全基因组重测序数据分析

全基因组重测序数据分析 1.

简介(Introduction)

通过高通量测序识别发现de novo的somatic 和germ line 突变,结构变异-SNV ,包括重排突变(deletioin, duplication 以及copy number variation)以及SNP 的座位;针对重排突变和SNP 的功能性进行综合分析;我们将分析基因功能(包括miRNA ),重组率(Recombination )情况,杂合性缺失(LOH )以及进化选择与mutation 之间的关系;以及这些关系将怎样使得在disease (cancer )genome 中的mutation 产生对应的易感机制和功能。我们将在基因组学以及比较基因组学,群体遗传学综合层面上深入探索疾病基因组和癌症基因组。

实验设计与样本

(1)Case-Control 对照组设计;

(2)家庭成员组设计:父母-子女组(4人、3人组或多人);

初级数据分析

1.数据量产出:总碱基数量、Total Mapping Reads、Uniquely Mapping Reads统计,测序深度分析。

2.一致性序列组装:与参考基因组序列(Reference genome sequence)的比对分析,利用贝叶斯统计模型检测出每个碱基位点的最大可能性基因型,并组装出该个体基因组的一致序列。

3.SNP 检测及在基因组中的分布:提取全基因组中所有多态性位点,结合质量值、测序深度、重复性等因素作进一步的过滤筛选,最终得到可信度高的SNP 数据集。并根据参考基因组信息对检测到的变异进行注释。

4.InDel 检测及在基因组的分布: 在进行mapping 的过程中,进行容gap 的比对并检测可信的short InDel。在检测过程中,gap 的长度为1~5个碱基。对于每个InDel 的检测,至少需要3个Paired-End 序列的支持。

5.Structure Variation检测及在基因组中的分布: 能够检测到的结构变异类型主要有:插入、缺失、复制、倒位、易位等。根据测序个体序列与参考基因组序列比对分析结果,检测全基因组水平的结构变异并对检测到的变异进行注释。

高级数据分析

1. 测序短序列匹配(Read Mapping)

(1)屏蔽掉Y 染色体上假体染色体区域(pseudo-autosomal region), 将Read 与参考序列NCBI36进行匹配(包括所有染色体,未定位的contig ,以及线粒体序列mtDNA (将用校正的剑桥参考序列做替代)) 。采用标准序列匹配处理对原始序列文件进行基因组匹配,将Read 与参考基因组进行初始匹配;给出匹配的平均质量得分分布;

(2)碱基质量得分的校准。我们采用碱基质量校准算法对每个Read 中每个碱基的质量进行评分,并校准一些显著性误差,包括来自测序循环和双核苷酸结构导致的误差。

(3)测序误差率估计。pseudoautosomalcontigs ,short repeat regions(包括segmental duplication,simple repeat sequence-通过tandem repeat识别算法识别)将被过滤;

2. SNP Calling 计算(SNP Calling)

我们可以采用整合多种SNP 探测算法的结果,综合地,更准确地识别出SNP 。通过对多种算法各自识别的SNP 进行一致性分析,保留具有高度一致性的SNP 作为最终SNP 结果。这些具有高度一致性的SNP 同时具有非常高的可信度。在分析中使用到的SNP 识别算法包括基于贝叶斯和基因型似然值计算的方法,以及使用连锁不平衡LD 或推断技术用于优化SNP 识别检出的准确性。

统计SNV 的等位基因频率在全基因组上的分布

稀有等位基因数目在不同类别的SNV 中的比率分布(a );SNV 的类别主要考虑:(1)无义(nonsense ), (2)化学结构中非同义,(3)所有非同义,(4)保守的非同义,(5)非编码,(6)同义,等类型SNV ;另外,针对保守性的讨论,我们将分析非编码区域SNV 的保守型情况及其分布(图a, b)

3. 短插入

/缺失探测(Short Insertion /Deletion (Indel )Call )

(1). 计算全基因组的indel 变异和基因型检出值的过程

计算过程主要包含3步:(1)潜在的indel 的探测;(2)通过局部重匹配计算基因型的似然值;(3)基于LD 连锁不平衡的基因型推断和检出识别。Indel 在X ,Y 染色体上没有检出值得出。

(2). Indel过滤处理

4. 融合基因的发现(Fusion gene Discovery)

选择注释的基因信息来自于当前最新版本的Ensemble Gene数据库,RefSeq 数据库和Vega Gene 数据库。下面图例给出的是融合基因的形成,即来自不同染色体的各自外显子经过重组形成融合基因的模式图。

5. 结构变异(Structure Variation)

结构变异(Structure Variation-SV )是基因组变异的一类主要来源,主要由大片段序列(一般>1kb)的拷贝数变异(copy number variation, CNV)以及非平衡倒位(unbalance inversion)事件构成。目前主要一些基因组研究探测识别的SV 大约有20,000个(DGV 数据库)。在某些区域上,甚至SV 形成的速率要大于SNP 的速率,并与疾病临床表型具有很大关联。我们不仅可以通过测序方式识别公共的SV ,也可以识别全新的SV 。全新的SV 的生成一般

