合放射自显影技术可研究生物大分子在细胞内的动态变化。

(2)蛋白质分子:免疫荧光纤维技术,免疫电镜技术,蛋白质印迹技术;

核酸分子:原位杂交,印迹杂交(southern 和northern )

第三章大题(细胞质膜、跨膜运输、信号转导、细胞社会连接通讯)

6、比较胞饮作用与吞噬作用的异同:

答:(1)不同点:①细胞类型不同:胞饮作用见于几乎所有真核细胞;吞噬作用对于原生动物是一种获取营养的方式,仅见于特殊的细胞(如巨噬细胞)②摄入物:胞饮作用摄入溶液,吞噬作用摄入大的颗粒性物质。③胞吞泡的大小不同,胞饮泡直径一般小于150 nm,而吞噬泡直径往往大于250 nm。④摄入的过程:胞饮作用是一个连续发生的组成型过程,无需信号刺激;吞噬作用是一个信号触发过程。⑤胞吞泡形成机制:胞饮作用需要网格蛋白形成包被、接合素蛋白连接;吞噬作用需要微丝及其结合蛋白的参与, 如果用降解微丝的药物(细胞松弛素B )处理细胞,则可阻断吞噬泡的形成,但胞饮作用仍可继续进行。

(2)相同点:均是细胞完成大分子物质与颗粒性物质运输的方式;均要通过膜的内部并形成胞吞泡;胞吞泡的形成均有蛋白质的参与。

5. 何谓信号转导中的分子开关蛋白?举例说明其作用机制。

答:在细胞内一系列信号传递的级联反应中,必须有正、负两种相辅相成的反馈机制进行精确调控。对每一个反应既要求有激活装置还要求有失活机制,负责这种正、负调控的蛋白成为分子开关。一类是通过蛋白激酶使之磷酸化而激活,通过蛋白磷酸酯酶使之去磷酸化而失活。另一类是GTPase 开关蛋白,结合GTP 活化,结合GDP 失活。

Ras 蛋白就是一个典型的分子开关蛋白,通过其他蛋白质的作用使得GTP 与其结合而处于激活状态。一种GTP 酶激活蛋白可促进将结合的GTP 水解为GDP ,Ras 的工作就类似于电路开关。如果Ras 分子开关失去控制一直处于激活状态,下游MAPK 一直活跃,使得细胞有丝分裂失去控制,从而导致癌变。

6. 简要比较G 蛋白耦联受体介导的信号通路。

答: G 蛋白耦联受体是细胞表面由单条多肽经7次跨膜形成的受体,该信号通路是指配体-受体复合物与靶细胞的作用要通过与G 蛋白的耦联,在细胞内产生第二信使,从而将胞外信号跨膜传递到胞内,影响细胞的行为。根据产生第二信使的不同,它可分为cAMP 信号通路和磷脂酰肌醇信号通路:

(1)cAMP 信号通路的主要效应是激活靶细胞和开启基因表达,这时通过蛋白激酶A 完成的。该信号途径涉及的反应链可表示为激素→G 蛋白耦联受体→G 蛋白→腺苷酸环化酶→cAMP →cAMP 依赖的蛋白激酶A →基因调控蛋白→基因转录。

(2)磷脂酰肌醇信号通路的最大特点是胞外信号被膜受体接收后,同时产生两个胞外信使,分别启动两个信号传递途径即IP3/Ca2+和DAG/PKC途径,实现细胞对外界信号的应答,因此,这一信号系统又称为“双信使系统”。可表示为:

细胞外信号分子→G-蛋白耦联型受体→G 蛋白→磷脂酶C →磷脂酰肌醇(PIP2) :

→IP3→胞内钙离子浓度升高→钙离子与钙调蛋白结合→钙调蛋白激酶

→DAG+Ca2+ →激活PKC →靶蛋白磷酸化或促Na+/H+交换使胞内pH 值升高

(3)相同:膜受体与效应酶之间的作用都是通过G 蛋白耦联的。

不同:化学信号分子、膜受体结构、G 蛋白组分、效应酶均不相同。前者效应酶为腺苷酸环化酶AC, 后者效应酶为磷脂酶C ;第二信使不同,前者为cAMP ,后者为IP3和DAG 。

3,细胞粘着分子有哪些,分别有什么功能?

答:动物细胞表面介导细胞同细胞或细胞外基质黏附的蛋白质分子。均为整合膜蛋白,包括:整联蛋白、钙黏着蛋白、选择素、免疫球蛋白超家族。黏着分子多数需要依赖Ca 或Mg 才起作用,这些分子介导的细胞识别与黏着还能在细胞骨架的参与下,形成细胞连接,如桥粒等。

①钙黏蛋白:是一种同亲型结合的黏着因子、Ca2+依赖的细胞黏着糖蛋白,对胚胎发育中的细胞识别、迁移和组织分化以及成体组织器官构成具有重要作用;

②整联蛋白:异亲型细胞结合,Ca2+或Mg2+依赖性的细胞黏着分子,由α和β两个亚基形成的异二聚体糖蛋白,可介导细胞与细胞及细胞与细胞外基质的粘附链接;

③选择素:一类异亲型结合、Ca2+依赖的细胞黏着分子,能与特异糖基识别并结合。选择素是跨膜蛋白,其胞外部分

具有凝集素样结构域。凝集素:是动物细胞和植物细胞都能够合成和分泌的、能与糖结合的蛋白质,在细胞识别和黏着反应中其重要作用,主要是促进细胞间的黏着;

④免疫球蛋白超家族:同亲性或异亲性、不依赖Ca 2+,含有免疫球蛋白类似(Ig )结构域。参与免疫功能;介导细胞间的黏着作用。

4. 细胞连接有哪几种类型,各有何功能?

