全站仪竖井联系测量的平差计算原理及其精度分析

全站仪竖井联系测量的平差计算原理及其精度分析:何 波 刘成龙 黄志伟等

17

文章编号:16727479(2010) 03001703

全站仪竖井联系测量的平差计算原理及其精度分析

何 波 刘成龙 黄志伟 赵梦杰 姬晓旭

(西南交通大学土木工程学院, 四川成都 610031)

Adj ust m ent Pri nci ple for Shaft Connecti ng w it h Survey t hrough Total

St ationM ac hi ne asW ell as Analysis on Its Precisi on

H e Bo L iu Chenglong Huang Zh i w e i Zhao M eng jie JiX iaoxu

摘 要 传统的三角形竖井联系测量计算是一种近似方法, 且无法进行精度评定与分析。在研究和分析现代全站仪竖井联系测量原理的基础上, 提出采用间接平差进行竖井联系测量的数据处理, 并推导了

相应的平差计算模型, 从而解决了竖井联系测量严密计算及其精度评定问题。通过仿真计算, 证明本文提出的方法是可行的, 而且可以分析不同情况下竖井联系测量的精度, 值得在同类工程实践中推广应用。

关键词 竖井联系测量 平差 仿真计算 精度分析中图分类号:TB22 文献标识码:B

竖井联系测量的目的就是将地面控制网的坐标、方位及高程按要求的精度准确地传递给地下隧道施工控制导线, 为施工提供控制依据, 以保证各相向开挖面能正确贯通。竖井联系测量采用的方法, 主要有陀螺定向法、钻孔投点法、联系三角形法和导线定向法。其中, 传统的联系三角形法是以前国内地下隧道竖井联系测量中最常用的方法, 但由于该法存在设备笨重、工序繁多、工作时间长、劳动强度大和效率低等不足, 目前使用较少。由于全站仪的普及应用, 文献[1]提出了一种应用全站仪进行竖井联系测量的新方法, 但其计算仍采用传统的方法, 因而结果仍然是近似的, 而且无法进行精度评定。

井联系测量的新方法。新方法大大减少了联系三角形各边的测距误差, 且速度快、适应能力强, 从而提高了竖井联系测量的精度。

如图1所示, 新方法在进行联系测量时, 首先需要在井上井口附近埋设两个近井点A 、B, 并按照规定的精度, 将竖井附近地面控制点的坐标, 引测到A 、B 上; 然后在竖井内悬吊两根吊锤线E 、F, 吊锤线E 、F 的间距应尽可能地大, 在吊锤线的上、下适当部位固定塑料反射片; 最后, 在井下埋设两个地下导线的起算点G 、H, 通过竖井联系测量把地面点A 、B 的坐标和方位传递到地下G 、H 点上。

1 竖井联系测量的新方法

传统的竖井联系测量是用钢卷尺丈量联系三角形的各边, 用经纬仪测量联系三角形的各角, 这种方法不

仅操作复杂而且效率低, 不适应现代工程建设的需要。全站仪测量技术的日趋完善, 使得我们可以通过在吊锤线上固定反射片, 并采用ATR (自动目标识别) 技术来测量联系三角形各边的水平距离和角度, 这就是竖

收稿日期:2010-03-15

第一作者简介:何 波(1986) ), 男, 2009年毕业于西南交通大学土木

工程学院测量工程系, 在读硕士研究生。

图1 全站仪竖

18

铁 道 勘 察2010年第3期

如图2所示, 新方法在井上测量时, 全站仪分别架设在近井点A (B) 上, 采用双测站极坐标测量的方法, 测量测站A 或B 到E 、F 、B 或A 的方向值和距离, 如果条件允许, 则在井上测量时, 还可测量A 到控制点C 和B 到控制点D 的方向值; 如图3所示, 新方法在井下测量时, 全站仪分别架设在G 或H 点上, 测量测站G 或H 到E 、F 、H 或G 的方向值和距离; 不论是井上还是井下, 距离测量全部为全站仪对反射片的直接测距, 而不是传统的钢尺量距。

向观测值; Z i 和D z i 分别为测站i 定向角近似值及其改正数, 且有

A ij =arctan

Y j -Y i 0

, Z i =

X j -X i

E

n

(A ij -L ij ) n i

i=1

上式中n i 为i 测站上观测的方向数。

另外, ij 边水平距离的误差方程式为

v S ij =-co s A ij #D x i -sin A ij #D y i cos A x j +sin A ij #D y j -l ij ij #D l ij =S ij -S ij

