由简单的几何图形变换得到的启示

  摘 要:数学广泛存在于生活中,善于开发和利用学生身边的数学资源与素材进行加工和创造,有利于提高学生的知识视野。关注数学活动的教学,更能激发学生学习数学的兴趣,注重数学模型的作用,有助于学生创造能力的培养。

  关键词:三角板;旋转的不变性;创造能力;逻辑思维能力

  随着课改的进行及《义务教育数学课程标准》的实施,处处体现生活中存在数学。怎样去发现数学,其实数学就在身边,留心观察,细心思考,你会体会到数学的奇妙与快乐。下面就简单的一副三角板的开发和利用,谈点自己的看法与启示。

  首先进入我们视野的是等腰直角三角形,这是一个德才兼备的几何图形,它既具有等腰三角形的性质又具有直角三角形的性质。研究起来会妙笔生花,细心的品读它带给我们的快乐。取一对全等的含45度角的三角板进行简单的探究活动,将△MNK的直角顶点M放在△ABC的斜边中点上。设AC=BC=4,

  (1)如图1,两三角板重叠部分为△ACM,则重叠部分的面积是多少?周长为多少?

  显而易见:△ACM的面积等于△ABC的一半周长等于AB+AC,而AB的长由勾股定理求得。

  (2)将图1中的三角板MNK绕顶点M逆时针旋转45度角,得到图2,则重叠部分的面积会发生变化吗?周长为多少?类比图1很快就会发现没有变化周长为8。

  (3)将△MNK绕点M旋转到不同于图1和图2的位置,你猜想此时重叠部分面积会发生变化吗?如果不发生变化,请说出理由。于是学生投入到激烈讨论中,这种跳跃性思维跃然于纸上。启发在已有的研究成果基础上去构造,既然△MNK是旋转变化的,能不能转换为图1于图2的图形。观察与研究发现面积不变,那又怎样证明。连接CM会发现△CMG会和△APM全等,可以看成△CMG绕点M旋转90度角得到的,此时图形旋转起到了一个惊人的变化。由特殊到一般揭示了图形变换的本质,一石激起千层浪,让学生自己拼图利用三角板反复进行仔细观察会发现什么?小组讨论、研究。追问:在图3中,AP=1的情况下,怎样求重叠部分的周长?生1:坏了,这下掉进老师设的陷阱里了,出不来了。此时,我静静地等待学生研究成果。生2:AP=1,CP=3,由三角形全等知:CG=AP=1,可PM=MG=?此时,陷入僵局,大部分同学投入积极的思考中,既然是旋转大家能不能转化为图1,图2呢?从中得到哪些启示。图3能转化为图2吗?联想与旋转变化交替进行,是数学思维活动进入了又一个高峰。积极的思考和点拨,让学生在思维的碰撞中产生火花。生3:老师我知道了。生4:我也知道了。我抓住有利时机,问什么在这里起到了重要的作用,勾股定理即可求DM的长。从中看到了旋转的作用,全等变换其形变本质不变,找到恰当的解题方法,达到融会贯通的目的。

  思维的发散与变式正是研究问题的恰好时机,此时展示2013年河南省中考试题,实现思维的正向迁移。

  将两块全等的含30度的三角板如图4放在一起,△ABC与△DEC重合放置,∠C=90度,∠B=∠E=30度。(1)操作发现:固定△ABC绕点C旋转,点D恰好落在AB边上时,如图5,填空:①线段DE与AC位置关系_______。②设△BCD的面积与△AEC的面积的数量关系是 。③猜想论证:当△DEC绕点C旋转到图6的位置时,小马猜想②中的结论仍然成立,并尝试分别做△BDC和△AEC的BC与CE边上的高,请你证明小马的猜想。

  有了前一个习题的铺垫,①②两问学生会顺利地得到解答。③的解答细细的思考会发现,既然是旋转,抓住旋转的不变性及旋转前后的图形全等的特征,可证△ACN≌△DCM即可。

  当替换条件时,∠BAC=36度,△ABC为等腰三角形,上述条件不改变,就变为一般情况,这样从一般到特殊的思维方法。拓展学生的知识视野,举一反三,融会贯通使知识达到成片开发,提高学生的想象能力及逻辑思维能力,达到训练目的。

  启示:在这节习题课中,旋转的特殊性质,抓住旋转的不变性,利用全等条件,仔细观察图形的变化,启发学生思维开发和利用旋转的内在联系,一题多用,变换条件。螺旋上升,使学生的视野开阔,提升解答问题的能力。教学中只要留心观察,认真研究习题的变化和解题规律就会有所收获。充分利用学生手中的三角板进行演示,拼接通过全方位观察思考,运用工具进行知识重组和解答,无疑对培养学生思维的灵活性和独创性有着十分重要的意义。事实上,充满思考性的练习题即使学生没能完全正确解答出来,也能有效地训练学生的创新思维。这不仅有利于提高学生思考、分析的积极性,也有利于开发学生的创造潜能。创造性思维不仅要求思维的数量,还要求思维的深度和灵活性,即思维的变通性。创造性教学则是培养创造性思维和创新能力的基础。所以教师在教学过程中要从多角度训练学生的思维品质,使学生能独立地、自觉地运用所给问题的条件,并做出新的变换和组合,培养学生灵活应变能力。所以在教学中要关注学生的数学活动,培养动手操作能力,及时转换为数学模型,挖掘数学习题的内在潜质,去发现共性进而研究这类习题的解题规律。