答:①封闭连接:紧密连接是封闭连接的主要形式。紧密连接可阻止可溶性物质从上皮细胞层一端扩散到另一端,因此起到重要封闭作用;同时还将上皮细胞的游离端与基底面细胞膜上的膜蛋白相互隔离,以行使其各自不同的膜功能,因此紧密连接还具有隔离和一定的支持功能。

②锚定连接:通过细胞骨架系统将相邻细胞或细胞与胞外基质,连接形成一个坚挺、有序的细胞群体。根据参与的细胞骨架成分的不同分为与中间丝相连的锚定连接(如桥粒和半桥粒)、与肌动蛋白微丝相连的锚定连接(如粘合带和黏合斑)。主要功能为分散细胞间或者细胞与胞外基质间的作用力。

③通讯连接:是多细胞有机体中相邻细胞之间连接的一大类型组织结构,包括间隙连接、植物细胞中的胞间连丝以及化学突触三种形式。主要功能除具有细胞间连接作用外,还具有细胞间小分子物质交换和信号传递作用。

1、比较载体蛋白与通道蛋白的特点。

答:载体蛋白相当于结合在细胞质膜上的酶,有特异性结合位点,可同特异性底物结合,一种特异性载体只转运一种类型的分子或离子;转运过程具有类似于酶与底物作用的饱和动力学特征;既可被底物类似物竞争性地抑制,又可被某种抑制剂非竞争性抑制以及对pH 有依赖性等,因此有人将载体蛋白称为通透酶。与酶不同的是,载体蛋白对转运的溶质分子不进行任何共价修饰。

通道蛋白所介导的被动运输不需与溶质分子结合,允许大小和带电荷适宜的离子通过。绝大多数的通道蛋白形成有离子选择性的、门控的跨膜通道。因为这些通道蛋白几乎都与离子的转运有关,所以又称为离子通道。与载体蛋白相比,有三个显著特征:具有极高的转运速率,离子通道没有饱和值,离子通道是门控的。

2、比较P-型离子泵、V-型质子泵、F-型质子泵和ABC 超家族。

答:①P-型离子泵是载体蛋白利用ATP 使自身磷酸化,发生构象的改变来转移质子或其他离子,如植物细胞膜上的H+泵、动物细胞的钠钾泵、钙泵、H+-K+ATP酶。

②V-型质子泵位于溶酶体膜、动物细胞胞内体、高尔基体的囊泡膜、植物液泡膜上,由许多亚基构成,利用ATP 水解产生能量,但不发生自磷酸化。

③ F-型质子泵是由许多亚基构成的管状结构,H+沿浓度梯度运动,所释放的能量与ATP 合成耦联起来,所以又叫ATP 合成酶。F 是氧化磷酸化或光合磷酸化耦联因子的缩写。F-型质子泵位于细胞质膜、线粒体内膜和叶绿体的类囊体膜上,不仅可以利用质子动力势将ADP 转化成A TP ,也可以利用水解ATP 释放的能量转移质子。

④ ABC 超家族含有几百种不同的转运蛋白,广泛分布于从细菌到人类的各种生物体中。每种ABC 超家族对于单一底物或相关底物的基团具有特异性。ABC 超家族共有的核心结构域:2个跨膜结构域,形成运输分子的跨膜通道并决定每个ABC 蛋白底物的特异性;2个胞质侧A TP 结合域,成员之间享有30%-40%的同源序列。

1、生物膜的基本结构特征是什么?这些特征与它的生理功能有什么联系?

答:⑴结构特征:

①由膜脂与膜蛋白构成。具有极性头部和非极性头部尾部的磷脂分子在水中具有自发形成封闭的膜系统的性质。磷脂分子以疏水性非极性尾部相对、极性头部朝向水相的磷脂双分子层,它是组成生物膜的基本结构成分。

②蛋白分子以不同的方式镶嵌在脂双层分子中或结合在其表面。

③可看成是蛋白质在双层分子中的二维溶液。

(2)功能:①为细胞的生命活动提供相对稳定的内环境;②选择性的物质运输,包括代谢底物的输人与代谢产物的排除,其中伴随着能量的传递;③提供细胞识别位点,并完成细胞内外信息跨膜传递;④为多种酶提供结合位点,使酶促反应高效而有序地进行;⑤介导细胞与细胞、细胞与基质之间的连接;⑥质膜参与形成具有不同功能的细胞表面特化结构。

(3)关系:各种不同的膜蛋白与膜脂分子的协同作用不仅为细胞生命活动提供了稳定的内环境,而且还行使着物质转运、信号传递、细胞识别等多种复杂的功能。流动性和不对称性是生物膜的基本特征,也是完成其生理功能的重要保证。