式(2) 。

(3)

2 新方法的平差计算原理

211 井上联系测量误差方程式的开列

图1中的井上联系测量实际上是应用了两边连接的联系三角形, 对这种图形需要观测A 至C 、E 、B 、F 以及B 至D 、E 、A 、F 的方向值, 以及边AE 、AF 、BE 、BF 的

平距。井上联系测量原理如图2

所示。

式(3) 中, S ij 为ij 边的边长观测值, 其他符号的意义同

212 井下联系测量误差方程式的开列

井下联系测量原理如图3所示, 测量时需要观测G 或H 到E 、F 、H 或G 的方向值和平距, 因此井下部分的观测值个数n =11。

图2 竖井联系测量井上测量原理示意

图3 竖井联系测量井下测量原理示意

为了对井上联系测量观测数据进行平差计算, 首先需要计算出E 、F 两点的近似坐标。由已知点A 的坐标和观测角X 以及观测边S AE , 可以计算出E 点的近似坐标

X E =X A +S AE #co s A AE Y =Y A +S AE #si n A AE

理, 可以计算F 点的近似坐标。

由已知点A 、B 的坐标和待定点E 、F 的近似坐标, 可计算待定边的近似坐标方位角A 和近似边长S 。由文献[2]可知, 当计算出了各边的近似坐标方位角和近似边长后, 即可按照式(2) 和式(3) 计算水平方向和距离观测值误差方程中的系数, 进而开列出如下形式的水平方向和距离的误差方程

Q si n A ij Q cos A ij

v ij =-D z i +#D x i -#D y i -S ij S ij Q s i n A S ij

ij

00

0E 0

为了计算G 、H 两点的近似坐标, 可先解算图3中的三角形, 得到D 1和D 2角度值, 然后根据EF 边的坐标方位角, 推算出FG 、E H 边的近似坐标方位角, 再仿照式(1), 根据E 、F 点的坐标计算出G 、H 两点的近似坐标, 进而再按照式(2) 和式(3) 开列出井下联系测量水平方向和距离观测值的误差方程。

(1)

式(1) 中, X A 、Y A 为A 点的坐标值; A 。同AE =A A C +X

213 观测值权值的计算

井上和井下联系测量的环境虽然有较大的差异, 但由于竖井联系测量时边长都较短, 同时若采用具有自动照准功能的全站仪进行观测, 则在定权时可不考虑环境因素的差异, 用相同的公式对井上、井下的观测

值进行定权。

由于井上和井下的测量都存在两类不同类型的观测值, 因此可按照经验定权法确定水平方向和距离观测值的权比关系, 即以全站仪标称的水平方向观测值L 的中误差m L 为单位权中误差R 0, 则距离和水平方向的权分别为

#D x j +

Q co s A S ij

ij

#D y j -l ij

(2)

P S ij

R 0R 0

=2=2

m S ij (a +b #S ij ) R

=1m

202L ij

22

l ij =L ij +Z i -A ij

式(2) 为水平方向的误差方程式, 其中, Q =206265d ;

ij ij ; L ij 0

(4)

P L ij =

式(b

全站仪竖井联系测量的平差计算原理及其精度分析:何 波 刘成龙 黄志伟等

19

差, 可由全站仪的标称精度得到。形, 并令水平方向和距离的先验观测精度分别为? 015d 和? (1+1@10D ) mm /km、? 110d 和? (1+2@-6-610D ) mm /km、? 2d 和? (2+2@10D ) mm /km 时, 可按式(1) ~式(7) 计算不同网形情况下, 井下导线起始点G 、H 的点位中误差和井下导线起始边G H 的方位角中误差, 计算结果如表1所示。

表1 井上联系测量精度仿真计算结果统计

-6

214 平差计算的精度评定

根据式(2) 和式(3) 建立的井上和井下的误差方程式, 可以得到间接平差时误差方程式的系数矩阵B, 同时根据式(4) 可确定观测值的权阵P, 然后可按式(5) 求得未知参数平差值的协因数矩阵Q X ^X^, 按照式(6) 求得观测值平差值的协因数阵Q L ^L^

Q X ^X^=(BPB )

T T

-1

T

(5) (6)

