求函数值域的具体方法

一.观察法

通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

例1:求函数y=3+√(2-3x) 的值域。

点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。

解:由算术平方根的性质,知√(2-3x)≥0,

故3+√(2-3x)≥3。

∴函数的值域为 .

点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。

本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。

练习:求函数y=[x](0≤x≤5.y,x∈N)的值域。

(答案:值域为:{0,1,2,3,4,5})

二.反函数法

当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例2:求函数y=(x+1)/(x+2)的值域。

点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。

(答案:函数的值域为{y∣y1})

三.配方法

当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x2+x+2)的值域。

点拨:将被开方数配方成完全平方数,利用二次函数的最值求。

解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈

[0,9/4]

∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]

点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。

练习:求函数y=2x-5+√15-4x的值域.

(答案:值域为{y∣y≤2.5})

四.判别式法

若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域,但只适用于定义域为R或R除去一两个点。

例4:求函数y=(2x2-2x+3)/(x2-x+1)的值域。

点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。

解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*)

当y≠2时,由Δ=(y-2)2-4(y-2)+(y-3)≥0,解得:2<y≤10/3

当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。

点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。 练习:求函数y=1/(2x2-3x+1)的值域。

(答案:值域为y≤-8或y>0)。

五.最值法

对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。

例5:已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。

点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。 解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),

∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。 当x=-1时,z=-5;当x=3/2时,z=15/4。

∴函数z的值域为{z∣-5≤z≤15/4}。

点评:本题是将函数的值域问题转化为函数的最值。对开区间,若存在最值,也可通过求出最值而获得函数的值域。

练习:若√x为实数,则函数y=x2+3x-5的值域为 ( )

A.(-∞,+∞) B.[-7,+∞]

C.[0,+∞) D.[-5,+∞)

(答案:D)。

六.图象法

通过观察函数的图象,运用数形结合的方法得到函数的值域。

例6:求函数y=∣x+1∣+√(x-2)2 的值域。

点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象。

解:原函数化为 -2x+1 (x≤1)

y= 3 (-1

2x-1(x>2)

它的图象如图所示。

显然函数值y≥3,所以,函数值域[3,+∞]。

点评:分段函数应注意函数的端点。利用函数的图象

求函数的值域,体现数形结合的思想。是解决问题的重要方法。

求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域。

七.单调法

利用函数在给定的区间上的单调递增或单调递减求值域。

例1:求函数y=4x-√1-3x(x≤1/3)的值域。

点拨:由已知的函数是复合函数,即g(x)= -√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域。

解:设f(x)=4x,g(x)= -√1-3x ,(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)= 4x-√1-3x

在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y≤4/3}。

点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。

练习:求函数y=3+√4-x 的值域。(答案:{y|y≥3})

八.换元法

以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。 例2:求函数y=x-3+√2x+1 的值域。

点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域。

解:设t=√2x+1 (t≥0),则

x=1/2(t2-1)。

于是 y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.

所以,原函数的值域为{y|y≥-7/2}。

点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。

练习:求函数y=√x-1 –x的值域。(答案:{y|y≤-3/4}

九.构造法

根据函数的结构特征,赋予几何图形,数形结合。

例3:求函数y=√x2+4x+5+√x2-4x+8 的值域。

点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。

解:原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22

作一个长为4、宽为3的矩形ABCD,再切割成12个单位

正方形。设HK=x,则ek=2-x,KF=2+x,AK=√(2-x)2+22 ,

KC=√(x+2)2+1 。

由三角形三边关系知,AK+KC≥AC=5。当A、K、C三点共

线时取等号。

∴原函数的知域为{y|y≥5}。

点评:对于形如函数y=√x2+a ±√(c-x)2+b(a,b,c均为正数),均可通过构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。

练习:求函数y=√x2+9 +√(5-x)2+4的值域。(答案:{y|y≥5√2})

十.比例法

对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域。

例4:已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域。

点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数。

解:由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k为参数)

∴x=3+4k,y=1+3k,

∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。

当k=-3/5时,x=3/5,y=-4/5时,zmin=1。

函数的值域为{z|z≥1}.