2、生物膜的基本特征

答:(1)流动性

①膜脂流动性:指脂分子的侧向运动。影响因素如下:脂肪酸链长度长,流动性低;脂肪酸链的饱和度高,流动性大;温度;胆固醇。

②膜蛋白的流动性:在脂双层二维溶液中的自发的热运动,不需要代谢产物参加,也不需要提供能量。

(2)不对称性

①膜脂的不对称性:指同一种膜脂分子在膜的脂双层中呈不均匀分布。糖脂只分布于细胞膜的外表面。

②膜蛋白的不对称性:每种膜蛋白分在在细胞膜上都具有特定的方向性和区域性。糖蛋白只分布于细胞膜的外表面。膜蛋白的不对称性是生物膜执行复杂的、时空调控有序的各种生理活动的保证。

6. 比较组成型胞吐途径和调节性胞吐途径的特点及其生物学意义。

答; 胞吐作用是将细胞内的分泌泡或其他膜泡中的物质通过细胞质膜运出细胞的过程。根据其过程是否连续将其分为组成型胞吐途径和调节型胞吐途径。

①组成型胞吐途径是指细胞从高尔基体反面管网状区分泌的囊泡向质膜流动并与之融合的稳定过程。新合成的囊泡膜的蛋白和膜类脂不断供应质膜更新,确保细胞分裂前质膜的生化功能,囊泡内可溶性蛋白分泌到细胞外,有的成为质膜外周蛋白,有的形成胞外基质组分,有的作为营养成分或信号分子扩散到胞外液。

②调节型胞吐途径是指分泌细胞产生的分泌物(如激素、糖液、消化酶)储存在分泌泡内,当细胞受到胞外信号刺激时,分泌泡与质膜融合并将其内含物释放出去的过程。调节型胞吐途径存在于特殊机能的细胞中,如已知脑垂体细胞分泌肾上腺皮质激素,胰岛的β细胞分泌胰岛素,胰腺的腺泡细胞分泌胰蛋白酶原,这三种分泌产物均分布在各自细胞的可调节性分泌泡中,只有在相应信号刺激下向细胞外分泌,保证特殊生理功能的可调节性。

8、概述受体酪氨酸激酶介导的信号通路的组成,特点及其主要功能

答:受体酪氨酸激酶(RTK ):一类重要的使酪氨酸磷酸化的细胞表面受体成员,包括6个亚族。其胞内域具有酪氨酸特异性的蛋白激酶活性。当它与特异配体结合后,可以导致该激酶酪氨酸残基磷酸化,这种磷酸化可启动细胞内信号通路。通路可概括为如下模式:配体→RTK →接头蛋白←GEF →Ras →Raf (MAPKKK )→MAPKK →MAPK →进入细胞核→其他激酶或基因调控蛋白(转录因子)的磷酸化修饰,对基因表达产生多种效应。

功能:RTK-Ras 信号通路是这类受体所介导的重要信号通路,具有广泛的功能,包括调节细胞的增值与分化,促进细胞的存货,以及细胞代谢过程中的调节与校正。

7. 试述细胞信号传导中细胞表面受体的主要种类和基本特点。

答:(1)离子通道耦联受体是由多亚基组成的,受体-离子通道复合体,本身既有信号结合位点,又是离子通道,其跨膜信号转导中无需中间步骤。

(2)G 蛋白耦联的受体是细胞表面由单条多肽经七次跨膜形成的受体,该信号通路是指配体-受体复合物与靶蛋白的作用必须通过G 蛋白耦联,在细胞内产生第二信使,从而将胞外信号跨膜传递到胞内,影响细胞的行为。

(3)与酶连接的受体,是跨膜蛋白,胞外部分有同配体结合的结构域,胞内结构域可以作为酶或同其他的一些蛋白质组成复合物后行使酶的作用。其传导反应比较慢,并且需要许多细胞内转换步骤。

(4)细胞表面整联蛋白介导的信号转导,跨膜蛋白受体为异二聚体,它是细胞外环境信号调控细胞内活性的渠道,又是介导细胞附着在胞外基质上的跨膜蛋白。

6. 半桥粒和黏着斑有哪些不同?

答:半桥粒与黏着斑这两种细胞黏着结构在不同基膜上形成。半桥粒是在成熟的上皮细胞与基膜的黏着结构,而黏着斑是在结缔组织及爬行的细胞与基膜的黏着结构,组成它们结构的细胞骨架蛋白是不同的,半桥粒与细胞内的中间纤维角蛋白相关联,而黏着斑与细胞内肌动蛋白纤维相关联。

5. 黏着斑与黏着带的根本区别:

答:黏着斑是细胞与细胞外基质进行连接,而黏着带是细胞与细胞间的黏着连接。参与黏着带连接的膜整合蛋白是钙黏着蛋白,而参与黏着斑连接的是整联蛋白;黏着带连接实际上是两个相邻细胞膜上的钙黏着蛋白之间的连接,而黏着斑连接是整联蛋白与细胞外基质中的纤连蛋白的连接,因整联蛋白是纤连蛋白的受体,所以黏着斑连接是受体与配体的结合所介导的。在黏着斑连接中,整联蛋白的胞质部分同样通过细胞质斑的介导与细胞骨架的肌动蛋白纤维相连。不过细胞质斑中的蛋白质成分与黏着带连接有所不同,它含有踝蛋白,这种蛋白质在其他的细胞斑中是不存在的。

3、胞外基质的组成、分子结构及生物学功能是什么?