Q L ^L^=B (BPB ) B

-1

先验精度B 1、B 2值1=B 2=3b B 1=B 2=10b B 1=B 2=15b

? 015d ? 1d ? 2d

-6-6

? (1+1@10D ? ) (1+2@10D ? ) (2+2@10-6D ) 井上

m G

网形121212

m H m GH

m G

m H

m GH m G

m H

m GH 513617

利用式(5) 求得的协因数可求得G 点和H 点X 方向和Y 方向的中误差及其点位中误差, 利用式(6) 求得的协因数, 可求得井下导线起始边G H 的坐标方位角中误差, 计算公式如式(7) 所示

m X =? R 0m Y =? R 0m P =? R 0m A =? R 0

XX YY

XX YY A

(7)

[***********][***********][1**********]4

[***********][***********][***********][***********][***********][***********]61713

表1中m G 和m H 分别为G 、H 两点的点位中误差, 单位为mm; m GH 为G H 方向的方位角中误差, 单位为d 。

根据表1可以看出:

(1) 在仪器精度相同且B 1=B 2的情况下, 图4中两种网形G H 边的方位角精度并无显著性差异。

(2) 仪器精度、B 1和B 2角度大小对井下导线起始点G 、H 精度的影响不显著, 但对G H 边的方位角精度影响非常显著。

(3) 当B 时, 网形1计算出的井下导线1=B 2=3b 起始边的精度优于网形2, 但当B 1=B 2=10b 或15b 时, 网形1计算出的井下导线起始边的精度低于网形2。通过分析可知, 这是由于当B 1和B 2都为小角时, 网形1和网形2的G H 、EF 、AB 的方向都可基本保持一致; 当B 1和B 2的增大时, 网形1中AB 的方向和EF 、G H 的方向相差越来越大, 但网形2中G H 、EF 、AB 的方向任然基本一致。

(4) B 1和B 2为小角对竖井联系测量更为有利, 因为这能让EF 的方向和AB 的方向基本一致。

(5) 井下和井上测量网形相同对竖井联系测量更为有利。

式(7) 中R 0为单位权中误差。

坐标传递的误差使得地下导线的各点产生同一数值的位移, 其对横向贯通精度的影响是一个常数; 而方向角传递的误差, 将使地下导线各边方向角转动同一个误差值, 它对横向贯通精度的影响将随着导线长度的增大而增大, 是影响隧道贯通的主要误差源。因此, 在进行竖井联系测量的精度分析时, 主要关注的是井下导线起始边坐标方位角的精度。

[5]

3 竖井联系测量的精度分析311 井上联系测量精度的仿真分析

在井上进行测量时, 虽然布网较为灵活, 但有时受环境限制, 并不一定能布设成伸展形状的联系三角形。因此, 在传统的两边连接的联系三角形(

图4中网形1) 的基础上, 提出了图4中的网形2。网形2中, 两吊垂线E 和F 的连线方向和AB 的方向也基本一致, 所不同的是A 、B 两点在EF 边的同侧。

312 井下联系测量精度的仿真分析

受环境限制, 井下联系测量的图形一般只能是图3, 且图3中D 1和D 2角实际不可能很大, 仍假设图3和

图4中A , B 且EF =5m, 1=A 2=C 1=C 2=2b 1=B 2=3b

图4 井上测量时不同网形

变化D 1和D 2, 假设的先验观测精度与井上相同, 可按式(1) ~式(7) 计算井下导线起始点G 、H 的点位中误差和井下导线起始边G H 的方位角中误差, 计算结果如表2所示。

假设图3和图4中A 1=A , D 2=C 1=C 2=2b 1=D 2=3b 且EF =5m, 先进行井上联系测量的精度分析, 故只1和2, 3中

20

文章编号:16727479(2010) 03002004

铁 道 勘 察2010年第3期

大旋转角坐标转换在沉石作业中的应用

刘忠喜 李全海 朱卫东

(同济大学测量与国土信息工程系, 上海 200092)

Application of Big Rotation Angle Transfor m ati on M odel for

Coordi nate i n Construction of I mm ersed Stone

Liu Zhongx i L i Quanha i Zhu W e i d ong

摘 要 在沉石作业中, 需通过观测棱镜塔的水面上棱镜, 并运用坐标转换来计算水下特征点的实时坐标。由于风力、海浪等因素的影响, 棱镜坐标的观测质量会有很大的起伏, 导致转换点精度有很大变化。将大旋转角坐标转换模型应用于沉石作业, 编程计算特征点实时坐标和点位实时精度, 并画出实时坐标与设计坐标相对位置的关系, 为指挥施工提供依据。最后通过一个算例进行验证, 通过数据的分析和比较, 验证点位实时精度的重要性, 并估计此种方法在沉石作业的精度。