在germ line和突变机制方面都具有所报道。然而,当前对SV

的精确解析需要更好的算法实现。同时,我们也需要对

SV 的形成机制要有更重要的认知,尤其是SV 否起始于祖先基因组座位的插入或缺失,而不简单的根据等位基因频率或则与参考基因组序列比对判断。SV 的功能性也结合群体遗传学和进化生物学结合起来,我们综合的考察SV 的形成机制类别。

SV 形成机制分析,包括以下几种可能存在的主要机制的识别发现:

(A )同源性介导的直系同源序列区段重组(NAHR );

(B )与DNA 双链断裂修复或复制叉停顿修复相关的非同源重组(NHR );

(C )通过扩展和压缩机制形成可变数量的串联重复序列(VNTR );

(D )转座元件插入(一般主要是长/短间隔序列元件LINE/SINE或者伴随TEI 相关事件的两者的组合)。

结构变异探测和扩增子(Amplicon )的探测与识别分析:如下图所示

6. 测序深度分析

测序深度分析就是指根据基因组框内覆盖度深度与期望覆盖度深度进行关联,并识别出SV 。我们也将采用不同算法识别原始测序数据中的缺失片段

(deletion )和重复片段(duplication )。

7. SV探测识别结果的整合与FDR 推断(可选步骤)

(1). PCR或者芯片方式验证SV

(2). 计算FDR-错误发现率(配合验证试验由客户指定)

(3) 筛选SV 检出结果用于SV 的合并和后续分析:我们通过不同方式探测识别SV 的目的极大程度的检出SV ,并且降低其FDR (

8. 变异属性分析

(1) neutral coalescent分析

测序数据可以探测到低频率的变异体(MAF

(2). 全新变异体(novel variant)的等位基因频率和数量分布

分析对象包括全新预测的SNP ,indel ,large deletion, 以及外显子SNP 在每个等位基因频率类别下的数目比率(fraction )(参见下图);全新预测是指预测分析结果与dbSNP (当前版本129)以及deletion 数据库dbVar (2010年6月份版本)和已经发表的有关indels 研究的基因组数据经过比较后识别确定的全新的SNP ,indel 以及deletion 。dbSNP 包含SNP 和indels; dbVAR包含有deletion,duplication, 以及mobile element insertion。dbRIP 以及其他基因组学研究(JC Ventrer以及Watson 基因组,炎黄计划亚洲人基因组)结果提供的short indels和large deletion。

(3). 变异体的大小分布以及新颖性分布

计算SNP ,Deletion ,以及Insertion 大小分布;计算SNP ,Deletion ,以及Insertion 中属于全新预测结果的数目占已有各自参考数据库数目的比例(相对于dbSNP 数据库;dbSNP 包含SNP 和indels;dbVAR 包含有deletion,duplication, 以及mobile element insertion。dbRIP 以及其他基因组学研究(JC Ventrer以及Watson 基因组,炎黄计划亚洲人基因组)结果提供的short indels和large deletion)其中,可以给出LINE ,Alu 的特征位置。

(4). 结构变异SV 的断点联结点(BreakPoint Junction)分析

根据SV 不同检出结果经过一些列筛选步骤构建所有结构变异SV 的断点联结点数据库,保留长度大于等于50bp 的SV ;分析断点联结点处具有homology 或者microhomology 的SV ;并将同一染色体,起始和终止位置坐标下的不同SV 进行去冗余处理。

分析识别SV 的断点联结点(Breakpoint ): 将Breakpoint 按照可能形成的方式可以分类为以下几类:

(a )非等位基因同源重组型(non-allelic homologous recombination-NAHR);

(b )非同源重组(nonhomologous recombination-NHR),包括nonhomologous end-joining (NHEJ)和fork stalling /template switching(FoSTeS/MMBIR);

(c )可变串联重复(VNTR )

(d )转座插入元件(TEI )。

图 C

SV 形成偏好性分析

分析SV 形成机制与断裂点临近区域序列的关系,包括染色质界标(端粒,中心粒),重组高发热点区域,重复序列以及GC含量,短DNA motif和微同源区域(microhomology region)。

9. 突变率估计

针对以家庭成员为单位的测序方案,我们主要探测de novo的突变(DNM );通过采用不同的方法/算法,我们给出每个家庭一份推断的DNM 报表;

(1) 根据基因型推断结果,分别对每人每碱基位置上的de novo突变进行综合度量;