答:(1)胶原

结构:基本结构单元为原胶原,原胶原分子间共价交联,呈1/4交替平行排列,形成胶原纤维。

功能:含量高,刚性和抗张力强度最大,构成细胞外基质的骨架结构,并与其他组分结合形成结构与功能的复合体;参与形成结缔组织;参与细胞外基质信号传递。

(2)弹性蛋白:

结构:是高度疏水的非糖基化蛋白,富含甘氨酸和脯氨酸;构象呈无规则卷曲状态,通过Lys 残基相互交联呈网状结构。

功能:与胶原纤维共同存在,弹性纤维赋予组织弹性,而胶原纤维赋予组织抗张性;在老年个体中表现最为明显。

(3)糖胺聚糖:

结构:由重复二糖单位构成的长链多糖,二糖单位为氨基几糖和糖醛酸。

功能:吸引大量的阳离子,吸水产生膨压,赋予胞外基质抗压的能力;在细胞外形成多孔的水和胶状体,提供机械支持作用。

(4)蛋白聚糖:

结构:由糖胺聚糖和核心蛋白共价连接形成的巨分子,是糖和蛋白质的复合物,含糖量达90%-95%。

功能:形成多孔、吸水的胶状物,保护细胞,抗挤压;可与成纤维细胞成长因子、转化生长因子结合,有利于激素分子与细胞表面受体结合,完成信号转导;部分蛋白聚糖参与基膜的构成。

(5)纤连蛋白

结构:高分子量糖蛋白,由2个亚基组成,在C端形成2个二硫键

功能:介导细胞的黏着;参与维持细胞形态,涉及细胞的癌变与迁移,参与胚胎发育\创伤修复,促进细胞的迁移。 (6)层粘连蛋白

结构:是一种高分子糖蛋白,由3条肽链借二硫键交联成的十字形分子。

功能:是各种动物胚胎和成体组织基膜的主要构成组分,在细胞表面形成网络结构并将细胞固定在基膜上,在胚胎发育组织分化中具有重要作用。

第四章大题(真核细胞内膜系统、蛋白质分选与膜泡运输)

2. 结合高尔基体的结构特征,谈谈它是怎样行使其生理功能的。

答:高尔基体是一种极性细胞器,由很多膜囊构成,它们在细胞中有相对固定的位置,靠近细胞核的一面为高尔基体顺面膜囊及顺面管网状结构,面向细胞膜的一面为高尔基体反面膜囊及反面管网状结构,二者之间为高尔基体中间膜囊。

高尔基体的主要功能是将内质网合成的多种蛋白质进行加工、分类与包装,然后分门别类地运送到细胞特定的部位或分泌到细胞外。内质网上合成的一部分脂质也要通过高尔基体向细胞膜和溶酶体膜等部位运输,因此可以说,高尔基体是细胞内大分子运输的一个主要交通枢纽。高尔基体还是细胞内糖类合成的工厂。

高尔基体不同膜囊的膜上和腔中分别具有不同的酶和其他转运蛋白组分,帮助它们分别完成其不同的功能。如在高尔基体的顺面膜囊的膜上具有KDEL 受体,可将逃逸出来的内质网驻留蛋白捕获并送回内质网,实现蛋白的初步分拣。其中含有的N-乙酰葡萄糖胺磷酸转移酶和N-乙酰葡萄糖胺磷酸糖苷酶可将溶酶体酶上的甘露糖进行磷酸化,形成M6P ,其可被TGN 区的特异性地识别并结合,实现溶酶体酶的分选。中间膜囊含有多种糖基转移酶,可对蛋白进行复杂的糖基化修饰。反面膜囊上含有不同的蛋白酶和受体蛋白,在对蛋白进行分类包装和水解等加工过程后,将成熟蛋白转运到细胞的不同部位。

4. 试述溶酶体的形成过程及其基本功能。

答:(1)溶酶体酶具有信号区/信号斑,CGN 区中的磷酸转移酶识别溶酶体蛋白的信号斑,并对其上的甘露糖进行磷酸化,形成M6P ,TGN 区的M6P 受体特异性地识别并结合M6P ,引起溶酶体酶聚积,然后出芽形成有被小泡,有被小泡脱去包被形成无被运输小泡,无被小泡与前溶酶体逐渐融合,在前溶酶体中的酸性环境下,M6P 受体与M6P 分离,溶酶体酶释放到腔中,形成成熟酶,此时初级溶酶体形成了。

(2)功能:①消化作用,溶酶体可以消化分解多种外源性和内源性物质,据物质的来源不同,分为异噬作用、自噬作用、粒溶作用②自溶作用与器官发育,如蝌蚪尾巴的消失③参与受精作用④参与激素的生成,甲状腺素是溶酶体的参与下形成的⑤在骨质更新中的作用,破骨细胞的溶酶体酶能释放到细胞外,分解和消除旧的骨基质,这时骨质更新的重要步骤。

4、已知的膜泡运输有哪几种类型:各自的功能是什么?

答:膜泡运输包括COP II有被小泡运输、COP I有被小泡运输、网格蛋白有被小泡运输。网格蛋白有被小泡负责蛋白质由高尔基体TGN 到质膜、胞内体或溶酶体和植物液泡的运输,在受体介导的细胞内吞途径中负责将物质从质膜运到细胞质,以及从胞内体到溶酶体的运输。COP I有被小泡 负责回收、转运内质网逃逸蛋白质返回内质网。COP II有被小泡介导从内质网到高尔基体的物质运输,

1、细胞内蛋白质合成部位及其去向如何?