关键词 沉石作业 棱镜塔 坐标转换 点位实时精度中图分类号:TB22 文献标识码:B

在大地测量和摄影测量中, 坐标转换有着广泛的应用。如我国曾经采用北京54坐标系、西安80坐标系、以及目前即将普及的GS2000系统, 如果想利用不

(3) 角度A A 2、B B 2、C C D D 1、1、1、2、1、2的大小对竖井联系测量的影响非常显著, 实际测量时, 这些角度越小越好。

(4) 竖井联系测量时, 应尽量保证AB 、EF 、G H 平行。

(5) 应在A A 2、B B 2、C C D D 1、1、1、2、1、2都为小角的前提下增大EF 的间距。

(6) 竖井联系测量的数据宜采用平差的方法进行处理, 这样做不仅速度快, 准确可靠, 而更有利于隧道横向贯通误差的正确预计。

参考文

道勘察, 2009(5)

收稿日期:2010-03-15

第一作者简介:刘忠喜(1985) ), 男, 2008年毕业于长安大学测绘工程专业, 在读硕士研究生。

表2 井下联系测量精度仿真计算结果统计

先验精度

? 015d ? 1d ? 2d

-6-6

? (1+1@10D ) ? (1+2@10D ) ? (2+2@10-6D )

m H [***********]

m G H [***********]

m G [***********]

m H 017018017

m G H 217617316

m G 115116114

m H [***********]

m GH [***********]2016

井上D 取井下

m G

网形值网形

3b 1

10b 15b 3b 2

10b 15b

111111

[***********]

[***********][1**********]

从表2还可以看出:D 1和D 2为小角对竖井联系测量更为有利, 因为这能让EF 和AB 、G H 边的方向基本一致, 从而使G H 边的方位角中误差更小。

[1] 姬晓旭, 刘成龙, 何 波. 竖井联系测量的新方法及其应用[J].铁[2] 武汉大学测绘学院测量平差学科组. 误差理论与测量平差基础

[M].武汉:武汉大学出版社, 2003

[3] 张正禄, 等. 工程测量学[M].武汉:武汉大学出版社, 2005[4] 刘成龙, 杨友涛, 徐小左. 高速铁路CP Ó交会网必要测量精度的

仿真计算[J].西南交通大学学报, 2008(6)

[5] 李青岳, 陈永奇. 工程测量学[M].北京:测绘出版社, 1995[6] GB50308) 1999 地下铁道、轻轨交通工程测量规范[S]

4 结论

(1) 不宜使用标称精度等于或低于? 2d 和? (2+2@10D )mm /km的全站仪进行竖井联系测量。(2) 竖井联系测量时, 井上和井下的网形应当相似。

-6

全站仪竖井联系测量的平差计算原理及其精度分析:何 波 刘成龙 黄志伟等

17

文章编号:16727479(2010) 03001703

全站仪竖井联系测量的平差计算原理及其精度分析

何 波 刘成龙 黄志伟 赵梦杰 姬晓旭

(西南交通大学土木工程学院, 四川成都 610031)

Adj ust m ent Pri nci ple for Shaft Connecti ng w it h Survey t hrough Total

St ationM ac hi ne asW ell as Analysis on Its Precisi on

H e Bo L iu Chenglong Huang Zh i w e i Zhao M eng jie JiX iaoxu

摘 要 传统的三角形竖井联系测量计算是一种近似方法, 且无法进行精度评定与分析。在研究和分析现代全站仪竖井联系测量原理的基础上, 提出采用间接平差进行竖井联系测量的数据处理, 并推导了

相应的平差计算模型, 从而解决了竖井联系测量严密计算及其精度评定问题。通过仿真计算, 证明本文提出的方法是可行的, 而且可以分析不同情况下竖井联系测量的精度, 值得在同类工程实践中推广应用。

关键词 竖井联系测量 平差 仿真计算 精度分析中图分类号:TB22 文献标识码:B

竖井联系测量的目的就是将地面控制网的坐标、方位及高程按要求的精度准确地传递给地下隧道施工控制导线, 为施工提供控制依据, 以保证各相向开挖面能正确贯通。竖井联系测量采用的方法, 主要有陀螺定向法、钻孔投点法、联系三角形法和导线定向法。其中, 传统的联系三角形法是以前国内地下隧道竖井联系测量中最常用的方法, 但由于该法存在设备笨重、工序繁多、工作时间长、劳动强度大和效率低等不足, 目前使用较少。由于全站仪的普及应用, 文献[1]提出了一种应用全站仪进行竖井联系测量的新方法, 但其计算仍采用传统的方法, 因而结果仍然是近似的, 而且无法进行精度评定。

