[工程流体力学]课程教学大纲(双语)

《工程流体力学》课程教学大纲(双语)

一、课程基本信息

课程代码:050246

课程名称:工程流体力学

英文名称:Engineering Fluid Mechanics

课程类别:专业基础课specialized basic course

学 时:54

Class hours: 54

学 分:3.0

Credits: 3.0

适用对象: 热能与动力工程专业的学生

考核方式:考试 (平时成绩占总成绩的30%)

先修课程:高等数学,大学物理,工程力学

Pre-sessional course: Advanced Mathematics, University Physics, Engineering Mechanics

二、课程简介

工程流体力学是研究流体(包括气体和流体) 的平衡和运动规律的科学。它是一门横跨各领域,各不同专业的重要技术基础课。能源、动力、环境、设备、化工,航空、国防等领域均需要流体力学知识。热能与动力工程专业学生尤其需要流体力学知识作为工程设计或从事其他专业技术工作的理论基础。通过本课程的学习,使学生掌握流体力学的基本概念,基本原理和实验技能,为将来的学习和工作打下基础。本课程的前四章为双语教学。

Course Description:

Engineering Fluid Mechanics is the science of the law of equilibrium and motion of fluids, which include gases and liquids. It is an important basic technical course stretching across various field and various specialty. A knowledge of fluid mechanics is required in various fields such as energy, power, environment, industry, chemistry, building, aviation and national defense, etc. Students of Thermal Energy and Power Engineering Specialty need the knowledge of fluid mechanics in Engineering design or other technical work. This course provides students with basic concepts ,basic

theories and experimental techniques of fluid mechanics needed in future study or work. Chapter 1 to chapter 4 will be taught in both Chinese and English (bilingual education).

三、课程性质与教学目的

本课程是热能与动力工程专业的专业基础课。本课程的教学目的是:通过本课程的教学,使学生掌握流体力学的基本概念、基本原理和基本计算,具备一定的实验技能,培养学生分析问题和解决问题的能力以及创新能力,为后继专业课的学习以及将来从事专业技术工作打下基础。此外,通过本课程的的学习,还可以培养学生学会学习。

Engineering Fluid Mechanics is the specialized basic course of Thermal Energy and Power Engineering. One objective of this course is to teach the basic concepts,basic theories, basic computational methods and experimental skills in Fluid Mechanics to TEPE-related major students. After this semester, students should be able to develop a sound understanding of and a good appreciation for the Fluid Mechanics field. Another objective of this course is to foster students’ problem solving, analysis and creative abilities, lay good foundation for the study of specialized course, and specialized technological job in the future. What ’s more, learning to learn is still another objective of this course.

四、教学内容及要求

Chapter 1 Introduction and Properties of Fluids(双语教学)

(一)目的与要求

know about: application of fluid mechanics, historical development of fluid mechanics, surface tension

be acquainted with: properties of fluids, the continuum medium model of fluid, Newtonian fluid and non-Newtonian fluid

understand: fluid viscosity, the concepts of ideal fluid and real fluid, compressible fluid and incompressible fluid, Newton's law of viscosity, the dynamic viscosity, the kinetic viscosity

(二)教学内容

1、主要内容:This chapter mainly represents the concept and developing history of

fluid mechanics, the application of fluid mechanics, the character and objective of this course, the research method of fluid mechanics. In this chapter we discuss a number of fundamental properties of fluids and the continuum medium model of fluid. Continuum medium model of fluid is the foundation of fluid mechanics. Based on this assumption, the concepts of ideal fluid and real fluid, compressible fluid and incompressible fluid, Newtonian fluid and non-Newtonian fluid are introduced. Chapter 1 Introduction and Properties of Fluids

1.1 Application of Fluid Mechanics

1.2 Historical Development of Fluid Mechanics(self-study)

1.3 Objective of the Course

1.4 Definition of Fluid

(1) Definition of Fluid

(2) Continuum Medium Model of Fluids

1.5 Density and Compressibility

(1)Density

Compressibility

1) compressible fluid and incompressible fluid

2) coefficient of volume compressibility

volume modulus of elasticity

1.6 Viscosity

(1) definition of viscosity

(2) Newton's equation of viscosity

Newton plate experiment and Newton’s equation of viscosity

the coefficient of viscosityμ

Kinetic Viscosity ν

affecting factors of viscosity

1.7 Surface Tension (self-study)

2、基本概念和知识点:definition of fluid, density, compressibility, viscosity, Newton's law of viscosity, the dynamic viscosity, the kinetic viscosity, ideal fluid and real fluid, compressible fluid and incompressible fluid, Newtonian fluid and non-Newtonian fluid

3、问题与应用:

Is there energy loss for ideal fluid? Why ?

What are the factors to influence viscosity of fluid? What is the change in viscosity due to temperature?

Why is pressure-measuring tubes diameter not less than 1cm?

(三)课后练习

1.6,1.7,1.9,1.10,1.11,1.12

(四)教学方法与手段

分组讨论、课堂讨论、问题教学法

Chapter 2 Fluid Statics (双语教学)

(一)目的与要求

know about: Fluid Equilibrium Differential Equation and its integration, various kind of piezometer, ,pressure distribution in a relative equilibrium fluid, fluid static force on curved surface, Archimedes Principle,

be acquainted with: types of forces acting on fluid, fluid static force on plane surface, absolute pressure and relative pressure

understand: the characteristic of static pressure in fluid, pressure distribution in a static fluid, piezometric tube, U-tube piezometer, Differential Manometer, pressure prism

(二)教学内容

1、主要内容:This chapter mainly represents forces acting on fluid and the mechanics law of fluid at rest. It focuses on the character of fluid’s static pressure, the distribution law of static pressure, Euler differential equation of a fluid in equilibrium, the concept of equipressure surface, piezometer, the calculation method of the static resultant force exerted on plane or curved surface, and introduces the concepts submerged and floating bodies, Archimedes Principle.