答:细胞中由核基因编码的所有蛋白质的合成皆起始于细胞质基质之中的核糖体上。其中某些蛋白在细胞质基质中完成多肽链合成,然后被转运到细胞质基质的特定部位或细胞核、过氧化物酶体、内质网和线粒体/叶绿体等由膜包围的细胞器中。

另一些蛋白,如分泌蛋白、膜整合蛋白和某些细胞器(内质网、溶酶体、液泡、线粒体/叶绿体和高尔基体)的驻留蛋白,它们在起始合成不久后被转移到糙面内质网膜上,继续完成蛋白质合成。这些蛋白被分泌到细胞外、整合到膜结构或运输到上述细胞器的腔中。线粒体/叶绿体基因编码且利用它们自身核糖体合成的蛋白则在这两种细胞器的腔内完成,然后到达膜上或保留在基质液中。

3. 蛋白质糖基化的基本类型、特征及生物学意义是什么?

答:(1)糖基化由两种形式,即N-连接糖基化和O-连接糖基化。

①N-连接糖基化中寡糖连接到蛋白质天冬酰胺的酰胺氮原子上,这发生在糙面内质网和高尔基体中,成熟的N-连接的寡糖链都含有2个N-乙酰葡萄糖胺和3个甘露糖残基;②O-连接糖基化中寡糖与蛋白质丝氨酸、苏氨酸或在胶原纤维中羟赖氨酸或羟脯氨酸的羟基上,这在高尔基体中进行,由不同的糖基转移酶催化,每次加上1个单糖。最后一步是在高尔基体反面膜囊和TGN 中加上唾液酸残基。

(2)意义:给蛋白加上标志,利于高尔基体的分类与包装,保证糖蛋白从RER 至高尔基体膜囊单方向转移;影响多肽构象,促使其正确折叠,侧链上的多羟基糖还可以影响蛋白的水溶性及所带电荷的性质;增强蛋白稳定性,低于水解酶降解;在细胞表面形成糖萼,起细胞识别和保护质膜作用。

6. 为什么说高尔基体是一种极性细胞器?

答:极性包含两层含义:结构上的极性和功能上的极性。

结构上的极性:高尔基体可分为几个不同的功能区室。(1)靠近内质网的一面是由一些管状囊泡形成的网络结构,称为顺面,又称顺面高尔基网络(CGN )(2)高尔基体中间膜囊由扁平囊和管道组成,形成不同的区室,但功能上是连续的、完整的膜体系。多数糖基修饰、糖脂的形成,以及与高尔基体有关的多糖的合成都发生在中间膜囊中(3)反面高尔基网络(TGN ),是高尔基复合体最外面一侧的管状和小泡状物质组成的网络解耦,是高尔基复合体的组成部分,并且是最后的区室。它的主要功能是参与蛋白质的分类与包装,并输出高尔基体。

功能上的极性:高尔基体虽然是由膜囊构成的复合体,但是不同的膜囊有不同的功能,上一道工序完成了,才能进行下一道,即为高尔基体的功能极性。

7. 溶酶体酶如何经M6P 分选途径进行分选?

答:溶酶体形成的M6P 分选途径的主要过程是:具有M6P 标记的溶酶体酶在反面高尔基体网络与受体结合后,在网格蛋白帮助下形成具有网格蛋白外被的溶酶体酶分泌小泡,网格蛋白解聚后的溶酶体酶分泌小泡与内体融合,与M6P 受体结合的溶酶体酶与受体脱离,释放到内体中;接着,由次级内体中的磷酸酶使溶酶体酶脱磷酸,防止溶酶体酶与M6P 受体重新结合。融合后的次级内体可以通过出芽形成两种类型的小跑,一种含有溶酶体酶蛋白但不含M6P 受体,即是成熟的溶酶体;另一种小泡只含有M6P 受体,不含有酶,它们主要是同反面高尔基体膜融合。

第五章大题(线粒体与叶绿体)

4. 比较氧化磷酸化和光合磷酸化的异同。

答:(1)相同:需要通过电子传递链中的质子载体建立跨膜的H+浓度梯度;需要完整膜结构维持跨膜的H_浓度梯度;ATP 的生成都是由质子动力势驱动的H+流过ATP 合酶而推动的;ATP 合酶复合体的结构十分相似,都具有F1头部和F0基部,且F1催化ATP 形成。

(2)不同:光合磷酸化 氧化磷酸化

发生部位 叶绿体中的类囊体膜;线粒体的内膜

电子传递链组成 PS I、PS II、PQ 、 Cyt b6f复合物;复合物I 、II 、III 、IV 、CoQ

最初电子来源:水光解;NADH 或FADH2

最终电子受体:NADP+;O2

ATP 生成时H+流向:类囊体腔流向基质;膜间隙流向基质

驱动力:主要靠H+浓度差驱动;电位差和浓度差

终产物:NADPH 、ATP 和O2;ATP 和水

生成1个ATP 需H+数:2;3

第六章大题(细胞核与染色体)