井联系测量的新方法。新方法大大减少了联系三角形各边的测距误差, 且速度快、适应能力强, 从而提高了竖井联系测量的精度。

如图1所示, 新方法在进行联系测量时, 首先需要在井上井口附近埋设两个近井点A 、B, 并按照规定的精度, 将竖井附近地面控制点的坐标, 引测到A 、B 上; 然后在竖井内悬吊两根吊锤线E 、F, 吊锤线E 、F 的间距应尽可能地大, 在吊锤线的上、下适当部位固定塑料反射片; 最后, 在井下埋设两个地下导线的起算点G 、H, 通过竖井联系测量把地面点A 、B 的坐标和方位传递到地下G 、H 点上。

1 竖井联系测量的新方法

传统的竖井联系测量是用钢卷尺丈量联系三角形的各边, 用经纬仪测量联系三角形的各角, 这种方法不

仅操作复杂而且效率低, 不适应现代工程建设的需要。全站仪测量技术的日趋完善, 使得我们可以通过在吊锤线上固定反射片, 并采用ATR (自动目标识别) 技术来测量联系三角形各边的水平距离和角度, 这就是竖

收稿日期:2010-03-15

第一作者简介:何 波(1986) ), 男, 2009年毕业于西南交通大学土木

工程学院测量工程系, 在读硕士研究生。

图1 全站仪竖

18

铁 道 勘 察2010年第3期

如图2所示, 新方法在井上测量时, 全站仪分别架设在近井点A (B) 上, 采用双测站极坐标测量的方法, 测量测站A 或B 到E 、F 、B 或A 的方向值和距离, 如果条件允许, 则在井上测量时, 还可测量A 到控制点C 和B 到控制点D 的方向值; 如图3所示, 新方法在井下测量时, 全站仪分别架设在G 或H 点上, 测量测站G 或H 到E 、F 、H 或G 的方向值和距离; 不论是井上还是井下, 距离测量全部为全站仪对反射片的直接测距, 而不是传统的钢尺量距。

向观测值; Z i 和D z i 分别为测站i 定向角近似值及其改正数, 且有

A ij =arctan

Y j -Y i 0

, Z i =

X j -X i

E

n

(A ij -L ij ) n i

i=1

上式中n i 为i 测站上观测的方向数。

另外, ij 边水平距离的误差方程式为

v S ij =-co s A ij #D x i -sin A ij #D y i cos A x j +sin A ij #D y j -l ij ij #D l ij =S ij -S ij

式(2) 。

(3)

2 新方法的平差计算原理

211 井上联系测量误差方程式的开列

图1中的井上联系测量实际上是应用了两边连接的联系三角形, 对这种图形需要观测A 至C 、E 、B 、F 以及B 至D 、E 、A 、F 的方向值, 以及边AE 、AF 、BE 、BF 的

平距。井上联系测量原理如图2

所示。

式(3) 中, S ij 为ij 边的边长观测值, 其他符号的意义同

212 井下联系测量误差方程式的开列

井下联系测量原理如图3所示, 测量时需要观测G 或H 到E 、F 、H 或G 的方向值和平距, 因此井下部分的观测值个数n =11。

图2 竖井联系测量井上测量原理示意

图3 竖井联系测量井下测量原理示意

为了对井上联系测量观测数据进行平差计算, 首先需要计算出E 、F 两点的近似坐标。由已知点A 的坐标和观测角X 以及观测边S AE , 可以计算出E 点的近似坐标

X E =X A +S AE #co s A AE Y =Y A +S AE #si n A AE

理, 可以计算F 点的近似坐标。

由已知点A 、B 的坐标和待定点E 、F 的近似坐标, 可计算待定边的近似坐标方位角A 和近似边长S 。由文献[2]可知, 当计算出了各边的近似坐标方位角和近似边长后, 即可按照式(2) 和式(3) 计算水平方向和距离观测值误差方程中的系数, 进而开列出如下形式的水平方向和距离的误差方程