Chapter 2 Fluid Statics

2.1 Forces on Fluids

(1) Mass force

(2) Surface Force

2.2 Characters of Pressure of a Static Fluid at Rest

2.3 Fluid Equilibrium Differential Equations

2.3.1 Differential Equations of a Fluid in Equilibrium (Euler Equilibrium Equatio

2.3.2 General Differential Equations of a Fluid in Equilibrium

2.3.3 Equipressure Surface

2.4 Pressure Distribution in a Static Fluid

2.4.1 Pressure Distribution in a Static Fluid under Gravity

2.4.2 Pressure and its units

2.5 Pressure Distribution in a Relative Equilibrium Fluid

2.6 Piezometer

2.6.1 Piezometric Tube

2.6.2 Mercury Piezometer and U-tube Piezometer

2.6.3 Differential Manometer

2.6.4 Metal Piezometer (Pressure Gage)

2.6.5 Vacuum Gauge

2.7 Fluid Static Force on Plane Surface

2.8 Fluid Static Force on Curved Surface

2.9 Archimedes Principle

(1) Archimedes Principle

(2) Buoyancy

(3) Three States of Immersed Bodies

2、基本概念和知识点:forces acting on fluid, characters of pressure of a static fluid at rest, Euler differential equation of a fluid in equilibrium, equipressure surface, the distribution law of static pressure, piezometer, absolute pressure and relative pressure, fluid static force on plane surface, fluid static force on curved surface

3、问题与应用:

What forces are there in static fluids at rest?

What is a equipressure surface? What are the conditions for the equipressure surface ?

Is the equipressure surface in a relative equilibrium liquid horizontal? Why ?What are the conditions when equipressure surface is horizontal?

Is the pressure measured by a pressure gage or piezometer absolute pressure or

relative pressure?

(三)课后练习

2.4,2.6,2.7,2.8,2.9,2.10,2.12,2.16,2.19,

参考书:莫乃榕. 工程流体力学. 武汉:华中科技大学出版社, 1999

中的选择题练习

(四)教学方法与手段

团队合作、分组讨论、课堂讨论、问题教学法

Chapter 3 Basics of Fluid Dynamics(双语教学)

(一)目的与要求

know about: classification of fluid flow, Euler differential equation of motion and N-S equation based on Eulerian Method, the differential analysis method on fluid motion, the deduction of continuity equation , energy equation and momentum equation

be acquainted with: two describing methods of fluid motion, fluid system and control volume, application of Bernoulli equation and continuity equation

understand: basic concepts of fluid dynamics, continuity equation, Bernoulli equation of perfect fluid one-dimensional steady flow, Bernoulli Equation in viscous fluid steady total flow, the physics meaning of Bernoulli equation of the total steady flow

(二)教学内容

1、主要内容:This chapter is the foundation of fluid dynamics and of fluid mechanics application in engineering. It introduces two describing methods of fluid motion, basic types and basic concepts of fluid motion, continuity differential equation of motion, Euler differential equation of motion and N-S equation based on Eulerian Method. It mainly uses the basic concept of Eulerian Method and the total flow analysis method to deduce three fundamental equations of total flow: continuity equation, energy equation and momentum equation. Meanwhile, it interprets the analytical calculations of the three fundamental equations in engineering application. Chapter 3 Basics of Fluid Dynamics

3.1 Two description of Fluid Motion

(1) Lagrangian Description of Motion

(2) Euler Description of Motion

3.2 Basic Concepts of Fluid Flow

(1) Streamline

(2). Pathline

(3).Streamtube

(4) Total Flow

(5)Cross Section

(6) flow rate

(7) Mean Velocity v

3.3 Classification of Fluid Flow

(1) Steady and Unsteady Flow

(2) Uniform Flow and Non-uniform Flow

(3) Gradually Varied Flow and Rapidly Varied Flow

(4) One-dimensional Flow, Two-dimensional Flow and Three-dimensional Flow

3.4 Fluid System and Control Volume

(1) Control Volume: A fixed space region in the flow field.

(2)Control Cross Section

3.5 Continuity Equation

3.6 Bernoulli Equation of Perfect Fluid One-Dimensional Steady Flow

(1) Integral of Euler Differential Equation of Motion

(2)Physical meaning and Geometric meaning

(3)Total Flow Analysis Method

Bernoulli Equation in Viscous Fluid Steady Total Flow

(1)Real Fluid Tube Flow Energy Equation

(2) Head Line

(3) Gas Flow's Bernoulli Equation

(4) steps for solving problems

3.8 Application of Bernoulli Equation

(1)The Pitot Tube for Measuring Velocity

(2)Venturi Meter

3.9 Momentum Equation

2、基本概念和知识点:Lagrangian Description of fluid motion, Euler Description of fluid motion, streamline, pathline, streamtube, total flow, cross section, flux, mean

velocity, classification of fluid flow, control volume, continuity equation, bernoulli equation, momentum equation

3、问题与应用:

What are the research objects of Eulerian Description and Lagrangian Description of Motion ? In engineering, which description of motion is utilized?