(2) 采用贝叶斯方法计算家庭组设计中DNM 的后验概率

10. SNP,SNV 功能分析与注释

(1). 祖先等位基因的注释

通过将人类(NCBI36),黑猩猩(chimpanzee2.1),猩猩(PPYG2)以及恒河猴(MMUL1)4种基因组进行基因组比对,发现保守的序列区域,计算祖先等位基因;以及

duplication/deletion事件的进化分析。

(2). 分析基因结构序列上不同区域的多样性(Diversity )与分歧进化(divergence )

根据基因型分析结果计算基因结构序列上的多样性程度,即杂合度(heterozygosity); 杂合度指标可以说明选择效应的存在以及局部变异的结构分布特征模式。我们将考虑基因5’UTR上游200bp ,5’UTR ,第一个外显子,第一个内含子,中间外显子,中间内含子,最末外显子和内含子,以及3’UTR及其下游200bp 区域左右考察的范围(参见下图a) 。 分析编码转录本的起始/终止位置临近区域的多样性和进化分歧度(参见下图b )。

(3). 疾病变异体探测

将样本测序中分析得到SV 与HGMD 疾病变异体数据进行比对,得到交叉记录的错义和无义的SNP ;通过将HGMD 疾病关联突变与CUI (疾病概念分类标识数据库)比对获得HGMD 中所有SV 的疾病表型,并获得HGMD 与测序数据分析得到的SV 的疾病表型;并通过Fisher 检验和Bonferroni 多重假设检验校正计算样本SV 所富集的疾病表型。

(4).

拷贝数变异CNV

所含基因的功能注释

将CNV 是否覆盖区段重复SD 区域分类为2大类,每类CNV 的所含基因的功能富集情况计算,显著性在横轴表示;各种显著性功能在纵轴表示。

(5). 变异的功能性分析与注释

(a ). SNP, Indels以及大的结构变异SV 的功能注释;

(b ). 对包含翻译起始注释信息的转录本编码区上的SNP 分类为:同义SNP ,非同义SNP 和无义SNP (引入终止子),干扰终止子的SNP ,以及干扰剪接位点的SNP ;为了降低假阳性,我们采用严格的筛选方式过滤来自indels 的错误;

(c ). 对错义编码区突变的功能性分析: 通过信息学分析算法评估相对于生殖系变异的体细胞突变对蛋白质的结构和功能的影响效应。

(6). SNV,SNP 与miRNA 研究之间的关联分析

miRNA 是起重要的调控作用的小分子,我们将对miRNA 的pri-mRNA ,pre-miRNA 以及miRNA 靶基因序列进行分析,识别潜在的SNP 功能位点。据文献研究提供证据表明Human pre-miRNA 的二级结构中存在不同位置上的SNP ,我们将通过热力学稳定性分析方法评估SNP 对pre-miRNA 结构的影响;另外,我们也将对miRNA-Target 靶基因相互作用位点做分析,评估对SNP 对靶基因靶向性的影响。

(7). SNV,SNP 与GWAS 研究之间的关联分析

分析GWAS 研究中得到的易感基因在基因组上不同坐标上的OR 值分布情况;将当前已知的GWAS 研究成果与SNP 进行比较;根据LD 连锁不平衡将SNP 与易感基因的关系进行深入讨论; 直接与间接关联方法可以分别识别与表型相关的SNP ,对于不易获得(missing )和定位的SNP ,通过LD 连锁不平衡推断疾病易感基因突变座位。

(8) 生物学通路(代谢通路,信号通路)分析

生物学通路(Biological pathway),包括代谢通路和信号转导通路是生物功能的重要组成部分,我们将各种形式的突变、变异,包括SNV 和SNP ,的对应基因放到生物学通路中进行综合分析,考察功能性突变对pathway 的影响程度和影响的规律。通过GSEA (配合芯片表达谱数据),KS 检验,超几何分布检验等方法对变异基因在某些pathway 的富集程度进行排序,识别发生功能改变的潜在通路。

(9). 蛋白质

-蛋白质相互作用(PPI )网络分析

蛋白质相互作用也是生物分子功能增益和缺失的重要途径,因此我们针对蛋白质相互作用网络中的突变的蛋白及其收到影响的网络节点蛋白进行系统分析,并对收到影响的网络子结构进行功能注释分析和聚类富分析。我们采用网络分析算法对由于各种突变所受到影响的子网络(subnetwork )进行功能富集度的分析;

(10). 顺式基因调控网络模块(CRM )分析

(a) 启动子序列分析

包括动子区域上的Motif 预测,并与已知转录因子数据库TRANSFAC 和JASPAR 中的TFBS 结合位点进行比对;

启动子区域上保守性分析,分析突变位置和保守性区域的关联;

(b) 计算全基因组保守性。确定TFBS 的保守性以及mutation 位置的保守性;

11)重排(arrangements )与突变(mutation )的全基因组统计

(a ). 体细胞(somatic)和生殖系(germline )重排(arrangements )