Q si n A ij Q cos A ij

v ij =-D z i +#D x i -#D y i -S ij S ij Q s i n A S ij

ij

00

0E 0

为了计算G 、H 两点的近似坐标, 可先解算图3中的三角形, 得到D 1和D 2角度值, 然后根据EF 边的坐标方位角, 推算出FG 、E H 边的近似坐标方位角, 再仿照式(1), 根据E 、F 点的坐标计算出G 、H 两点的近似坐标, 进而再按照式(2) 和式(3) 开列出井下联系测量水平方向和距离观测值的误差方程。

(1)

式(1) 中, X A 、Y A 为A 点的坐标值; A 。同AE =A A C +X

213 观测值权值的计算

井上和井下联系测量的环境虽然有较大的差异, 但由于竖井联系测量时边长都较短, 同时若采用具有自动照准功能的全站仪进行观测, 则在定权时可不考虑环境因素的差异, 用相同的公式对井上、井下的观测

值进行定权。

由于井上和井下的测量都存在两类不同类型的观测值, 因此可按照经验定权法确定水平方向和距离观测值的权比关系, 即以全站仪标称的水平方向观测值L 的中误差m L 为单位权中误差R 0, 则距离和水平方向的权分别为

#D x j +

Q co s A S ij

ij

#D y j -l ij

(2)

P S ij

R 0R 0

=2=2

m S ij (a +b #S ij ) R

=1m

202L ij

22

l ij =L ij +Z i -A ij

式(2) 为水平方向的误差方程式, 其中, Q =206265d ;

ij ij ; L ij 0

(4)

P L ij =

式(b

全站仪竖井联系测量的平差计算原理及其精度分析:何 波 刘成龙 黄志伟等

19

差, 可由全站仪的标称精度得到。形, 并令水平方向和距离的先验观测精度分别为? 015d 和? (1+1@10D ) mm /km、? 110d 和? (1+2@-6-610D ) mm /km、? 2d 和? (2+2@10D ) mm /km 时, 可按式(1) ~式(7) 计算不同网形情况下, 井下导线起始点G 、H 的点位中误差和井下导线起始边G H 的方位角中误差, 计算结果如表1所示。

表1 井上联系测量精度仿真计算结果统计

-6

214 平差计算的精度评定

根据式(2) 和式(3) 建立的井上和井下的误差方程式, 可以得到间接平差时误差方程式的系数矩阵B, 同时根据式(4) 可确定观测值的权阵P, 然后可按式(5) 求得未知参数平差值的协因数矩阵Q X ^X^, 按照式(6) 求得观测值平差值的协因数阵Q L ^L^

Q X ^X^=(BPB )

T T

-1

T

(5) (6)

Q L ^L^=B (BPB ) B

-1

先验精度B 1、B 2值1=B 2=3b B 1=B 2=10b B 1=B 2=15b

? 015d ? 1d ? 2d

-6-6

? (1+1@10D ? ) (1+2@10D ? ) (2+2@10-6D ) 井上

m G

网形121212

m H m GH

m G

m H

m GH m G

m H

m GH 513617

利用式(5) 求得的协因数可求得G 点和H 点X 方向和Y 方向的中误差及其点位中误差, 利用式(6) 求得的协因数, 可求得井下导线起始边G H 的坐标方位角中误差, 计算公式如式(7) 所示

m X =? R 0m Y =? R 0m P =? R 0m A =? R 0

XX YY

XX YY A

(7)

[***********][***********][1**********]4

[***********][***********][***********][***********][***********][***********]61713

表1中m G 和m H 分别为G 、H 两点的点位中误差, 单位为mm; m GH 为G H 方向的方位角中误差, 单位为d 。

根据表1可以看出:

(1) 在仪器精度相同且B 1=B 2的情况下, 图4中两种网形G H 边的方位角精度并无显著性差异。

(2) 仪器精度、B 1和B 2角度大小对井下导线起始点G 、H 精度的影响不显著, 但对G H 边的方位角精度影响非常显著。

(3) 当B 时, 网形1计算出的井下导线1=B 2=3b 起始边的精度优于网形2, 但当B 1=B 2=10b 或15b 时, 网形1计算出的井下导线起始边的精度低于网形2。通过分析可知, 这是由于当B 1和B 2都为小角时, 网形1和网形2的G H 、EF 、AB 的方向都可基本保持一致; 当B 1和B 2的增大时, 网形1中AB 的方向和EF 、G H 的方向相差越来越大, 但网形2中G H 、EF 、AB 的方向任然基本一致。