Why should we introduce mean velocity over the section in the total flow analysis method?

What are streamline and pathline? What are their differences?

What are the conditions of steady total flow energy equation?

If the value of force calculated from momentum equation is negative, what does that mean?

(三)课后练习

3.1,3.2,3.4,3.7,3.9,3.11,3.15,3.17,3.18,3.19,3.21,3.26,3.29 参考书:莫乃榕. 工程流体力学. 武汉:华中科技大学出版社, 1999

中的选择题练习

(四)教学方法与手段

分组讨论、课堂讨论、问题教学法、实验

Chapter 4 Similitude and Dimensional Analysis(双语教学)

(一)目的与要求

know about: the deduction method of similarity criterions based on mechanical similarity, the application of dimension analysis method

be acquainted with: the pi(π) theorem,

understand: three basic theorems on Similarity Theory, understand the concept of mechanical similarity, approximate similarity

(二)教学内容

1、主要内容:three basic theorems on Similarity Theory, the concept of mechanical similarity, the deduction method of similarity criterions based on mechanical similarity, the pi(π) theorem, the application of dimension analysis method, the application of approximate similarity

4.1Introduction

4.2Definition and Uses of Similitude

(1) Geometric similarity

(2)Kinematic similarity

(3) Dynamic similarity

4.3 Similarity Criterion

(1)Reynolds number

(2) Froude number

(3) Euler number

(4) Mach number

(5) Weber number

(6) Archimedes Number

Dimensional Analysis

2、基本概念和知识点:dimension, Similarity Theory, geometry similarity, kinematic similarity dynamic similarity, mechanical similarity, similarity criterion, the pi(π) theorem, approximate similarity

3、问题与应用:

What is concept of mechanical similarity?

Do you know anything about the application of dimension analysis method?

(三)课后练习

4.2,4.3,4.5,4.7,4.11

参考书:莫乃榕. 工程流体力学. 武汉:华中科技大学出版社, 1999

中的选择题练习

(四)教学方法与手段

分组讨论、课堂讨论、问题教学法

第五章 管内不可压缩流体流动

(一)目的与要求

了解:圆管道内切应力分布,层流流动入口段长度,湍流流动中的粘性底层,湍流流动中的速度分布,紊流时均化和普朗特混合长度理论,局部主力产生的原因,几种典型局部构件的局部阻力系数的计算, 沿程阻力系数和局部阻力系数的测试方法,管网计算

熟悉:层流和紊流的特征,沿程阻力损失的成因和沿程阻力系数的变化规律,沿程阻力损失的计算,局部阻力损失的计算,摩擦系数曲线图,湍流流动中的粘性

底层

理解:流体运动两种形态及其判别,流动阻力损失计算的达西公式,简单管路流动阻力计算,串联管路和并联管路的水力计算

(二)教学内容

1、主要内容:

1) 层流与湍流流动

2) 等截面管道内粘性流动沿程水头损失

3) 圆管道内切应力分布

4) 圆管道内层流流动及粘性摩擦损失

5) 层流流动入口段长度

6) 湍流流动中的粘性底层

7) 湍流流动中的速度分布

8) 沿程摩擦阻力系数计算

9) 简单管道内流动计算

10) 局部阻力损失

11) 管路流动计算

12) 5.12 管路及管网阻力计算

2、基本概念和知识点:层流,湍流,雷诺数,临界雷诺数,沿程水头损失,达西公式,粘性摩擦附图系数,粘性底层,莫迪图,局部阻力损失,局部阻力系数,简单管路、串联管路和并联管路流动阻力计算

3、问题与应用:

(1)怎样判别粘性流体的两种液态——层流和紊流?

(2)为何不能直接用临界流速作为判别液态(层流和紊流)的标准?

(3)常温下,水和空气在相同的直径的管道中以相同的速度流动,哪种流体易为紊流?

(4)何谓粘性底层?它对实际流动有何意义?

(5)紊流不同阻力区(光滑区,过渡区,粗糙区)沿程摩擦阻系数的影响因素何不同?

(6)试比较圆管层流和紊流水力特点(切应力、流速分布、沿程水头损失)的差异。

(三)课后练习

5.2,5.3,5.9,5.10,5.12,5.18,5.21,5.22,5.27

参考书:莫乃榕. 工程流体力学. 武汉:华中科技大学出版社, 1999 中的选择题练习 (四)教学方法与手段

实验、分组讨论、课堂讨论、问题教学法、自学 第六章 绕流流动与边界层 (一)目的与要求

了解:物体绕流流动阻力的计算,升力,气体射流 熟悉:边界层的特点,边界层分离现象

理解:绕流流动阻力、摩擦阻力和压差阻力的定义,边界层概念,边界层分离现象产生的原因 (二)教学内容 1、主要内容: 1) 绕流流动阻力 2) 边界层

3) 边界层分离与压差阻力 4) 升力 5) 气体射流

2、基本概念和知识点:绕流阻力,压差阻力,摩擦阻力,边界层,边界层分离 3、问题与应用:

(1)边界层的特点是什么?引入边界层概念有何意义? (2)摩擦阻力和压差阻力产生的原因分别是什么?

