浅谈极限对数学的意义

浅谈极限对数学的意义

极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。

所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想。用极限思想解决问题的一般步骤可概括为:对于被考察的未知量,先设法构思一个与它有关的变量,确认这变量通过无限过程的结果就是所求的未知量;最后用极限计算来得到这结果。 极限的思想由来已久.公元前三世纪,古代伟大的科学家阿基米德,利用“逼近法”算出球面积、球体积、抛物线、椭圆面积,而公元前五世纪,我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。 这其中就用到了极限思想。这些早期的极限思想还很原始与朴素,但为其后极限的发展奠定了基础。

说到极限的作用,就不得不提到微积分。可以说极限就是微积分的基础,而微积分的发展是建立在极限理论发展之上的。而微积分对现代文明的贡献之大毋庸置疑。由此极限的重要性可见一斑。现在任何一所大学的数学系的学生都会先学极限,之后再学微积分。但历史上微积分却比极限产生的早,可以说微积分是一个早产儿。这个早产儿在实际中应用的非常好,但是在理论上却是模糊不清。由此还引发了第二次数学危机。拯救危机的方法就是清晰的定义极限。

十七世纪,微积分出现了。领军人物是两个伟大的智者。一个家伙叫牛顿,而另一个叫莱布尼茨。牛顿通过对力的研究发明了微积分,虽然现在看来这样的微积分还很原始,仅仅涉及一重,只有一个变量。但是它的意义是无可估量的。而莱布尼茨则通过对切线的研究,得到了微积分。他不仅发明了微积分,而且现代微积分很多符号都是他定义的,他在理论方面的研究价值巨大。可是无论是牛顿,还是莱布尼茨,都有一些基本的理论问题无法解决。 而这些问题也困扰了他们一生。

到底是什么样的问题呢?首先我们要来了解微积分是什么。微积分分为微分和积分。微分的定义为:设函数y = f(x)在x0的邻域内有定义,x0及x0 + Δx在此区间内。如果函数的增量Δy = f(x0 + Δx) − f(x0)可表示为 Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx0)是比Δx高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx。其中的A就是我们高中时所学的导数。我们的确这样定义了微分,可是问题来了,什么事无穷小量,这是一个毫无概念东西,既无数学公式,又无严谨的证明。至于高阶无穷小量,它本身就是一个基于无穷小量的概念,没有无穷小量,高阶更无从谈起。积分的定义:首先有一个连续函

... ...

,其中分为间隔成 子区间(细分)。 让

在区间

上。让

是任意(随机选择)的间隔分区

... ... 采样(采样点)的子区间选择。 也就是说,

... ... ,和

在 ,在

,在

。定义分区网格最大的子区间的长度。 也就

是说,让

定积分 在区间

,为

是最普遍的定义为

并定义

。定积分这里同样有问题,mesh趋近与0到底是一

个什么样的概念呢。与0距离是多少算趋近,1,1/2,还是1/n。

后来人们发现,微积分的问题不在本身,而在于它的理论基础。十九世纪,一个伟大的数学大师解决了这个问题:柯西。法国数学家柯西通过对极限的严格定义,来澄清微积分上的基础问题的混乱。他是这样定义函数极限的:设f:(a,+∞)→R是一个一元实值函数,a∈R.如果对于任意给定的ε>0,存在正数X,使得对于适合不等式x>X的一切x,所对应的函数值f(x)都满足不等式.

│f(x)-A│

则称数A为函数f(x)当x→+∞时的极限,记作f(x)→A(x→+∞).这样对极限的完美定义,使得微积分一下变得清晰明了。而他对极限的定义方法,却是用有限的数X来定义无限趋近这一概念。这样的定义既简单,又容易让人理解。同时也让人们对微积分有了更深一步的认识,为微积分的发展做出了巨大贡献。因为在二重,三重,甚至多重微积分中,直观的感受已经无法描述出微积分的概念。而通过极限却可以让人很好的理解,研究微积分。二重积分定义:设二元函数z=f(x,y)定义在有界闭区域D上,将区域D任意分成n个子域Δδi(i=1,2,3,…,n),并以Δδi表示第i个子域的面积.在Δδi上任取一点(ξi,ηi),作和lim n→+∞ (n/i=1 Σ(ξi,ηi)Δδi).如果当各个子域的直径中的最大值λ趋于零时, 此和式的极限存在,则称此极限为函数f(x,y)在区域D上的二重积分,记为∫∫f(x,y)dδ,即 ∫∫f(x,y)dδ=lim n→+∞ (Σf(ξi,ηi)Δδi)

三重积分定义:如果当各小闭区域的直径中的最大值趋于零时这和的极限总存在,则称此极限为函数f(x y z)在闭区域上的三重积分。多重微积分的发展极大的推动了科学的进步,不光是物理学等基础学科的发展。 工程力学,机械科学等实用性学科也发展了起来。