(4) B 1和B 2为小角对竖井联系测量更为有利, 因为这能让EF 的方向和AB 的方向基本一致。

(5) 井下和井上测量网形相同对竖井联系测量更为有利。

式(7) 中R 0为单位权中误差。

坐标传递的误差使得地下导线的各点产生同一数值的位移, 其对横向贯通精度的影响是一个常数; 而方向角传递的误差, 将使地下导线各边方向角转动同一个误差值, 它对横向贯通精度的影响将随着导线长度的增大而增大, 是影响隧道贯通的主要误差源。因此, 在进行竖井联系测量的精度分析时, 主要关注的是井下导线起始边坐标方位角的精度。

[5]

3 竖井联系测量的精度分析311 井上联系测量精度的仿真分析

在井上进行测量时, 虽然布网较为灵活, 但有时受环境限制, 并不一定能布设成伸展形状的联系三角形。因此, 在传统的两边连接的联系三角形(

图4中网形1) 的基础上, 提出了图4中的网形2。网形2中, 两吊垂线E 和F 的连线方向和AB 的方向也基本一致, 所不同的是A 、B 两点在EF 边的同侧。

312 井下联系测量精度的仿真分析

受环境限制, 井下联系测量的图形一般只能是图3, 且图3中D 1和D 2角实际不可能很大, 仍假设图3和

图4中A , B 且EF =5m, 1=A 2=C 1=C 2=2b 1=B 2=3b

图4 井上测量时不同网形

变化D 1和D 2, 假设的先验观测精度与井上相同, 可按式(1) ~式(7) 计算井下导线起始点G 、H 的点位中误差和井下导线起始边G H 的方位角中误差, 计算结果如表2所示。

假设图3和图4中A 1=A , D 2=C 1=C 2=2b 1=D 2=3b 且EF =5m, 先进行井上联系测量的精度分析, 故只1和2, 3中

20

文章编号:16727479(2010) 03002004

铁 道 勘 察2010年第3期

大旋转角坐标转换在沉石作业中的应用

刘忠喜 李全海 朱卫东

(同济大学测量与国土信息工程系, 上海 200092)

Application of Big Rotation Angle Transfor m ati on M odel for

Coordi nate i n Construction of I mm ersed Stone

Liu Zhongx i L i Quanha i Zhu W e i d ong

摘 要 在沉石作业中, 需通过观测棱镜塔的水面上棱镜, 并运用坐标转换来计算水下特征点的实时坐标。由于风力、海浪等因素的影响, 棱镜坐标的观测质量会有很大的起伏, 导致转换点精度有很大变化。将大旋转角坐标转换模型应用于沉石作业, 编程计算特征点实时坐标和点位实时精度, 并画出实时坐标与设计坐标相对位置的关系, 为指挥施工提供依据。最后通过一个算例进行验证, 通过数据的分析和比较, 验证点位实时精度的重要性, 并估计此种方法在沉石作业的精度。

关键词 沉石作业 棱镜塔 坐标转换 点位实时精度中图分类号:TB22 文献标识码:B

在大地测量和摄影测量中, 坐标转换有着广泛的应用。如我国曾经采用北京54坐标系、西安80坐标系、以及目前即将普及的GS2000系统, 如果想利用不

(3) 角度A A 2、B B 2、C C D D 1、1、1、2、1、2的大小对竖井联系测量的影响非常显著, 实际测量时, 这些角度越小越好。

(4) 竖井联系测量时, 应尽量保证AB 、EF 、G H 平行。

(5) 应在A A 2、B B 2、C C D D 1、1、1、2、1、2都为小角的前提下增大EF 的间距。

(6) 竖井联系测量的数据宜采用平差的方法进行处理, 这样做不仅速度快, 准确可靠, 而更有利于隧道横向贯通误差的正确预计。

参考文

道勘察, 2009(5)

收稿日期:2010-03-15

第一作者简介:刘忠喜(1985) ), 男, 2008年毕业于长安大学测绘工程专业, 在读硕士研究生。

表2 井下联系测量精度仿真计算结果统计

先验精度

? 015d ? 1d ? 2d

-6-6

? (1+1@10D ) ? (1+2@10D ) ? (2+2@10-6D )

m H [***********]

m G H [***********]

m G [***********]

m H 017018017

m G H 217617316

m G 115116114

m H [***********]

m GH [***********]2016

井上D 取井下

m G

网形值网形

3b 1

10b 15b 3b 2

10b 15b

111111

[***********]

[***********][1**********]