(3)平板边界层会不会产生边界层分离现象?产生边界层分离现象的原因主要是什么? (三)课后练习

参考书:莫乃榕. 工程流体力学. 武汉:华中科技大学出版社, 1999 中的选择题练习

(四)教学方法与手段

分组讨论、课堂讨论、问题教学法、自学 第七章 流体测量 (一) 目的与要求

了解: 流体力学理论在工程中的应用实例,测量速度的一些方法,孔口、喷嘴和管嘴出流,文丘里流量计,孔板流量计

熟悉: 静压测量,用毕托管测量流速,转子流量计 理解:流体测量的基本原理及方法 (二)教学内容 1、主要内容: 1) 静压测量

2) 用毕托管测量流速 3) 测量速度的其他方法 4) 孔口、喷嘴和管嘴出流 5) 文丘里流量计 6) 孔板流量计 7) 转子流量计

2、基本概念和知识点:流体测量的基本原理及方法 3、问题与应用:

(1)毕托管测量流速的原理? (2)文丘里流量计测量流量的原理? (3)孔板流量计测量流量的原理? (4)转子流量计测量流量的原理? (三)课后练习

结合实验熟悉流体测量的方法和原理 (四)教学方法与手段

自学为主,通过做实验熟悉各种测量方法和原理,结合课堂讨论、问题教学法 第八章 气体动力学基础 (一)目的与要求

了解:气体一维绝能定常流动和等熵定常流动的方程组 熟悉:喷管的流动计算

理解:音速,马赫数,滞止状态,极限状态,临界状态,气体速度与通道截面的关系

通过课程的总复习,将所学的知识进行归纳和整理,再通过师生互动教学引导学生学会学习。

(二)教学内容 1、主要内容: 1) 音速 马赫数

2) 气体一维绝能定常流动和等熵定常流动 3) 变截面管流 本课程的总复习

2、基本概念和知识点:音速,马赫数,滞止状态,极限状态,临界状态,气体速度与通道截面的关系,收缩喷管,缩放喷管 3、问题与应用:

(1)当地速度, 当地音速 , 滞止音速 ,临界音速,说明各自的意义,及它们之间的关系。

(2)为什么说亚声速气流在收缩形管路中,无论管多长,也得不到超声速气流? (三)课后练习

参考书:莫乃榕. 工程流体力学. 武汉:华中科技大学出版社, 1999中的选择题练习

(四)教学方法与手段

分组讨论、课堂讨论、问题教学法、自学和授课相结合 五、各教学环节学时分配

六、推荐教材和教学参考资源

1. E.John Finnemore, Joseph.B.Franzini. Fluid Mechanics with Engineering Applications (Tenth Edition). 北京:清华大学出版社, 2003

2. 赵孝保. 工程流体力学(21世纪能源与动力教材). 南京:东南大学出版社, 2005

3. 夏泰淳. 工程流体力学习题解析. 上海:上海交通大学出版社, 2006 4. 莫乃榕. 工程流体力学. 武汉:华中科技大学出版社, 1999 5.上海交通大学—流体力学:

6.浙江大学精品课程—工程流体力学: 七、其他说明

本人认为课程的讲授是一种教与学的互动过程,应该做到因材施教,有些课堂教学工作的安排应具有一定的灵活性,教学工作如果具体到每一个细节地安排好,就只能是走向机械化的极端,所以在教学内容及各教学环节的学时分配上应具有一定的弹性,要依据学生的接受能力和学习效果而及时加以调整。如果将教学工作过于极端地细化管理,那是将教学误认为一种机械的工作,并不能真正实现互动性的启发式教学,也难以做到真正的因材施教。

修订日期:2007-4-5 审定日期:2007-4-28

《工程流体力学》课程教学大纲(双语)

一、课程基本信息

课程代码:050246

课程名称:工程流体力学

英文名称:Engineering Fluid Mechanics

课程类别:专业基础课specialized basic course

学 时:54

Class hours: 54

学 分:3.0

Credits: 3.0

适用对象: 热能与动力工程专业的学生

考核方式:考试 (平时成绩占总成绩的30%)

先修课程:高等数学,大学物理,工程力学

Pre-sessional course: Advanced Mathematics, University Physics, Engineering Mechanics

二、课程简介

工程流体力学是研究流体(包括气体和流体) 的平衡和运动规律的科学。它是一门横跨各领域,各不同专业的重要技术基础课。能源、动力、环境、设备、化工,航空、国防等领域均需要流体力学知识。热能与动力工程专业学生尤其需要流体力学知识作为工程设计或从事其他专业技术工作的理论基础。通过本课程的学习,使学生掌握流体力学的基本概念,基本原理和实验技能,为将来的学习和工作打下基础。本课程的前四章为双语教学。

Course Description:

Engineering Fluid Mechanics is the science of the law of equilibrium and motion of fluids, which include gases and liquids. It is an important basic technical course stretching across various field and various specialty. A knowledge of fluid mechanics is required in various fields such as energy, power, environment, industry, chemistry, building, aviation and national defense, etc. Students of Thermal Energy and Power Engineering Specialty need the knowledge of fluid mechanics in Engineering design or other technical work. This course provides students with basic concepts ,basic

theories and experimental techniques of fluid mechanics needed in future study or work. Chapter 1 to chapter 4 will be taught in both Chinese and English (bilingual education).