同时极限理论的发展导致了微积分的大发展。从而一个新的数学分支出现了:数学分析。数学分析分支现在成为了数学系学生的必修课,而其他理工科类也必须学习一定的数学分析知识,可以说数学分析分支是数学分支中应用最广的。我是数学系学生,学得一年,自我感受,数学分析整本书最重要的就是极限理论。极限的思想是无限靠近,通过有限来定义无限。这个思想贯穿了整本书。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科”。

总而言之,极限是数学中极其重要的一个概念,它是第二次数学危机的产物,是几千年人类思想的结晶。我还记得我第一次上数学分析课时老师说过的话:“今天我们要

讲的内容很重要,实际上学完这本书后你会发现这本书实际上就讲了这么一个概念:极限。”

浅谈极限对数学的意义

极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。

所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想。用极限思想解决问题的一般步骤可概括为:对于被考察的未知量,先设法构思一个与它有关的变量,确认这变量通过无限过程的结果就是所求的未知量;最后用极限计算来得到这结果。 极限的思想由来已久.公元前三世纪,古代伟大的科学家阿基米德,利用“逼近法”算出球面积、球体积、抛物线、椭圆面积,而公元前五世纪,我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。 这其中就用到了极限思想。这些早期的极限思想还很原始与朴素,但为其后极限的发展奠定了基础。

说到极限的作用,就不得不提到微积分。可以说极限就是微积分的基础,而微积分的发展是建立在极限理论发展之上的。而微积分对现代文明的贡献之大毋庸置疑。由此极限的重要性可见一斑。现在任何一所大学的数学系的学生都会先学极限,之后再学微积分。但历史上微积分却比极限产生的早,可以说微积分是一个早产儿。这个早产儿在实际中应用的非常好,但是在理论上却是模糊不清。由此还引发了第二次数学危机。拯救危机的方法就是清晰的定义极限。

十七世纪,微积分出现了。领军人物是两个伟大的智者。一个家伙叫牛顿,而另一个叫莱布尼茨。牛顿通过对力的研究发明了微积分,虽然现在看来这样的微积分还很原始,仅仅涉及一重,只有一个变量。但是它的意义是无可估量的。而莱布尼茨则通过对切线的研究,得到了微积分。他不仅发明了微积分,而且现代微积分很多符号都是他定义的,他在理论方面的研究价值巨大。可是无论是牛顿,还是莱布尼茨,都有一些基本的理论问题无法解决。 而这些问题也困扰了他们一生。

到底是什么样的问题呢?首先我们要来了解微积分是什么。微积分分为微分和积分。微分的定义为:设函数y = f(x)在x0的邻域内有定义,x0及x0 + Δx在此区间内。如果函数的增量Δy = f(x0 + Δx) − f(x0)可表示为 Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx0)是比Δx高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx。其中的A就是我们高中时所学的导数。我们的确这样定义了微分,可是问题来了,什么事无穷小量,这是一个毫无概念东西,既无数学公式,又无严谨的证明。至于高阶无穷小量,它本身就是一个基于无穷小量的概念,没有无穷小量,高阶更无从谈起。积分的定义:首先有一个连续函

... ...

,其中分为间隔成 子区间(细分)。 让

在区间

上。让

是任意(随机选择)的间隔分区

... ... 采样(采样点)的子区间选择。 也就是说,

... ... ,和

在 ,在

,在

。定义分区网格最大的子区间的长度。 也就

是说,让

定积分 在区间

,为

是最普遍的定义为

并定义

。定积分这里同样有问题,mesh趋近与0到底是一

个什么样的概念呢。与0距离是多少算趋近,1,1/2,还是1/n。

后来人们发现,微积分的问题不在本身,而在于它的理论基础。十九世纪,一个伟大的数学大师解决了这个问题:柯西。法国数学家柯西通过对极限的严格定义,来澄清微积分上的基础问题的混乱。他是这样定义函数极限的:设f:(a,+∞)→R是一个一元实值函数,a∈R.如果对于任意给定的ε>0,存在正数X,使得对于适合不等式x>X的一切x,所对应的函数值f(x)都满足不等式.

│f(x)-A│

则称数A为函数f(x)当x→+∞时的极限,记作f(x)→A(x→+∞).这样对极限的完美定义,使得微积分一下变得清晰明了。而他对极限的定义方法,却是用有限的数X来定义无限趋近这一概念。这样的定义既简单,又容易让人理解。同时也让人们对微积分有了更深一步的认识,为微积分的发展做出了巨大贡献。因为在二重,三重,甚至多重微积分中,直观的感受已经无法描述出微积分的概念。而通过极限却可以让人很好的理解,研究微积分。二重积分定义:设二元函数z=f(x,y)定义在有界闭区域D上,将区域D任意分成n个子域Δδi(i=1,2,3,…,n),并以Δδi表示第i个子域的面积.在Δδi上任取一点(ξi,ηi),作和lim n→+∞ (n/i=1 Σ(ξi,ηi)Δδi).如果当各个子域的直径中的最大值λ趋于零时, 此和式的极限存在,则称此极限为函数f(x,y)在区域D上的二重积分,记为∫∫f(x,y)dδ,即 ∫∫f(x,y)dδ=lim n→+∞ (Σf(ξi,ηi)Δδi)