  以上三例的演示与启发使我认识到:教师一定要充分收集利用已有的数学资源,进行加工与创造培养学生的探究精神。去追求数学知识的内在联系,加强创新思维训练与培养,有待于我们去研究和利用。

  (作者单位 永吉县第七中学)

  编辑 鲁翠红

  摘 要:数学广泛存在于生活中,善于开发和利用学生身边的数学资源与素材进行加工和创造,有利于提高学生的知识视野。关注数学活动的教学,更能激发学生学习数学的兴趣,注重数学模型的作用,有助于学生创造能力的培养。

  关键词:三角板;旋转的不变性;创造能力;逻辑思维能力

  随着课改的进行及《义务教育数学课程标准》的实施,处处体现生活中存在数学。怎样去发现数学,其实数学就在身边,留心观察,细心思考,你会体会到数学的奇妙与快乐。下面就简单的一副三角板的开发和利用,谈点自己的看法与启示。

  首先进入我们视野的是等腰直角三角形,这是一个德才兼备的几何图形,它既具有等腰三角形的性质又具有直角三角形的性质。研究起来会妙笔生花,细心的品读它带给我们的快乐。取一对全等的含45度角的三角板进行简单的探究活动,将△MNK的直角顶点M放在△ABC的斜边中点上。设AC=BC=4,

  (1)如图1,两三角板重叠部分为△ACM,则重叠部分的面积是多少?周长为多少?

  显而易见:△ACM的面积等于△ABC的一半周长等于AB+AC,而AB的长由勾股定理求得。

  (2)将图1中的三角板MNK绕顶点M逆时针旋转45度角,得到图2,则重叠部分的面积会发生变化吗?周长为多少?类比图1很快就会发现没有变化周长为8。

  (3)将△MNK绕点M旋转到不同于图1和图2的位置,你猜想此时重叠部分面积会发生变化吗?如果不发生变化,请说出理由。于是学生投入到激烈讨论中,这种跳跃性思维跃然于纸上。启发在已有的研究成果基础上去构造,既然△MNK是旋转变化的,能不能转换为图1于图2的图形。观察与研究发现面积不变,那又怎样证明。连接CM会发现△CMG会和△APM全等,可以看成△CMG绕点M旋转90度角得到的,此时图形旋转起到了一个惊人的变化。由特殊到一般揭示了图形变换的本质,一石激起千层浪,让学生自己拼图利用三角板反复进行仔细观察会发现什么?小组讨论、研究。追问:在图3中,AP=1的情况下,怎样求重叠部分的周长?生1:坏了,这下掉进老师设的陷阱里了,出不来了。此时,我静静地等待学生研究成果。生2:AP=1,CP=3,由三角形全等知:CG=AP=1,可PM=MG=?此时,陷入僵局,大部分同学投入积极的思考中,既然是旋转大家能不能转化为图1,图2呢?从中得到哪些启示。图3能转化为图2吗?联想与旋转变化交替进行,是数学思维活动进入了又一个高峰。积极的思考和点拨,让学生在思维的碰撞中产生火花。生3:老师我知道了。生4:我也知道了。我抓住有利时机,问什么在这里起到了重要的作用,勾股定理即可求DM的长。从中看到了旋转的作用,全等变换其形变本质不变,找到恰当的解题方法,达到融会贯通的目的。

  思维的发散与变式正是研究问题的恰好时机,此时展示2013年河南省中考试题,实现思维的正向迁移。

  将两块全等的含30度的三角板如图4放在一起,△ABC与△DEC重合放置,∠C=90度,∠B=∠E=30度。(1)操作发现:固定△ABC绕点C旋转,点D恰好落在AB边上时,如图5,填空:①线段DE与AC位置关系_______。②设△BCD的面积与△AEC的面积的数量关系是 。③猜想论证:当△DEC绕点C旋转到图6的位置时,小马猜想②中的结论仍然成立,并尝试分别做△BDC和△AEC的BC与CE边上的高,请你证明小马的猜想。

  有了前一个习题的铺垫,①②两问学生会顺利地得到解答。③的解答细细的思考会发现,既然是旋转,抓住旋转的不变性及旋转前后的图形全等的特征,可证△ACN≌△DCM即可。

  当替换条件时,∠BAC=36度,△ABC为等腰三角形,上述条件不改变,就变为一般情况,这样从一般到特殊的思维方法。拓展学生的知识视野,举一反三,融会贯通使知识达到成片开发,提高学生的想象能力及逻辑思维能力,达到训练目的。