2、试述核孔复合体的结构及其功能。

答:(1)结构:核孔复合体由胞质环、核质环、辐和中央栓四部分组成。

(2)功能:是核质交换的双功能、双向性亲水通道,主要进行核质间的物质交换和信息交流。双向性表现在既介导蛋白质的入核转运,又介导RNA 、核糖核蛋白颗粒的出核转运。双功能表现在它有两种运输方式:被动扩散与主动运输。在物质交换的过程中,通过信息物质的出核和入核转运并同细胞核内或细胞质内相关受体结合,实现核质间的信息交流。

1、分析中期染色体DNA 的3种功能元件及其作用

答:自主复制DNA 序列:确保染色体在细胞周期中能够自我复制;着丝粒DNA 序列:保证染色体平均分配到子细胞中;端粒DNA 序列:DNA 末端的高度重复序列,保持染色体的独立性和稳定性。包装功能基因在复制过程中不被切除,从而能够正常向下代传递。

1. 概述核仁的结构及其功能。

答:核仁是真核细胞间期核中最明显的结构。它通常是单一的或者多个匀质的球形小体。没有被膜包裹,包括:纤维中心、致密纤维阻止和颗粒组分。核仁的主要功能涉及核糖体的生物发生,包括r RNA合成、加工和核糖体亚单位的装配。

2. 组蛋白与非组蛋白如何参与表观遗传的调控?

答:表观遗传是指由非DNA 序列变化引起的彪形变化,主要是由DNA 化学修饰导致的。

组蛋白主要参与核小体形成,形成染色质的高级结构,位于核小体上的DNA 的转录活性受组蛋白和DNA 间结合状态的影响。组蛋白通过甲基化、乙酰化和磷酸化而导致和DNA 的结合改变,当二者之间的结合变紧密时,基因转录活性下降或不能转录,当变疏松时,基因转录活性增强或激活,从而影响表观遗传。

非组蛋白可以和DNA 上的特异位点结合,引起DNA 构象变化,导致DNA 和其他非组蛋白以及组蛋白的结合发生变化。最终促使DNA 解螺旋,DNA 和组蛋白分离使染色质结构疏松,或引起基因的失活或激活,从而影响表观遗传。

第八章大题(细胞骨架)

1、试述三种胞质细胞骨架的主要成分、形态结构,功能及特异性药物。

答:细胞骨架:是指真核细胞中的蛋白纤维网架体系。广义的细胞骨架包括细胞核骨架,细胞质骨架,细胞膜骨架和细胞外基质。狭义的细胞骨架是指细胞质骨架,包括微丝(MF )、微管(MT )和中间纤维(中间丝,IF )。细胞骨架在细胞质内形成的网络结构支撑维持细胞的形状,并在细胞运动、物质运输和细胞分裂等方面发挥一定的作用。

(1)微管的结构:中空圆柱状,直径15nm ,一般长几微米,微管蛋白是与肌动蛋白相似的一种酸性蛋白质,常以二聚体存在(α、β-微管蛋白)

微管功能:支架:维持细胞形态,固定细胞器;细胞收缩,伪足运动,如纤毛,鞭毛;细胞器位移、染色体分裂与位移;胞质内物质运输。

微管药物:紫杉酚:与微管结合使之稳定,促进微管的聚合、抑制微管解聚;秋水仙素:一种生物碱,与微管蛋白亚基结合,抑制微管装配;长春花碱:抑制微管形成和破坏纺锤体的作用。

(2)微丝结构:微丝存在很普遍,具有可变结构,直径6微米,由肌动蛋白组成,与微管共同构成细胞支架。

微丝功能:与微管共同形成细胞支架,以维持细胞形状;具有运动功能,与细胞质的运动紧密相关;与细胞器关系密切;细胞内信号传递、蛋白质合成支架。

微丝药物:鬼笔环肽:特异性与微丝侧面结合,增强器稳定性,抑制微丝解聚,对微丝具有稳定作用;细胞松弛素:可以切断微丝,并结合在微丝正极阻抑肌动蛋白聚合,因而可以破坏微丝的三维网络,特异性的抑制微丝装配。

(3)中间纤维:大小介于微管和微丝之间,结构复杂。中间纤维具有严格的组织特异性,不同类型细胞含有不同IF 。可分为5类:角蛋白纤维:为上皮细胞特有,具有α和β两类,β角蛋白存在于细胞中,α角蛋白形成头发、指甲等坚韧结构; 波形纤维:存在于间充质细胞及中胚层来源的细胞中; 神经胶质纤维:存在于星形神经胶质细胞; 结蛋白纤维:存在于肌肉细胞; 神经元纤维:存在于神经元中; 此外细胞核中的核纤层蛋白也是一种中间纤维。 功能:中间纤维的组织特异性,可应用于肿瘤细胞的组织来源鉴别。

第九章大题(细胞增殖及其调控)

1、什么是细胞周期?细胞周期各时期主要变化是什么?