体细胞突变是相对于germ line 突变的一类需要重要分析的内容,我们针对Case-control 设计的测序方案可以分别分析突变的情况,包括SNV ,indel ,以及CNV ;如果仅在

tumor/disease(Case组) 出现而不在normal (对照组)出现的突变我们可以认为是somatic 体细胞突变。将somatic mutation 与dbSNP 数据库比对可以发现潜在的全新的突变和有记录的突变位置。然后,将突变分别比对到基因区域和非基因区域。基因区域具体包括:内含子区,UTR ,剪接位点区和外显子区。其中外显子区分别统计:同义(synonymous ),缺失(deletion ),阅读框移位(frameshift ),插入(insertion ), 错义(missense ), 无义(nonsense )以及非编码蛋白外显子(non-protein coding exon)等不同类型。综合不同方面分析的结果,并按照突变分类给出各重排(arrangements)类型:SNV ,CNV 的数目统计数据表(参见下图)。对每一测序样本分别进行标注,包括体细胞突变和生殖系突变。

(b )全基因组全局重排分布特征分析

主要将(

a )染色体间和染色体内部的结构变异,(b )杂合体缺失(LOH )与等位基因不平衡的状况,(c )拷贝数变异(增益或者缺失)以及高可信度的SNV (在1Mb 间隔区间统计)等不同情况配合染色体核型在环状图的不同层次上分别的表示出来(参见下图例对应a-d )

(c) 单核苷酸突变趋势与模式分析

分别统计在体细胞和生殖系细胞水平上的transversion 的主要形式与各自所占比重(a );如果有表达谱数据,可以分析表达基因与非表达基因所分别具有的突变重排数目或者种类(b );转录起始位点上游区域的体细胞变异,生殖系germline 变异以及随机变异的各自数目统计(c )和已知210种的不同肿瘤疾病的突变谱进行比较.

11 自然选择分析

我们通过测序所观测到的体细胞突变可能是经历了复杂的过程所成的。因此,我们在研究这些突变的起源,突变如何受到DNA 修复机制的影响,以及在疾病发展与进化过程中突变的规律方面需要做深入的分析。自然选择一般在两个方面发挥作用,即保留有利于疾病发展进化的突变的同时限制其在基因组中重要功能区域发生突变,例如转录调控区域和编码蛋白质的区域。因此,(1)如果实验设计是将primary disease与normal control做比较的话,系统的分析可以解析复杂疾病在形成突变过程中可能的机制和自然选择的因素。(2)如果实验设计是基于病灶及其转移位置或者邻接位置样本作测序,我们可以构建突变进化与转移的模型解析突变的动态模式和基因组中不稳定态变异的模式。

正向选择的判定: 分析SNP ,SNV 区域的正向选择趋势,在进化和群体遗传水平解释SNV ,SNP 的功能性;对待control 与case 组样本, 我们分别采用不同统计算法计算SNP ,CNV 在各自样本中的差异,进而从中发现具有正向选择特征的SV 。

全基因组重测序数据分析 1.

简介(Introduction)

通过高通量测序识别发现de novo的somatic 和germ line 突变,结构变异-SNV ,包括重排突变(deletioin, duplication 以及copy number variation)以及SNP 的座位;针对重排突变和SNP 的功能性进行综合分析;我们将分析基因功能(包括miRNA ),重组率(Recombination )情况,杂合性缺失(LOH )以及进化选择与mutation 之间的关系;以及这些关系将怎样使得在disease (cancer )genome 中的mutation 产生对应的易感机制和功能。我们将在基因组学以及比较基因组学,群体遗传学综合层面上深入探索疾病基因组和癌症基因组。

实验设计与样本

(1)Case-Control 对照组设计;

(2)家庭成员组设计:父母-子女组(4人、3人组或多人);

初级数据分析

1.数据量产出:总碱基数量、Total Mapping Reads、Uniquely Mapping Reads统计,测序深度分析。

2.一致性序列组装:与参考基因组序列(Reference genome sequence)的比对分析,利用贝叶斯统计模型检测出每个碱基位点的最大可能性基因型,并组装出该个体基因组的一致序列。

3.SNP 检测及在基因组中的分布:提取全基因组中所有多态性位点,结合质量值、测序深度、重复性等因素作进一步的过滤筛选,最终得到可信度高的SNP 数据集。并根据参考基因组信息对检测到的变异进行注释。

4.InDel 检测及在基因组的分布: 在进行mapping 的过程中,进行容gap 的比对并检测可信的short InDel。在检测过程中,gap 的长度为1~5个碱基。对于每个InDel 的检测,至少需要3个Paired-End 序列的支持。

5.Structure Variation检测及在基因组中的分布: 能够检测到的结构变异类型主要有:插入、缺失、复制、倒位、易位等。根据测序个体序列与参考基因组序列比对分析结果,检测全基因组水平的结构变异并对检测到的变异进行注释。

高级数据分析

1. 测序短序列匹配(Read Mapping)