三、课程性质与教学目的

本课程是热能与动力工程专业的专业基础课。本课程的教学目的是:通过本课程的教学,使学生掌握流体力学的基本概念、基本原理和基本计算,具备一定的实验技能,培养学生分析问题和解决问题的能力以及创新能力,为后继专业课的学习以及将来从事专业技术工作打下基础。此外,通过本课程的的学习,还可以培养学生学会学习。

Engineering Fluid Mechanics is the specialized basic course of Thermal Energy and Power Engineering. One objective of this course is to teach the basic concepts,basic theories, basic computational methods and experimental skills in Fluid Mechanics to TEPE-related major students. After this semester, students should be able to develop a sound understanding of and a good appreciation for the Fluid Mechanics field. Another objective of this course is to foster students’ problem solving, analysis and creative abilities, lay good foundation for the study of specialized course, and specialized technological job in the future. What ’s more, learning to learn is still another objective of this course.

四、教学内容及要求

Chapter 1 Introduction and Properties of Fluids(双语教学)

(一)目的与要求

know about: application of fluid mechanics, historical development of fluid mechanics, surface tension

be acquainted with: properties of fluids, the continuum medium model of fluid, Newtonian fluid and non-Newtonian fluid

understand: fluid viscosity, the concepts of ideal fluid and real fluid, compressible fluid and incompressible fluid, Newton's law of viscosity, the dynamic viscosity, the kinetic viscosity

(二)教学内容

1、主要内容:This chapter mainly represents the concept and developing history of

fluid mechanics, the application of fluid mechanics, the character and objective of this course, the research method of fluid mechanics. In this chapter we discuss a number of fundamental properties of fluids and the continuum medium model of fluid. Continuum medium model of fluid is the foundation of fluid mechanics. Based on this assumption, the concepts of ideal fluid and real fluid, compressible fluid and incompressible fluid, Newtonian fluid and non-Newtonian fluid are introduced. Chapter 1 Introduction and Properties of Fluids

1.1 Application of Fluid Mechanics

1.2 Historical Development of Fluid Mechanics(self-study)

1.3 Objective of the Course

1.4 Definition of Fluid

(1) Definition of Fluid

(2) Continuum Medium Model of Fluids

1.5 Density and Compressibility

(1)Density

Compressibility

1) compressible fluid and incompressible fluid

2) coefficient of volume compressibility

volume modulus of elasticity

1.6 Viscosity

(1) definition of viscosity

(2) Newton's equation of viscosity

Newton plate experiment and Newton’s equation of viscosity

the coefficient of viscosityμ

Kinetic Viscosity ν

affecting factors of viscosity

1.7 Surface Tension (self-study)

2、基本概念和知识点:definition of fluid, density, compressibility, viscosity, Newton's law of viscosity, the dynamic viscosity, the kinetic viscosity, ideal fluid and real fluid, compressible fluid and incompressible fluid, Newtonian fluid and non-Newtonian fluid

3、问题与应用:

Is there energy loss for ideal fluid? Why ?

What are the factors to influence viscosity of fluid? What is the change in viscosity due to temperature?

Why is pressure-measuring tubes diameter not less than 1cm?

(三)课后练习

1.6,1.7,1.9,1.10,1.11,1.12

(四)教学方法与手段

分组讨论、课堂讨论、问题教学法

Chapter 2 Fluid Statics (双语教学)

(一)目的与要求

know about: Fluid Equilibrium Differential Equation and its integration, various kind of piezometer, ,pressure distribution in a relative equilibrium fluid, fluid static force on curved surface, Archimedes Principle,

be acquainted with: types of forces acting on fluid, fluid static force on plane surface, absolute pressure and relative pressure

understand: the characteristic of static pressure in fluid, pressure distribution in a static fluid, piezometric tube, U-tube piezometer, Differential Manometer, pressure prism

(二)教学内容

1、主要内容:This chapter mainly represents forces acting on fluid and the mechanics law of fluid at rest. It focuses on the character of fluid’s static pressure, the distribution law of static pressure, Euler differential equation of a fluid in equilibrium, the concept of equipressure surface, piezometer, the calculation method of the static resultant force exerted on plane or curved surface, and introduces the concepts submerged and floating bodies, Archimedes Principle.

Chapter 2 Fluid Statics

2.1 Forces on Fluids

(1) Mass force

(2) Surface Force

2.2 Characters of Pressure of a Static Fluid at Rest

2.3 Fluid Equilibrium Differential Equations

2.3.1 Differential Equations of a Fluid in Equilibrium (Euler Equilibrium Equatio

2.3.2 General Differential Equations of a Fluid in Equilibrium

2.3.3 Equipressure Surface

2.4 Pressure Distribution in a Static Fluid

2.4.1 Pressure Distribution in a Static Fluid under Gravity

2.4.2 Pressure and its units

2.5 Pressure Distribution in a Relative Equilibrium Fluid

2.6 Piezometer

2.6.1 Piezometric Tube

2.6.2 Mercury Piezometer and U-tube Piezometer

2.6.3 Differential Manometer

2.6.4 Metal Piezometer (Pressure Gage)

2.6.5 Vacuum Gauge

2.7 Fluid Static Force on Plane Surface

2.8 Fluid Static Force on Curved Surface

2.9 Archimedes Principle

(1) Archimedes Principle

(2) Buoyancy

(3) Three States of Immersed Bodies

2、基本概念和知识点:forces acting on fluid, characters of pressure of a static fluid at rest, Euler differential equation of a fluid in equilibrium, equipressure surface, the distribution law of static pressure, piezometer, absolute pressure and relative pressure, fluid static force on plane surface, fluid static force on curved surface

3、问题与应用:

What forces are there in static fluids at rest?