  启示:在这节习题课中,旋转的特殊性质,抓住旋转的不变性,利用全等条件,仔细观察图形的变化,启发学生思维开发和利用旋转的内在联系,一题多用,变换条件。螺旋上升,使学生的视野开阔,提升解答问题的能力。教学中只要留心观察,认真研究习题的变化和解题规律就会有所收获。充分利用学生手中的三角板进行演示,拼接通过全方位观察思考,运用工具进行知识重组和解答,无疑对培养学生思维的灵活性和独创性有着十分重要的意义。事实上,充满思考性的练习题即使学生没能完全正确解答出来,也能有效地训练学生的创新思维。这不仅有利于提高学生思考、分析的积极性,也有利于开发学生的创造潜能。创造性思维不仅要求思维的数量,还要求思维的深度和灵活性,即思维的变通性。创造性教学则是培养创造性思维和创新能力的基础。所以教师在教学过程中要从多角度训练学生的思维品质,使学生能独立地、自觉地运用所给问题的条件,并做出新的变换和组合,培养学生灵活应变能力。所以在教学中要关注学生的数学活动,培养动手操作能力,及时转换为数学模型,挖掘数学习题的内在潜质,去发现共性进而研究这类习题的解题规律。

  以上三例的演示与启发使我认识到:教师一定要充分收集利用已有的数学资源,进行加工与创造培养学生的探究精神。去追求数学知识的内在联系,加强创新思维训练与培养,有待于我们去研究和利用。

  (作者单位 永吉县第七中学)

  编辑 鲁翠红


相关内容

  • 浅谈数学中的对称美
  • 题目:浅谈数学中的对称美 目录 摘要„„„„„„„„„„„„„„„„„„„„„„„3 一.数学中对称美的概念„„„„„„„„„„„„„„3 二.数学中对称美的形式„„„„„„„„„„„„„„3 三.数学中对称美的应用„„„„„„„„„„„„„„4 四.总结„„„„„„„„„„„„„„„„„„„„„5 ...

  • 数学毕业论文题目
  • 数学毕业论文题目 1.数学中的研究性学习 2.数字危机 3.中学数学中的化归方法 4.高斯分布的启示 5.a2+b2≧2ab 的变形推广及应用 6.网络优化 7.泰勒公式及其应用 8.浅谈中学数学中的反证法 9.数学选择题的利和弊 10.浅谈计算机辅助数学教学 11.论研究性学习 12.浅谈发展数学 ...

  • 轴对称全章教案
  • §14.1.1 轴对称(一) 教学目标 (一)教学知识点:在生活实例中认识轴对称图:分析轴对称图形,理解其概念. (二)能力训练要求 1.通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴. 2.经历观察.分析的过程,训练学生观察.分析的能力. (三)情感与价值观要求 通过对丰富的轴对 ...

  • 数学中的对称
  • 数学中的对称 摘要:对称通常是指图形或物体对某个点,直线或平面而言,在大小.形状和排列上具有一一对应关系,在数学中,对称的概念略有拓广常把某些具有关连或对立的概念视为对称,这样对称美便成了数学中的一个重要组成部分,对称美是一个广阔的主题,在艺术和自然两方面都意义重大,数学则是它根本,美和对称紧密相连 ...

  • 小学数学课程标准解读
  • 小学数学课程标准解读 一.前言 <全日制义务教育数学课程标准(修改稿)>(以下简称<标准>)是针对我国义务教育阶段的数学教育制定的.根据<义务教育法>.<基础教育课程改革纲要(试行)>的要求,<标准>以全面推进素质教育,培养学生的创新精神和 ...

  • 谈高中数学中的转化思想
  • 总第649期教海探航 谈高中数学中的转化思想 李朝霞 (河南省内乡县中等职业学校,河南省474373) 摘要:数学思想方法是数学的精髓,转化思想方法又是数学思想的核心和精髓.新课标下初高中数学衔接上呈现高中数学"起点高.难度大.容量多.课时紧"的特点.学生学习不适应现象突出.困难 ...

  • 小学数学思想方法的梳理(六)
  • 课程教材研究所 王永春 六.几何变换思想 变换是数学中一个带有普遍性的概念,代数中有数与式的恒等变换.几何中有图形的变换.在初等几何中,图形变换是一种重要的思想方法,它以运动变化的观点来处理孤立静止的几何问题,往往在解决问题的过程中能够收到意想不到的效果. 1. 初等几何变换的概念. 初等几何变换是 ...

  • 图形的变换 教案
  • 图形的变换 [教学内容] 义务教育课程标准北师大版教材六年级上册第三单元第35页"图形的变换". [教学目标] 1.通过观察.操作.想象,经历一个简单图形经过平移或旋转制作复杂图形的过程,体验图形的变换,发展空间观念. 2.借助方格纸上的操作和分析,有条理地表达图形的平移或旋转的 ...

  • 浅谈企业标志设计的表现形式
  • [摘要]设计师在给企业设计标志的时候,不知道从何处寻找切入点,不能大胆设想和构思,也就没有所谓的设计灵感,因而出不来最佳方案.标志设计具有具象表现.抽象表现和文字表现等多种表现形式,这些表现形式是设计师进行创意的基础,是促进灵感实现的有力基石. [关键词]企业标志,设计,表现形式 刚刚学习标志设计的 ...