答:从上一次细胞分裂结束开始,经过物质积累过程,直到下一次细胞分裂结束为止,称为一个细胞周期。它包括细胞生长、DNA 复制和细胞分裂,最终将细胞遗传物质和其他内含物分配给两个子代细胞。

一个细胞周期可分为G1、S 、G2和M 四个时期。主要变化如下:

①G1期:G1期细胞的物质代谢活跃,进行RNA 和蛋白质的合成,细胞体积增大,dNTP 积累,为细胞进入S 期做准备。在G1晚期由检验点,检验前次有丝分裂是否完成、外界环境条件是否合适、细胞是否充分长大、DNA 是否有损伤。多数细胞的细胞周期时间长短主要由G1期决定

②S 期。主要事件是DNA 复制,常染色质与异染色质的复制不同步进行,DNA 量加倍

③G2期。合成大量的蛋白质,但此期合成的蛋白与前两期的不同,主要为细胞进入M 期做好充分准备,如合成着丝粒蛋白质、成熟促进因子、细胞周期蛋白B 和微管蛋白等

④M 期。核膜破裂,核仁消失,染色质形成染色体,子染色体移向两级,在两级形成子核,胞质分裂,形成两个子细胞。

2、什么是干细胞?它分哪几种类型,各型的特征是什么?什么是肿瘤干细胞?

答:分化程度相对较低、具有不断增殖和分化能力的细胞叫做干细胞。根据分化的潜能大小,干细胞可以分为多能干细胞和单能干细胞。前者可以分化出多种类型的细胞,后者只能分化出一种类型的细胞。根据来源和分化潜能,干细胞也可以分为胚胎干细胞和成体干细胞。胚胎干细胞具有分化成各种细胞类型的潜能,例如囊胚期时,囊胚内细胞团的细胞即为胚胎干细胞。

肿瘤干细胞即生长不受控制、可以自我更新并多向分化、具有迁移至某些特定组织和排除有毒化学因子能力、在肿瘤组织内数量较少的一群细胞。

2、组织特异性基因的表达是如何调控的?

答:组织特异性基因通过组合调控而引发表达。即每种类型的细胞的分化是由多种调控蛋白共同调控完成的。如果调控蛋白数是n ,那么调控的组合在理论上就可以启动分化的细胞类型为2^n。然而在启动细胞分化的各类调控蛋白组合中,其中往往只有一两种起决定性的因子。这样,单一的调控蛋白就有可能启动整个细胞的分化过程。这时一种高效而经济的细胞分化启动机制。复杂的有机体正是通过这一原则的重复运用逐渐完成形态建成的。

4、说明癌症的发生与癌基因和抑癌基因的关系。

答:癌的生成涉及多种基因和基因以外的变化,单独一种基因的突变不足以致癌,多种基因变化的积累才能引起控制细胞生长和分化的机制紊乱,使细胞的增生失控而癌变。在这些基因的变化中最常发生的两类基因的异常变化时癌基因及抑癌基因变化。癌基因是指其编码的产物与细胞的肿瘤性转化有关的基因。它以显性的方式作用,对细胞生长起阳性作用,并促进细胞转化。抑癌基因正常时起抑制细胞增殖和肿瘤发生的作用。许多肿瘤均发现抑癌基因的两个等位基因缺失或失活,失去细胞增生的阴性调节因素,从而对肿瘤细胞的转化和异常增生起作用。细胞的生长是推动细胞周期进行的基因产物与抑制其进行的基因产物之间微妙平衡的结果。任何一种产物的异常表达,如一种癌基因的过度表达,或一种抑癌基因的失活,都可能导致细胞生长的失控。癌的生成是一个涉及多种癌基因活化和抑癌基因失活的多步骤累积变化的过程。

5、简述癌细胞的主要特征

答:细胞生长和分裂失去控制,表现为核质比增大,分裂速度加快;具有浸润性和扩散性,表现为细胞黏着性下降;细胞间的相互作用发生变化,异常表达一些膜受体蛋白,便于和别处的细胞黏着生长,并借此逃脱免疫监控;转录谱系发生变化。

第十一章大题(细胞衰老与凋亡)

1. 细胞凋亡的概念、形态特征及其与坏死的区别是什么?

答;(1)细胞凋亡是一个主动的由基因决定的自动结束生命的过程,也称为细胞程序性死亡。凋亡细胞将被吞噬细胞吞噬。细胞凋亡时在细胞、亚细胞和分子水平上发生了特征性改变。这种改变包括细胞核的改变、细胞器的改变、细胞膜成分的改变和细胞形态的改变等,其中细胞核改变最明显。

(2)首先出现的是细胞体积缩小,连接消失,与周围的细胞脱离,然后是细胞质密度增加,核质浓缩,核膜核仁破碎,胞膜由小泡状形成,胞膜结构仍然完整,最终可将凋亡细胞遗骸分割包裹为几个凋亡小体,无内容物外溢。凋亡小体可迅速被周围专职或非专职吞噬细胞吞噬。

(3)细胞凋亡由基因决定;由强烈的刺激产生;胞膜及细胞器相对完整,细胞皱缩,核固缩,有凋亡小体形成;溶酶体相对完整,局部无炎症反应;存在病理变化。

细胞坏死:不由基因决定;较弱的刺激引发;细胞结构全面溶解、破坏,细胞肿胀;溶酶体破裂,局部有炎症;存在生理或病理变化。

4、动物细胞凋亡的基本途径有哪些?