What is a equipressure surface? What are the conditions for the equipressure surface ?

Is the equipressure surface in a relative equilibrium liquid horizontal? Why ?What are the conditions when equipressure surface is horizontal?

Is the pressure measured by a pressure gage or piezometer absolute pressure or

relative pressure?

(三)课后练习

2.4,2.6,2.7,2.8,2.9,2.10,2.12,2.16,2.19,

参考书:莫乃榕. 工程流体力学. 武汉:华中科技大学出版社, 1999

中的选择题练习

(四)教学方法与手段

团队合作、分组讨论、课堂讨论、问题教学法

Chapter 3 Basics of Fluid Dynamics(双语教学)

(一)目的与要求

know about: classification of fluid flow, Euler differential equation of motion and N-S equation based on Eulerian Method, the differential analysis method on fluid motion, the deduction of continuity equation , energy equation and momentum equation

be acquainted with: two describing methods of fluid motion, fluid system and control volume, application of Bernoulli equation and continuity equation

understand: basic concepts of fluid dynamics, continuity equation, Bernoulli equation of perfect fluid one-dimensional steady flow, Bernoulli Equation in viscous fluid steady total flow, the physics meaning of Bernoulli equation of the total steady flow

(二)教学内容

1、主要内容:This chapter is the foundation of fluid dynamics and of fluid mechanics application in engineering. It introduces two describing methods of fluid motion, basic types and basic concepts of fluid motion, continuity differential equation of motion, Euler differential equation of motion and N-S equation based on Eulerian Method. It mainly uses the basic concept of Eulerian Method and the total flow analysis method to deduce three fundamental equations of total flow: continuity equation, energy equation and momentum equation. Meanwhile, it interprets the analytical calculations of the three fundamental equations in engineering application. Chapter 3 Basics of Fluid Dynamics

3.1 Two description of Fluid Motion

(1) Lagrangian Description of Motion

(2) Euler Description of Motion

3.2 Basic Concepts of Fluid Flow

(1) Streamline

(2). Pathline

(3).Streamtube

(4) Total Flow

(5)Cross Section

(6) flow rate

(7) Mean Velocity v

3.3 Classification of Fluid Flow

(1) Steady and Unsteady Flow

(2) Uniform Flow and Non-uniform Flow

(3) Gradually Varied Flow and Rapidly Varied Flow

(4) One-dimensional Flow, Two-dimensional Flow and Three-dimensional Flow

3.4 Fluid System and Control Volume

(1) Control Volume: A fixed space region in the flow field.

(2)Control Cross Section

3.5 Continuity Equation

3.6 Bernoulli Equation of Perfect Fluid One-Dimensional Steady Flow

(1) Integral of Euler Differential Equation of Motion

(2)Physical meaning and Geometric meaning

(3)Total Flow Analysis Method

Bernoulli Equation in Viscous Fluid Steady Total Flow

(1)Real Fluid Tube Flow Energy Equation

(2) Head Line

(3) Gas Flow's Bernoulli Equation

(4) steps for solving problems

3.8 Application of Bernoulli Equation

(1)The Pitot Tube for Measuring Velocity

(2)Venturi Meter

3.9 Momentum Equation

2、基本概念和知识点:Lagrangian Description of fluid motion, Euler Description of fluid motion, streamline, pathline, streamtube, total flow, cross section, flux, mean

velocity, classification of fluid flow, control volume, continuity equation, bernoulli equation, momentum equation

3、问题与应用:

What are the research objects of Eulerian Description and Lagrangian Description of Motion ? In engineering, which description of motion is utilized?

Why should we introduce mean velocity over the section in the total flow analysis method?

What are streamline and pathline? What are their differences?

What are the conditions of steady total flow energy equation?

If the value of force calculated from momentum equation is negative, what does that mean?

(三)课后练习

3.1,3.2,3.4,3.7,3.9,3.11,3.15,3.17,3.18,3.19,3.21,3.26,3.29 参考书:莫乃榕. 工程流体力学. 武汉:华中科技大学出版社, 1999

中的选择题练习

(四)教学方法与手段

分组讨论、课堂讨论、问题教学法、实验

Chapter 4 Similitude and Dimensional Analysis(双语教学)

(一)目的与要求

know about: the deduction method of similarity criterions based on mechanical similarity, the application of dimension analysis method

be acquainted with: the pi(π) theorem,

understand: three basic theorems on Similarity Theory, understand the concept of mechanical similarity, approximate similarity

(二)教学内容

1、主要内容:three basic theorems on Similarity Theory, the concept of mechanical similarity, the deduction method of similarity criterions based on mechanical similarity, the pi(π) theorem, the application of dimension analysis method, the application of approximate similarity

4.1Introduction

4.2Definition and Uses of Similitude

(1) Geometric similarity

(2)Kinematic similarity

(3) Dynamic similarity

4.3 Similarity Criterion

(1)Reynolds number

(2) Froude number

(3) Euler number

(4) Mach number

(5) Weber number

(6) Archimedes Number

Dimensional Analysis

2、基本概念和知识点:dimension, Similarity Theory, geometry similarity, kinematic similarity dynamic similarity, mechanical similarity, similarity criterion, the pi(π) theorem, approximate similarity

3、问题与应用:

What is concept of mechanical similarity?