三重积分定义:如果当各小闭区域的直径中的最大值趋于零时这和的极限总存在,则称此极限为函数f(x y z)在闭区域上的三重积分。多重微积分的发展极大的推动了科学的进步,不光是物理学等基础学科的发展。 工程力学,机械科学等实用性学科也发展了起来。

同时极限理论的发展导致了微积分的大发展。从而一个新的数学分支出现了:数学分析。数学分析分支现在成为了数学系学生的必修课,而其他理工科类也必须学习一定的数学分析知识,可以说数学分析分支是数学分支中应用最广的。我是数学系学生,学得一年,自我感受,数学分析整本书最重要的就是极限理论。极限的思想是无限靠近,通过有限来定义无限。这个思想贯穿了整本书。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科”。

总而言之,极限是数学中极其重要的一个概念,它是第二次数学危机的产物,是几千年人类思想的结晶。我还记得我第一次上数学分析课时老师说过的话:“今天我们要

讲的内容很重要,实际上学完这本书后你会发现这本书实际上就讲了这么一个概念:极限。”


相关内容

  • 无理数的存在性证明及应用(本科毕业论文)
  • 本科毕业论文 无理数e 的存在性证明及应用 目 录 1 引言 . ................................................................ 1 2 文献综述 . ......................................... ...

  • 关于两个重要极限的认识
  • 关于两个重要极限的认识 陈乙德 (河南大学 计算机与信息工程学院,开封 475001) 摘要:本文重点讨论了微积分中的两个重要极限,一是它在概念引出中的重要作用,二是两个重要极限的一般形式和应用 关键词:两个重要极限:一般形式:应用 中途分类号:O172 文献标志码:A 1x 在微积分的众多常用极限 ...

  • 特岗教师招聘:[初中数学教师专业课]考试大纲(代数模块)
  • 特岗教师招聘<初中数学教师专业课>考试范围划分为代数.几何.初中数学教育学三大模块: Ⅰ. 代数模块 (一) 初中代数中的数.式概念及其运算法则.重要公式,方程.不等式和函数; (二) 一元函数微分学 1. 极限:数列的极限,函数的极限,极限的四则运算以及函数的连续性. 2. 导数:导数 ...

  • 加工中心高级工试卷7
  • 加工中心操作工高级工试卷合并卷 一.选择题(请将正确答案的代号填入括号内,每题2分,共360分) 1.>在变量赋值方法I 中,引数(自变量)I 对应的变量是( ). A .#4 B.#51 C.#101 D.#125 答案:A 2.>在变量赋值方法I 中,引数(自变量)I 对应的变量是( ...

  • 2014高等数学专升本考试大纲
  • 荆楚理工学院专升本考试<高等数学>考试大纲 一.课程名称:高等数学 二.适用专业: 非数学专业 三.考试方法:闭卷考试 四.考试时间:90分钟 五.试卷结构:总分:100分 其中选择题20分,填空题20分,计算题50分,证明题10分. 六.参考书目: 1.同济大学数学系主编,<高等 ...

  • 2015年九江学院专升本高等数学Ⅱ考试大纲
  • 2015年九江学院专升本高等数学Ⅱ考试大纲 第一部分:总要求 考生应按本大纲的要求,了解或理解"高等数学"中函数.极限和连续.一元函数微分学.一元函数积分学.多元函数微积分学.无穷级数.常微分方程的基本概念与基本理论:学会.掌握或熟练掌握上述各部分的基本方法.应注意各部分知识的结 ...

  • 初等函数在定义域中连续
  • 初等函数在定义域中连续 一. 连续的定义 二.常见的初等函数举例 三.以上所举初等函数是否在定义域中连续 并举例证明几个初等函数的连续性 四.以上所举初等函数的复合函数(也是初等函数) 是否有连续性并举例证明 五.我们从中得到的定理 一.连续的定义 (一)设函数f 在某U (X0)内有定义,若lim ...

  • 第一张对数表是怎样制作出来的
  • ■ 陈纪修(复旦大学数学科学学院教授) 在400多年前,人类还没有发明计算机,还只能做加.减.乘.除等简单运算.但是随着科学技术的发展,特别是随着天文学和力学的迅速发展,科学家要面对许多复杂的计算,这就促使他们去寻找简化复杂计算的方法.对数运算与对数表就是在这样的背景下产生的. 人们应该把造出第一张 ...

  • 高等数学考试要求
  • 2010年山东省普通高等教育专升本 高等数学(公共课)考试要求 总要求:考生应了解或理解"高等数学"中函数.极限和连续.一元函数微分学.一元函数积分学.向量代数与空间解析几何.多元函数微积分学.无穷级数.常微分方程的基本概念与基本理论:学会.掌握或熟练掌握上述各部分的基本方法.应 ...