答:可以分为死亡受体介导的细胞凋亡途径和线粒体介导的细胞凋亡途径。

(1)死亡受体介导的细胞凋亡途径

当细胞接受凋亡信号分子(Fas 、TNF 等)后,凋亡细胞表面信号分子受体相互聚集并与细胞内的接头蛋白结合,这些接头蛋白又募集Procaspase 聚集在受体部位,Procaspase 相互活化并产生级联反应,使细胞凋亡。下游Procaspase 活化后,作用底物:裂解核纤层蛋白,导致细胞核形成凋亡小体;裂解DNase 结合蛋白,使DNase 释放,降解DNA 形成DNA ladder;裂解参与细胞连接或附着的骨架和其他蛋白,使凋亡细胞皱缩、脱落,便于细胞吞噬;导致膜脂PS 重排,便于吞噬细胞识别并吞噬。

(2)线粒体介导的细胞凋亡途径

当Caspase-8活化后,它一方面作用于Caspase-3,另一方面使Bid 裂解成2个片段,其中含BH3结构域的C 端片段被运送到线粒体,与Bcl-2/Bax的BH3结构域形成复合物,导致细胞色素c 释放。Cyt c与胞质中Ced4同源物Apaf-1结合并活化Apaf-1,活化的Apaf-1再活化Caspase-9,最后引起细胞凋亡。

近年,还有人提出的了细胞凋亡的溶酶体途径,认为溶酶体可介导细胞的凋亡。


相关内容

  • 第二节基因在亲子代间的传递(教案)
  • 人教版义务教育教材◎生物学八年级下册 第二节 基因在亲子代间的传递 教学目标 一.知识目标 1.描述基因.DNA和染色体之间的关系. 2.描述生殖过程中染色体数量的变化. 3.说出基因经生殖细胞在亲子代间的传递. 二.能力目标 1. 通过观察分析图片资料.录像资料,引导学生理解性状的遗传是基因在亲子 ...

  • 人教版生物必修三课后练习答案
  • 高中生物必修3<稳态与环境>课后答案和提示 第1章 人体的内环境与稳态 第1节 细胞生活的环境 (一)问题探讨 1.图1中是人体血液中的血细胞,包括红细胞.白细胞等:图2中是单细胞动物草履虫. 2.血细胞生活在血浆中.草履虫直接生活在外界水环境中.两者生活环境的相似之处是:都是液体环境: ...

  • 2017苏州大学考研资料与专业综合解析
  • 2017苏州大学考研资料与专业综合解析 专业名称.代码:世界经济[020105] 所属门类代码.名称:经济学[02] 所属一级学科代码.名称:理论经济学[0201] 所属学院:东吴商学院 世界经济学专业介绍: 世界经济学是理论经济学一级学科下属的二级学科之一,世界经济学是一门前沿性和综合性很强的理论 ...

  • 化学选修1[化学与生活]课后习题答案
  • 化学<化学与生活>课后习题答案 1.1 生命的基础能源--糖类 1.糖类物质对人类生活有重要意义,可引导学生从人类的衣.食.住.行和人体健康等方面去讨论. 2.可从每天吃的主食(面食.大米.玉米等)和水果中列举. 3.纤维素有助于食物的消化和废物的排泄,可预防便秘.痔疮和直肠癌:降低胆固 ...

  • 高二英语教学总结
  • 高二英语教学总结 本学期我继续担任高二3.4两个理科班的英语科教学,根据学期初制定的教学计划,现已基本完成教学任务.这一学期来,本人更积极地去了解学生,去摸清学生的学习基础,以便以更好的"因材施教".在教学中认真备课.上课.听课.评课,及时批改作业.讲评作业,做好课后辅导工作,广 ...

  • 法律课程微课与翻转课堂教学的创新应用
  • 摘 要:法律传统课堂的教学受教师被动的讲授模式的限制而无法引导学生自主学习.在这种模式下,学生被动接受课堂传授的知识,课后无法有效消化,导致教学成效偏低.而微课程与翻转课堂的引入大大提高了学生的学习主动性.以法律小故事的微课视频制作,建立课前.课中和课后的学习机制,从而培养学生的专业能力和专业素质, ...

  • 九年级化学下册教案
  • 九年级化学下册教案 金华中学 路璐 第一课时 溶液的形成 教学目标 认识溶解现象,知道溶液.溶剂.溶质等概念: 知道溶液是一类重要的物质,在生产和生活中有重要应用. 学习科学探究和科学实验的方法,练习观察.记录.分析实验现象. 重点和难点 重点:建立溶液的概念并认识溶液.溶质.溶剂三者的关系. 难点 ...

  • 初级药士(基础知识)第三习题
  • 第三章微生物学 一.A 1.关于风疹病毒,正确的是 A. 含有DNA B. 裸露病毒 C. 成人易感 D. 可导致垂直传播 E. 可引起动物感染 2.关于霍乱弧菌,正确的是 A. 产生神经毒素 B. 嗜碱性 C. 不能运动 D. 严格厌氧 E. 有芽胞 3.关于葡萄球菌,错误的是 A. 均可致病 B ...

  • 名师一号·高考总复习新课标生物3-1-28
  • 课后限时练(二十八) 免疫调节 1.(2012·江苏单科) 下列关于免疫调节的叙述,错误的是( ) A .神经调节和体液调节都与机体免疫有关 B .浆细胞能增殖分化成具有分裂能力的记忆细胞 C .HIV 病毒主要攻击T 细胞导致免疫功能严重缺陷 D .大规模饲养家畜时合理使用动物激素可提高免疫力 解 ...