点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题方法体现诸多思想方法,具有一定的创新意识。

练习:已知x,y∈R,且满足4x-y=0,求函数f(x,y)=2x2-y的值域。(答案:{f(x,y)|f(x,y)≥1}) 十一.利用多项式的除法

例5:求函数y=(3x+2)/(x+1)的值域。

点拨:将原分式函数,利用长除法转化为一个整式与一个分式之和。

解:y=(3x+2)/(x+1)=3-1/(x+1)。

∵1/(x+1)≠0,故y≠3。

∴函数y的值域为y≠3的一切实数。

点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。

练习:求函数y=(x2-1)/(x-1)(x≠1)的值域。(答案:y≠2)

十二.不等式法

例6:求函数Y=3x/(3x+1)的值域。

点拨:先求出原函数的反函数,根据自变量的取值范围,构造不等式。

解:易求得原函数的反函数为y=log3[x/(1-x)],

由对数函数的定义知 x/(1-x)>0

1-x≠0 解得,0<x

∴函数的值域(0,1)。

点评:考查函数自变量的取值范围构造不等式(组)或构造重要不等式,求出函数定义域,进而求值域。不等式法是重要的解题工具,它的应用非常广泛。是数学解题的方法之一。

以下供练习选用:求下列函数的值域

1.Y=√(15-4x)+2x-5;({y|y≤3})

2.Y=2x/(2x-1)。 (y>1或y

一.观察法

通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

例1:求函数y=3+√(2-3x) 的值域。

点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。

解:由算术平方根的性质,知√(2-3x)≥0,

故3+√(2-3x)≥3。

∴函数的值域为 .

点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。

本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。

练习:求函数y=[x](0≤x≤5.y,x∈N)的值域。

(答案:值域为:{0,1,2,3,4,5})

二.反函数法

当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例2:求函数y=(x+1)/(x+2)的值域。

点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。

(答案:函数的值域为{y∣y1})

三.配方法

当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x2+x+2)的值域。

点拨:将被开方数配方成完全平方数,利用二次函数的最值求。

解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈

[0,9/4]

∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]

点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。

练习:求函数y=2x-5+√15-4x的值域.

(答案:值域为{y∣y≤2.5})

四.判别式法

若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域,但只适用于定义域为R或R除去一两个点。

例4:求函数y=(2x2-2x+3)/(x2-x+1)的值域。

点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。

解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*)

当y≠2时,由Δ=(y-2)2-4(y-2)+(y-3)≥0,解得:2<y≤10/3

当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。

点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。 练习:求函数y=1/(2x2-3x+1)的值域。

(答案:值域为y≤-8或y>0)。

五.最值法

对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。

例5:已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。

点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。 解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),

∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。 当x=-1时,z=-5;当x=3/2时,z=15/4。

∴函数z的值域为{z∣-5≤z≤15/4}。

点评:本题是将函数的值域问题转化为函数的最值。对开区间,若存在最值,也可通过求出最值而获得函数的值域。

练习:若√x为实数,则函数y=x2+3x-5的值域为 ( )

A.(-∞,+∞) B.[-7,+∞]

C.[0,+∞) D.[-5,+∞)

(答案:D)。

六.图象法

通过观察函数的图象,运用数形结合的方法得到函数的值域。

例6:求函数y=∣x+1∣+√(x-2)2 的值域。

点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象。

解:原函数化为 -2x+1 (x≤1)

y= 3 (-1

2x-1(x>2)

它的图象如图所示。

显然函数值y≥3,所以,函数值域[3,+∞]。

点评:分段函数应注意函数的端点。利用函数的图象

求函数的值域,体现数形结合的思想。是解决问题的重要方法。

求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域。

七.单调法

利用函数在给定的区间上的单调递增或单调递减求值域。

例1:求函数y=4x-√1-3x(x≤1/3)的值域。

点拨:由已知的函数是复合函数,即g(x)= -√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域。

解:设f(x)=4x,g(x)= -√1-3x ,(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)= 4x-√1-3x

在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y≤4/3}。

点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。

练习:求函数y=3+√4-x 的值域。(答案:{y|y≥3})

八.换元法

以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。 例2:求函数y=x-3+√2x+1 的值域。

点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域。

解:设t=√2x+1 (t≥0),则

x=1/2(t2-1)。

于是 y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.

所以,原函数的值域为{y|y≥-7/2}。

点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。

练习:求函数y=√x-1 –x的值域。(答案:{y|y≤-3/4}

九.构造法

根据函数的结构特征,赋予几何图形,数形结合。

例3:求函数y=√x2+4x+5+√x2-4x+8 的值域。

点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。

解:原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22

作一个长为4、宽为3的矩形ABCD,再切割成12个单位

正方形。设HK=x,则ek=2-x,KF=2+x,AK=√(2-x)2+22 ,

KC=√(x+2)2+1 。

由三角形三边关系知,AK+KC≥AC=5。当A、K、C三点共

线时取等号。

∴原函数的知域为{y|y≥5}。

点评:对于形如函数y=√x2+a ±√(c-x)2+b(a,b,c均为正数),均可通过构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。

练习:求函数y=√x2+9 +√(5-x)2+4的值域。(答案:{y|y≥5√2})

十.比例法

对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域。

例4:已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域。

点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数。

解:由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k为参数)

∴x=3+4k,y=1+3k,

∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。

当k=-3/5时,x=3/5,y=-4/5时,zmin=1。

函数的值域为{z|z≥1}.