(1)屏蔽掉Y 染色体上假体染色体区域(pseudo-autosomal region), 将Read 与参考序列NCBI36进行匹配(包括所有染色体,未定位的contig ,以及线粒体序列mtDNA (将用校正的剑桥参考序列做替代)) 。采用标准序列匹配处理对原始序列文件进行基因组匹配,将Read 与参考基因组进行初始匹配;给出匹配的平均质量得分分布;

(2)碱基质量得分的校准。我们采用碱基质量校准算法对每个Read 中每个碱基的质量进行评分,并校准一些显著性误差,包括来自测序循环和双核苷酸结构导致的误差。

(3)测序误差率估计。pseudoautosomalcontigs ,short repeat regions(包括segmental duplication,simple repeat sequence-通过tandem repeat识别算法识别)将被过滤;

2. SNP Calling 计算(SNP Calling)

我们可以采用整合多种SNP 探测算法的结果,综合地,更准确地识别出SNP 。通过对多种算法各自识别的SNP 进行一致性分析,保留具有高度一致性的SNP 作为最终SNP 结果。这些具有高度一致性的SNP 同时具有非常高的可信度。在分析中使用到的SNP 识别算法包括基于贝叶斯和基因型似然值计算的方法,以及使用连锁不平衡LD 或推断技术用于优化SNP 识别检出的准确性。

统计SNV 的等位基因频率在全基因组上的分布

稀有等位基因数目在不同类别的SNV 中的比率分布(a );SNV 的类别主要考虑:(1)无义(nonsense ), (2)化学结构中非同义,(3)所有非同义,(4)保守的非同义,(5)非编码,(6)同义,等类型SNV ;另外,针对保守性的讨论,我们将分析非编码区域SNV 的保守型情况及其分布(图a, b)

3. 短插入

/缺失探测(Short Insertion /Deletion (Indel )Call )

(1). 计算全基因组的indel 变异和基因型检出值的过程

计算过程主要包含3步:(1)潜在的indel 的探测;(2)通过局部重匹配计算基因型的似然值;(3)基于LD 连锁不平衡的基因型推断和检出识别。Indel 在X ,Y 染色体上没有检出值得出。

(2). Indel过滤处理

4. 融合基因的发现(Fusion gene Discovery)

选择注释的基因信息来自于当前最新版本的Ensemble Gene数据库,RefSeq 数据库和Vega Gene 数据库。下面图例给出的是融合基因的形成,即来自不同染色体的各自外显子经过重组形成融合基因的模式图。

5. 结构变异(Structure Variation)

结构变异(Structure Variation-SV )是基因组变异的一类主要来源,主要由大片段序列(一般>1kb)的拷贝数变异(copy number variation, CNV)以及非平衡倒位(unbalance inversion)事件构成。目前主要一些基因组研究探测识别的SV 大约有20,000个(DGV 数据库)。在某些区域上,甚至SV 形成的速率要大于SNP 的速率,并与疾病临床表型具有很大关联。我们不仅可以通过测序方式识别公共的SV ,也可以识别全新的SV 。全新的SV 的生成一般

在germ line和突变机制方面都具有所报道。然而,当前对SV

的精确解析需要更好的算法实现。同时,我们也需要对

SV 的形成机制要有更重要的认知,尤其是SV 否起始于祖先基因组座位的插入或缺失,而不简单的根据等位基因频率或则与参考基因组序列比对判断。SV 的功能性也结合群体遗传学和进化生物学结合起来,我们综合的考察SV 的形成机制类别。

SV 形成机制分析,包括以下几种可能存在的主要机制的识别发现:

(A )同源性介导的直系同源序列区段重组(NAHR );

(B )与DNA 双链断裂修复或复制叉停顿修复相关的非同源重组(NHR );

(C )通过扩展和压缩机制形成可变数量的串联重复序列(VNTR );

(D )转座元件插入(一般主要是长/短间隔序列元件LINE/SINE或者伴随TEI 相关事件的两者的组合)。

结构变异探测和扩增子(Amplicon )的探测与识别分析:如下图所示

6. 测序深度分析

测序深度分析就是指根据基因组框内覆盖度深度与期望覆盖度深度进行关联,并识别出SV 。我们也将采用不同算法识别原始测序数据中的缺失片段

(deletion )和重复片段(duplication )。

7. SV探测识别结果的整合与FDR 推断(可选步骤)

(1). PCR或者芯片方式验证SV

(2). 计算FDR-错误发现率(配合验证试验由客户指定)