Do you know anything about the application of dimension analysis method?

(三)课后练习

4.2,4.3,4.5,4.7,4.11

参考书:莫乃榕. 工程流体力学. 武汉:华中科技大学出版社, 1999

中的选择题练习

(四)教学方法与手段

分组讨论、课堂讨论、问题教学法

第五章 管内不可压缩流体流动

(一)目的与要求

了解:圆管道内切应力分布,层流流动入口段长度,湍流流动中的粘性底层,湍流流动中的速度分布,紊流时均化和普朗特混合长度理论,局部主力产生的原因,几种典型局部构件的局部阻力系数的计算, 沿程阻力系数和局部阻力系数的测试方法,管网计算

熟悉:层流和紊流的特征,沿程阻力损失的成因和沿程阻力系数的变化规律,沿程阻力损失的计算,局部阻力损失的计算,摩擦系数曲线图,湍流流动中的粘性

底层

理解:流体运动两种形态及其判别,流动阻力损失计算的达西公式,简单管路流动阻力计算,串联管路和并联管路的水力计算

(二)教学内容

1、主要内容:

1) 层流与湍流流动

2) 等截面管道内粘性流动沿程水头损失

3) 圆管道内切应力分布

4) 圆管道内层流流动及粘性摩擦损失

5) 层流流动入口段长度

6) 湍流流动中的粘性底层

7) 湍流流动中的速度分布

8) 沿程摩擦阻力系数计算

9) 简单管道内流动计算

10) 局部阻力损失

11) 管路流动计算

12) 5.12 管路及管网阻力计算

2、基本概念和知识点:层流,湍流,雷诺数,临界雷诺数,沿程水头损失,达西公式,粘性摩擦附图系数,粘性底层,莫迪图,局部阻力损失,局部阻力系数,简单管路、串联管路和并联管路流动阻力计算

3、问题与应用:

(1)怎样判别粘性流体的两种液态——层流和紊流?

(2)为何不能直接用临界流速作为判别液态(层流和紊流)的标准?

(3)常温下,水和空气在相同的直径的管道中以相同的速度流动,哪种流体易为紊流?

(4)何谓粘性底层?它对实际流动有何意义?

(5)紊流不同阻力区(光滑区,过渡区,粗糙区)沿程摩擦阻系数的影响因素何不同?

(6)试比较圆管层流和紊流水力特点(切应力、流速分布、沿程水头损失)的差异。

(三)课后练习

5.2,5.3,5.9,5.10,5.12,5.18,5.21,5.22,5.27

参考书:莫乃榕. 工程流体力学. 武汉:华中科技大学出版社, 1999 中的选择题练习 (四)教学方法与手段

实验、分组讨论、课堂讨论、问题教学法、自学 第六章 绕流流动与边界层 (一)目的与要求

了解:物体绕流流动阻力的计算,升力,气体射流 熟悉:边界层的特点,边界层分离现象

理解:绕流流动阻力、摩擦阻力和压差阻力的定义,边界层概念,边界层分离现象产生的原因 (二)教学内容 1、主要内容: 1) 绕流流动阻力 2) 边界层

3) 边界层分离与压差阻力 4) 升力 5) 气体射流

2、基本概念和知识点:绕流阻力,压差阻力,摩擦阻力,边界层,边界层分离 3、问题与应用:

(1)边界层的特点是什么?引入边界层概念有何意义? (2)摩擦阻力和压差阻力产生的原因分别是什么?

(3)平板边界层会不会产生边界层分离现象?产生边界层分离现象的原因主要是什么? (三)课后练习

参考书:莫乃榕. 工程流体力学. 武汉:华中科技大学出版社, 1999 中的选择题练习

(四)教学方法与手段

分组讨论、课堂讨论、问题教学法、自学 第七章 流体测量 (一) 目的与要求

了解: 流体力学理论在工程中的应用实例,测量速度的一些方法,孔口、喷嘴和管嘴出流,文丘里流量计,孔板流量计

熟悉: 静压测量,用毕托管测量流速,转子流量计 理解:流体测量的基本原理及方法 (二)教学内容 1、主要内容: 1) 静压测量

2) 用毕托管测量流速 3) 测量速度的其他方法 4) 孔口、喷嘴和管嘴出流 5) 文丘里流量计 6) 孔板流量计 7) 转子流量计

2、基本概念和知识点:流体测量的基本原理及方法 3、问题与应用:

(1)毕托管测量流速的原理? (2)文丘里流量计测量流量的原理? (3)孔板流量计测量流量的原理? (4)转子流量计测量流量的原理? (三)课后练习

结合实验熟悉流体测量的方法和原理 (四)教学方法与手段

自学为主,通过做实验熟悉各种测量方法和原理,结合课堂讨论、问题教学法 第八章 气体动力学基础 (一)目的与要求

了解:气体一维绝能定常流动和等熵定常流动的方程组 熟悉:喷管的流动计算

理解:音速,马赫数,滞止状态,极限状态,临界状态,气体速度与通道截面的关系

通过课程的总复习,将所学的知识进行归纳和整理,再通过师生互动教学引导学生学会学习。

(二)教学内容 1、主要内容: 1) 音速 马赫数

2) 气体一维绝能定常流动和等熵定常流动 3) 变截面管流 本课程的总复习

2、基本概念和知识点:音速,马赫数,滞止状态,极限状态,临界状态,气体速度与通道截面的关系,收缩喷管,缩放喷管 3、问题与应用:

(1)当地速度, 当地音速 , 滞止音速 ,临界音速,说明各自的意义,及它们之间的关系。

(2)为什么说亚声速气流在收缩形管路中,无论管多长,也得不到超声速气流? (三)课后练习

参考书:莫乃榕. 工程流体力学. 武汉:华中科技大学出版社, 1999中的选择题练习

(四)教学方法与手段

分组讨论、课堂讨论、问题教学法、自学和授课相结合 五、各教学环节学时分配

六、推荐教材和教学参考资源

1. E.John Finnemore, Joseph.B.Franzini. Fluid Mechanics with Engineering Applications (Tenth Edition). 北京:清华大学出版社, 2003

2. 赵孝保. 工程流体力学(21世纪能源与动力教材). 南京:东南大学出版社, 2005

3. 夏泰淳. 工程流体力学习题解析. 上海:上海交通大学出版社, 2006 4. 莫乃榕. 工程流体力学. 武汉:华中科技大学出版社, 1999 5.上海交通大学—流体力学:

6.浙江大学精品课程—工程流体力学: 七、其他说明

本人认为课程的讲授是一种教与学的互动过程,应该做到因材施教,有些课堂教学工作的安排应具有一定的灵活性,教学工作如果具体到每一个细节地安排好,就只能是走向机械化的极端,所以在教学内容及各教学环节的学时分配上应具有一定的弹性,要依据学生的接受能力和学习效果而及时加以调整。如果将教学工作过于极端地细化管理,那是将教学误认为一种机械的工作,并不能真正实现互动性的启发式教学,也难以做到真正的因材施教。

修订日期:2007-4-5 审定日期:2007-4-28


相关内容

  • 重庆大学工程力学系简介
  • 重庆大学工程力学系简介 重庆大学力学学科拥有博士学位授权一级学科.博士后流动站,重庆市力学实验教学示范中心,是重庆市重点学科.作为以工科为主的研究型综合性大学,开设基础力学课程的专业众多.理论力学.材料力学和工程力学课程的建设一直受到学校的高度重视.理论力学.材料力学主要面向机械类和土木类各专业,工 ...

  • 河北工业大学管理学院-河北工业大学
  • 管理科学与工程类培养计划 (110104工程管理专业) 一.学院:管理学院 二.学制:四年 三.专业:工程管理 四.学位:管理学学士 五.培养目标 本专业培养德.智.体.美全面发展,掌握管理学和经济学基本理论,具有工程技术和工程管理的专门知识,了解工程建设政策法规,具有创新精神和较强实践能力,能够在 ...

  • 27-油气储运工程2015
  • 油气储运工程专业 (专业代码:081504 学制:四年 学位:工学学士) 一.培养目标 本专业培养能适应我国现代化建设需要,基础扎实.知识面广.能力强.素质高.有创新意识和国际视野,能从事陆上及海上油气集输.油气管道输送.油气储存与销售.城市燃气输配等工程的规划.建设.生产运营方面工作,并具有一定科 ...

  • VERYCD上目前已有的一些开放课程
  • 附录一 VERYCD上目前已有的一些开放课程 (1)麻省理工学院 <麻省理工开放课程:微积分重点>(Highlights of Calculus) <麻省理工开放课程:单变量微积分>(Single Variable Calculus) <麻省理工开放课程:多变量微积分& ...

  • 南京晓庄学院专业介绍
  • 南京晓庄学院专业介绍 一.艺体类招生专业 1.音乐学专业(师范) 主要课程:乐理与视唱练耳.多声部音乐分析与习作.声乐.钢琴.器乐(中国乐器.外国乐器).中国音乐史与名作赏析.外国音乐史与名作赏析.中国民族音乐.外国民族音乐.学校音乐教育导论与教材教法.形体训练.钢琴伴奏等.另开设了近20门选修课程 ...

  • 2011级给排水科学与工程专业培养计划2
  • 给排水科学与工程专业本科培养方案(送审稿) (Undergraduate Program for Specialty in Science and Engineering of Water & Wastewater) 一.修业年限及授予学位名称 Ⅰ.Length of Schooling a ...

  • 2015版土木工程专业培养计划20150721
  • "土木工程"本科专业培养 计划 "土木工程"本科专业培养计划 所属学院: 学科门类: 专业大类: 适用年级: 土木工程学院 工学 土木工程 2015级 标准学制: 专业代码: 授予学位: 专业负责人: 四年 081001 工学学士 曲成平 一.专业简介 青岛理 ...

  • 石油相关专业精品课程在线学习网址
  • 石油相关专业精品课程在线学习网址 @@成都理工大学@@ 矿床学:http://202.115.138.30/ec3.0/C34/zcr-1.htm 岩石学:http://202.115.138.30/ec3.0/C38/zcr-1.htm 地球物理测井原理:http://202.115.138.30 ...

  • 航空安全员工作总结
  • 20xx年我院各方面的工作取得了很大的成绩,这些成绩是在学校的正确指导和关怀下、在校各职能部门领导的正确领导和帮助下,经过全院教职工的共同艰辛努力所取得的。航空学院20xx年度的主要工作和业绩总结如下。 第一、党委工作 1、在一提三优工程的党建创优工程中,院党委创造性地开展工作,凝练提出了航空学院的 ...