从表2还可以看出:D 1和D 2为小角对竖井联系测量更为有利, 因为这能让EF 和AB 、G H 边的方向基本一致, 从而使G H 边的方位角中误差更小。

[1] 姬晓旭, 刘成龙, 何 波. 竖井联系测量的新方法及其应用[J].铁[2] 武汉大学测绘学院测量平差学科组. 误差理论与测量平差基础

[M].武汉:武汉大学出版社, 2003

[3] 张正禄, 等. 工程测量学[M].武汉:武汉大学出版社, 2005[4] 刘成龙, 杨友涛, 徐小左. 高速铁路CP Ó交会网必要测量精度的

仿真计算[J].西南交通大学学报, 2008(6)

[5] 李青岳, 陈永奇. 工程测量学[M].北京:测绘出版社, 1995[6] GB50308) 1999 地下铁道、轻轨交通工程测量规范[S]

4 结论

(1) 不宜使用标称精度等于或低于? 2d 和? (2+2@10D )mm /km的全站仪进行竖井联系测量。(2) 竖井联系测量时, 井上和井下的网形应当相似。

-6


相关内容

  • 地铁暗挖工程联系测量技术总结
  • 大连地铁暗挖工程联系测量技术总结 摘要:测量在建筑工程施工过程中的应用,已经算是非常成熟和完善,测量技术也越来越先进.测量精度也越来越高.但在地铁车站暗挖施工环境中,由于受到现场施工条件的限制,一些先进的仪器无法使用,或使用之前的测量技术达不到我们所需要的精度要求.这样我就要在现有的条件下,采取一些 ...

  • 城市轨道交通2号线2标测量方案
  • 目 录 一. 1.1 1.2 1.3 1.4 1.5 二. 三. 工程概况 ................................................................................................................ ...

  • #竖井联系测量
  • 大连地铁2号线工程 000标段工点#竖井联系测量 检测报告 大连市勘察测绘研究院有限公司 大连地铁2号线第三方测量项目部 二〇一〇年月 委托单位:大连市地铁有限公司 测量单位:大连市勘察测绘研究院有限公司 大连地铁2号线第三方测量项目部 检测项目:000标段工点#竖井联系测量检测 总 经 理: 尹水 ...

  • 盾构竖井联系测量的几种方法探讨
  • 第35卷第6期 山 2009年2月 SHANXI ARCHITECTURE 西建 35No. 6筑 Vol. Feb. 2009 ・353・ ・测量・ 文章编号:100926825(2009) 0620353202 盾构竖井联系测量的几种方法探讨 徐浩 杨卓 摘 要:介绍了在广州地铁六号线盾构三标段 ...

  • 地铁工程施工测量方案
  • 第六篇 工程施工测量 第一章 施工测量的组织和管理 1.1 本标段施工测量的技术要求 ⑴施工测量的方法及精度要求严格遵守<地下铁道.轻轨交通工程测量规范>(GB50308-). 根据<地下铁道.轻轨交通工程测量规范>(GB50308-)规定,地铁车站和区间施工测量中线和高程的 ...

  • 探究矿山测量中测绘新技术的特点和应用
  • 探究矿山测量中测绘新技术的特点和应用 作者:张丽霞 来源:<价值工程>2014年第18期 摘要: 本文首先对现阶段矿山测量发展的基本情况作出了分析,重点探讨了矿山测量中测绘新技术的具体应用,为今后的矿山测量提供参考依据. Abstract: This paper firstly anal ...

  • 地下工程测量矿山测量复习资料
  • 1.矿山测量任务有哪些内容:①建立矿区地面和井下(露天矿)测量控制系统,测绘大比例尺地形图②矿山基本建设中的施工测量③测绘各种采掘工程图.矿山专用图及矿体几何图④对资源利用及生产情况进行检查和监督⑤观测和研究由于开采所引起的地表及岩层移动的基本规律,以及露天矿边坡的稳定性,组织开展"三下& ...

  • 暗挖地铁施工测量管理办法
  • 编制: 审核: 批准: 测量管理办法 目录 一.总则 . ....................................................................................................... 1 二.工作目标......... ...

  • 测量高程控制施工手册
  • 测量高程控制施工 技术指导 1.2.3. 一. 高程控制网施工技术指导 各等级水准测量的技术.精度要求及观测方法整体高程控制网的建立 主要结构物高程控制测量 高程控制网的布设及测量 . 各等级水准测量的技术.精度要求及观测方法 公路高程系统,宜采用1985国家高程基准.同一条公路应采用同一高程系统. ...