点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题方法体现诸多思想方法,具有一定的创新意识。

练习:已知x,y∈R,且满足4x-y=0,求函数f(x,y)=2x2-y的值域。(答案:{f(x,y)|f(x,y)≥1}) 十一.利用多项式的除法

例5:求函数y=(3x+2)/(x+1)的值域。

点拨:将原分式函数,利用长除法转化为一个整式与一个分式之和。

解:y=(3x+2)/(x+1)=3-1/(x+1)。

∵1/(x+1)≠0,故y≠3。

∴函数y的值域为y≠3的一切实数。

点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。

练习:求函数y=(x2-1)/(x-1)(x≠1)的值域。(答案:y≠2)

十二.不等式法

例6:求函数Y=3x/(3x+1)的值域。

点拨:先求出原函数的反函数,根据自变量的取值范围,构造不等式。

解:易求得原函数的反函数为y=log3[x/(1-x)],

由对数函数的定义知 x/(1-x)>0

1-x≠0 解得,0<x

∴函数的值域(0,1)。

点评:考查函数自变量的取值范围构造不等式(组)或构造重要不等式,求出函数定义域,进而求值域。不等式法是重要的解题工具,它的应用非常广泛。是数学解题的方法之一。

以下供练习选用:求下列函数的值域

1.Y=√(15-4x)+2x-5;({y|y≤3})

2.Y=2x/(2x-1)。 (y>1或y


相关内容

  • 求函数值域的常用方法
  • 求函数值域的常用方法 函数有三个要素:定义域.值域.对应关系.值域是函数值的集合,有定义域和对应关系确定.在求函数的值域时,即要重视对应关系,也不能忽略定义域这一约束条件.对函数定义域的研究,实际上就是研究函数性质之一的最大值与最小值.求函数值域有以下一些常用的方法. 一.观察法 对于一些比较简单的 ...

  • 函数值域的几种求法
  • "3ⅢoI ooY1NFai口.^ATlON 科技教育 函数值域的几种求法 杨龙婷 (河南省平顶山市理工学校 郭顾昌 河南平顶山 46709') 摘要:函数的值域是函数的三要素之一,在学习函羲中,求函蔹的值城是重点也是难点.禹考中也经常出现事值城同意.尤其是二次函 数的最值最为常晃. 值域 ...

  • 高一数学函数值域的多种解决方法
  • 高一数学函数值域的多种方法 求函数值域是高考的热点, 也是重点和难点, 解这类题目的方法具有多样性 定义域和值域起决定作用,而值域是由定义域和对应法则共同和灵活性.在函数的三要素中, 确定.研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用.确定函数的值域是研究函数不可 ...

  • 人教版必修一第一章函数定义域求法
  • 1.2.1 函数的定义域和值域 [自学目标] 1. 掌握求函数定义域的方法以及步骤:2. 掌握求函数值域的基本求法. [重难点] 1. 有解析式函数和抽象函数的定义域求法2. 函数值域的求法:观察法.图象法.配方法.换元法. [知识点梳理] 1.函数定义域的求法: (1)有解析式函数定义域求法的基本 ...

  • 函数解析式求法和值域求法总结
  • 函 数 解 析 式 及值域专题 一. 待定系数法:在已知函数解析式的构造时,可用待定系数法. 例1 设f (x ) 是一次函数,且f [f (x )]=4x +3,求f (x ) . 解:设f (x ) =ax +b (a ≠0) ,则f [f (x )]=af (x ) +b =a (ax +b ...

  • 二次函数最值问题
  • 依据函数图像结构特征,巧解问题 --------------函数f (x ) =ax 2+bx +c 值域(最值)问题的解法 在高中,初学函数之时,由于我们接触的具体函数还不多,所以一元二次函数的值域(最值)的求解就显得非常重要,它也是今后解决其他复杂函数值域(最值)问题的基础.此类问题看似简单,但 ...

  • 高中数学函数值域求法自编
  • 函数值域求法 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定.研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用.确定函数的值域是研究函数不可缺少的重要一环.对于如何求函数的值域,所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定 ...

  • 求函数定义域和值域方法和典型题归纳
  • 求函数定义域.值域方法和典型题归纳 一.基础知识整合 1.函数的定义:设集合A和B是非空数集,按照某一确定的对应关系f,使得集合A中任意一个数x,在集合B中都有唯一确定的数f(x)与之对应.则称f:为A到B的一个函数. 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f),②集合A的取值范 ...

  • 高一函数与映射的联系与区别
  • 一.选择题 1.给出四个命题: ①函数是其定义域到值域的映射:②是函数: ③函数y =2x (x ∈N ) 的图象是一条直线:④是同一函数. 其中正确的有( )A .1个 B .2个 C .3个 D .4个 2.已知函数f (x +1) 的定义域为[-2,3],则的定义域为( ) A .[-3,2] ...