(3) 筛选SV 检出结果用于SV 的合并和后续分析:我们通过不同方式探测识别SV 的目的极大程度的检出SV ,并且降低其FDR (

8. 变异属性分析

(1) neutral coalescent分析

测序数据可以探测到低频率的变异体(MAF

(2). 全新变异体(novel variant)的等位基因频率和数量分布

分析对象包括全新预测的SNP ,indel ,large deletion, 以及外显子SNP 在每个等位基因频率类别下的数目比率(fraction )(参见下图);全新预测是指预测分析结果与dbSNP (当前版本129)以及deletion 数据库dbVar (2010年6月份版本)和已经发表的有关indels 研究的基因组数据经过比较后识别确定的全新的SNP ,indel 以及deletion 。dbSNP 包含SNP 和indels; dbVAR包含有deletion,duplication, 以及mobile element insertion。dbRIP 以及其他基因组学研究(JC Ventrer以及Watson 基因组,炎黄计划亚洲人基因组)结果提供的short indels和large deletion。

(3). 变异体的大小分布以及新颖性分布

计算SNP ,Deletion ,以及Insertion 大小分布;计算SNP ,Deletion ,以及Insertion 中属于全新预测结果的数目占已有各自参考数据库数目的比例(相对于dbSNP 数据库;dbSNP 包含SNP 和indels;dbVAR 包含有deletion,duplication, 以及mobile element insertion。dbRIP 以及其他基因组学研究(JC Ventrer以及Watson 基因组,炎黄计划亚洲人基因组)结果提供的short indels和large deletion)其中,可以给出LINE ,Alu 的特征位置。

(4). 结构变异SV 的断点联结点(BreakPoint Junction)分析

根据SV 不同检出结果经过一些列筛选步骤构建所有结构变异SV 的断点联结点数据库,保留长度大于等于50bp 的SV ;分析断点联结点处具有homology 或者microhomology 的SV ;并将同一染色体,起始和终止位置坐标下的不同SV 进行去冗余处理。

分析识别SV 的断点联结点(Breakpoint ): 将Breakpoint 按照可能形成的方式可以分类为以下几类:

(a )非等位基因同源重组型(non-allelic homologous recombination-NAHR);

(b )非同源重组(nonhomologous recombination-NHR),包括nonhomologous end-joining (NHEJ)和fork stalling /template switching(FoSTeS/MMBIR);

(c )可变串联重复(VNTR )

(d )转座插入元件(TEI )。

图 C

SV 形成偏好性分析

分析SV 形成机制与断裂点临近区域序列的关系,包括染色质界标(端粒,中心粒),重组高发热点区域,重复序列以及GC含量,短DNA motif和微同源区域(microhomology region)。

9. 突变率估计

针对以家庭成员为单位的测序方案,我们主要探测de novo的突变(DNM );通过采用不同的方法/算法,我们给出每个家庭一份推断的DNM 报表;

(1) 根据基因型推断结果,分别对每人每碱基位置上的de novo突变进行综合度量;

(2) 采用贝叶斯方法计算家庭组设计中DNM 的后验概率

10. SNP,SNV 功能分析与注释

(1). 祖先等位基因的注释

通过将人类(NCBI36),黑猩猩(chimpanzee2.1),猩猩(PPYG2)以及恒河猴(MMUL1)4种基因组进行基因组比对,发现保守的序列区域,计算祖先等位基因;以及

duplication/deletion事件的进化分析。

(2). 分析基因结构序列上不同区域的多样性(Diversity )与分歧进化(divergence )

根据基因型分析结果计算基因结构序列上的多样性程度,即杂合度(heterozygosity); 杂合度指标可以说明选择效应的存在以及局部变异的结构分布特征模式。我们将考虑基因5’UTR上游200bp ,5’UTR ,第一个外显子,第一个内含子,中间外显子,中间内含子,最末外显子和内含子,以及3’UTR及其下游200bp 区域左右考察的范围(参见下图a) 。 分析编码转录本的起始/终止位置临近区域的多样性和进化分歧度(参见下图b )。

(3). 疾病变异体探测

将样本测序中分析得到SV 与HGMD 疾病变异体数据进行比对,得到交叉记录的错义和无义的SNP ;通过将HGMD 疾病关联突变与CUI (疾病概念分类标识数据库)比对获得HGMD 中所有SV 的疾病表型,并获得HGMD 与测序数据分析得到的SV 的疾病表型;并通过Fisher 检验和Bonferroni 多重假设检验校正计算样本SV 所富集的疾病表型。

(4).

拷贝数变异CNV

所含基因的功能注释

将CNV 是否覆盖区段重复SD 区域分类为2大类,每类CNV 的所含基因的功能富集情况计算,显著性在横轴表示;各种显著性功能在纵轴表示。

(5). 变异的功能性分析与注释

(a ). SNP, Indels以及大的结构变异SV 的功能注释;

(b ). 对包含翻译起始注释信息的转录本编码区上的SNP 分类为:同义SNP ,非同义SNP 和无义SNP (引入终止子),干扰终止子的SNP ,以及干扰剪接位点的SNP ;为了降低假阳性,我们采用严格的筛选方式过滤来自indels 的错误;

(c ). 对错义编码区突变的功能性分析: 通过信息学分析算法评估相对于生殖系变异的体细胞突变对蛋白质的结构和功能的影响效应。

(6). SNV,SNP 与miRNA 研究之间的关联分析

miRNA 是起重要的调控作用的小分子,我们将对miRNA 的pri-mRNA ,pre-miRNA 以及miRNA 靶基因序列进行分析,识别潜在的SNP 功能位点。据文献研究提供证据表明Human pre-miRNA 的二级结构中存在不同位置上的SNP ,我们将通过热力学稳定性分析方法评估SNP 对pre-miRNA 结构的影响;另外,我们也将对miRNA-Target 靶基因相互作用位点做分析,评估对SNP 对靶基因靶向性的影响。

(7). SNV,SNP 与GWAS 研究之间的关联分析

分析GWAS 研究中得到的易感基因在基因组上不同坐标上的OR 值分布情况;将当前已知的GWAS 研究成果与SNP 进行比较;根据LD 连锁不平衡将SNP 与易感基因的关系进行深入讨论; 直接与间接关联方法可以分别识别与表型相关的SNP ,对于不易获得(missing )和定位的SNP ,通过LD 连锁不平衡推断疾病易感基因突变座位。

(8) 生物学通路(代谢通路,信号通路)分析

生物学通路(Biological pathway),包括代谢通路和信号转导通路是生物功能的重要组成部分,我们将各种形式的突变、变异,包括SNV 和SNP ,的对应基因放到生物学通路中进行综合分析,考察功能性突变对pathway 的影响程度和影响的规律。通过GSEA (配合芯片表达谱数据),KS 检验,超几何分布检验等方法对变异基因在某些pathway 的富集程度进行排序,识别发生功能改变的潜在通路。

(9). 蛋白质

-蛋白质相互作用(PPI )网络分析

蛋白质相互作用也是生物分子功能增益和缺失的重要途径,因此我们针对蛋白质相互作用网络中的突变的蛋白及其收到影响的网络节点蛋白进行系统分析,并对收到影响的网络子结构进行功能注释分析和聚类富分析。我们采用网络分析算法对由于各种突变所受到影响的子网络(subnetwork )进行功能富集度的分析;

(10). 顺式基因调控网络模块(CRM )分析

(a) 启动子序列分析

包括动子区域上的Motif 预测,并与已知转录因子数据库TRANSFAC 和JASPAR 中的TFBS 结合位点进行比对;

启动子区域上保守性分析,分析突变位置和保守性区域的关联;

(b) 计算全基因组保守性。确定TFBS 的保守性以及mutation 位置的保守性;

11)重排(arrangements )与突变(mutation )的全基因组统计

(a ). 体细胞(somatic)和生殖系(germline )重排(arrangements )

体细胞突变是相对于germ line 突变的一类需要重要分析的内容,我们针对Case-control 设计的测序方案可以分别分析突变的情况,包括SNV ,indel ,以及CNV ;如果仅在

tumor/disease(Case组) 出现而不在normal (对照组)出现的突变我们可以认为是somatic 体细胞突变。将somatic mutation 与dbSNP 数据库比对可以发现潜在的全新的突变和有记录的突变位置。然后,将突变分别比对到基因区域和非基因区域。基因区域具体包括:内含子区,UTR ,剪接位点区和外显子区。其中外显子区分别统计:同义(synonymous ),缺失(deletion ),阅读框移位(frameshift ),插入(insertion ), 错义(missense ), 无义(nonsense )以及非编码蛋白外显子(non-protein coding exon)等不同类型。综合不同方面分析的结果,并按照突变分类给出各重排(arrangements)类型:SNV ,CNV 的数目统计数据表(参见下图)。对每一测序样本分别进行标注,包括体细胞突变和生殖系突变。

(b )全基因组全局重排分布特征分析

主要将(

a )染色体间和染色体内部的结构变异,(b )杂合体缺失(LOH )与等位基因不平衡的状况,(c )拷贝数变异(增益或者缺失)以及高可信度的SNV (在1Mb 间隔区间统计)等不同情况配合染色体核型在环状图的不同层次上分别的表示出来(参见下图例对应a-d )

(c) 单核苷酸突变趋势与模式分析

分别统计在体细胞和生殖系细胞水平上的transversion 的主要形式与各自所占比重(a );如果有表达谱数据,可以分析表达基因与非表达基因所分别具有的突变重排数目或者种类(b );转录起始位点上游区域的体细胞变异,生殖系germline 变异以及随机变异的各自数目统计(c )和已知210种的不同肿瘤疾病的突变谱进行比较.

11 自然选择分析

我们通过测序所观测到的体细胞突变可能是经历了复杂的过程所成的。因此,我们在研究这些突变的起源,突变如何受到DNA 修复机制的影响,以及在疾病发展与进化过程中突变的规律方面需要做深入的分析。自然选择一般在两个方面发挥作用,即保留有利于疾病发展进化的突变的同时限制其在基因组中重要功能区域发生突变,例如转录调控区域和编码蛋白质的区域。因此,(1)如果实验设计是将primary disease与normal control做比较的话,系统的分析可以解析复杂疾病在形成突变过程中可能的机制和自然选择的因素。(2)如果实验设计是基于病灶及其转移位置或者邻接位置样本作测序,我们可以构建突变进化与转移的模型解析突变的动态模式和基因组中不稳定态变异的模式。

正向选择的判定: 分析SNP ,SNV 区域的正向选择趋势,在进化和群体遗传水平解释SNV ,SNP 的功能性;对待control 与case 组样本, 我们分别采用不同统计算法计算SNP ,CNV 在各自样本中的差异,进而从中发现具有正向选择特征的SV 。


相关内容

  • 新一代测序技术总览
  • 新一代DNA 测序技术总览 作者:尹银亮.陈会平.毛良伟 译来源:生物谷2011-12-7 11:54:24 原文刊登于<分析化学>综述 Analytical Chemistry 原文标题:Landscape of Next-Generation Sequencing Technolog ...

  • 一种基于大规模并行全基因组测序的单核苷酸多态性检测方法
  • 一种基于大规模并行全基因组测序的单核苷酸多态性 检测方法 技术领域 本发明涉及一种基于新一代大规模并行全基因组测序的单核苷酸多态性的检测方法,属基因工程技术领域. 背景技术 遗传突变影响着生物体表型的变异,罹患疾病的风险,对药物和环境刺激的反应.全基因组连锁分析和定点克隆技术对受单基因影响的孟德尔遗 ...

  • 下一代测序技术
  • 下一代测序技术 摘要|从未有过的巨大革命技术需求交付快速.廉价.准确的基因组信息.这一挑战也促进了下一代测序技术的发展.传统方法主要的优势是生产大量廉价的序列数据.在这里,我进行一下技术回顾,模板制备.测序成像.基因定位和装配方法以及当前的最新进展和短期商用的下一代测序技术.除了为解决生物问题的兴趣 ...

  • 高通量测序技术在宏基因组学中的应用
  • 196 中国医药生物技术 2013年6月第8卷第3期 Chin Med Biotechnol, June 2013, Vol. 8, No. 3 DOI:10.3969/cmba.j.issn.1673-713X.2013.03.008 ·综述· 高通量测序技术在宏基因组学中的应用 刘莉扬,崔鸿飞, ...

  • 华大基因广告
  • 动植物重测序五大研究方案 2013/08/01 随着越来越多的物种基因组被破译,重测序的应用也日趋广泛.历时半年,华大科技科研团队根据动植物群体样本类型以及研究领域特点,并融合多年的项目经验,隆重推出重测序研究五大方案,为您提供系统全面的一站式服务,助力项目申请和高水平文章的发表! 方案一:育成动植 ...

  • PacBio RS II 的高通量测序应用
  • PacBio RS II 的高通量测序应用 Pacific Biosciences 公司的PacBio RS II单分子实时测序(single molecule, real-time,SMRT )测序反应是在其专利SMRT cell中进行的,每个SMRT cell中有150,000个ZMW (纳米级 ...

  • 基因测序:一个怎样的潘多拉盒子
  • 近日,基因测序被国家食品药品监督管理总局.国家卫生计生委"叫停".通知指出,任何医疗机构不得开展基因测序临床应用,已经开展的要立即停止,仍继续开展的,卫生行政部门要依法依规予以查处. 基因测序本是一种实验室研究技术手段,近年来,却因"名人效应"而受到关注,应用 ...

  • 关于第三代基因测序仪的技术调研报告
  • 关于第三代测序仪的技术调研 基因测序仪的研发是系统工程,涉及生物.半导体.计算机.化学.光学等多个领域,需要不同学科顶尖力量的合作.目前真正被称为第三代测序技术的分别是"Pacific Biosciences公司的单分子实时(Single Molecule Real Time, SMRT) ...

  • 第三代测序技术:单分子即时测序
  • ・718・ 第三代测序技术:单分子即时测序 刘岩吴秉铨 DNA测序技术是分子生物学研究中最常用的技术,它的出现极大地推动了生物学的发展.从人类基因组计划 (humangenomeproject),到人类基因组单倍型图计划 (HapMap),再到人类癌症基因组及个体基因组计划,第一代和第二代DNA测序 ...

  • 第三代测序技术及其应用_张得芳
  • 中国生物工程杂志ChinaBiotechnology,2013,33(5):125-131 第三代测序技术及其应用 张得芳 1 * 马秋月 2 尹佟明 1 夏涛 1,2** 南京210037) (1南京林业大学林木遗传与生物技术省部共建教育部重点实验室 (2南京林业大学森林资源与环境学院 南京210 ...