高中物理十大难点

难点之一 物体受力分析

一、难点形成原因:

1、力是物体间的相互作用。受力分析时,这种相互作用只能凭着各力的产生条件和方向要求,再加上抽象的思维想象去画,不想实物那么明显,这对于刚升入高中的学生来说,多习惯于直观形象,缺乏抽象的逻辑思惟,所以形成了难点。

2、有些力的方向比较好判断,如:重力、电场力、磁场力等,但有些力的方向难以确定。如:弹力、摩擦力等,虽然发生在接触处,但在接触的地方是否存在、方向如何却难以把握。

3、受力分析时除了将各力的产生要求、方向的判断方法熟练掌握外,同时还要与物体的运动状态相联系,这就需要一定的综合能力。由于学生对物理知识掌握不全,导致综合分析能力下降,影响了受力分析准确性和全面性。

4、教师的教学要求和教学方法不当造成难点。教学要求不符合学生的实际,要求过高,想一步到位,例如:一开始就给学生讲一些受力个数多、且又难以分析的物体的受力情况等。这样势必在学生心理上会形成障碍。

二、难点突破策略:

物体的受力情况决定了物体的运动状态,正确分析物体的受力,是研究力学问题的关键。受力分析就是分析物体受到周围其它物体的作用。为了保证分析结果正确,应从以下几个方面突破难点。

1. 受力分析的方法:整体法和隔离法

2. 受力分析的依据:各种性质力的产生条件及各力方向的特点

3. 受力分析的步骤 :

为了在受力分析时不多分析力,也不漏力,一般情况下按下面的步骤进行:

(1)确定研究对象 —可以是某个物体也可以是整体。

(2)按顺序画力

a .先画重力:作用点画在物体的重心,方向竖直向下。

b .次画已知力

c .再画接触力—(弹力和摩擦力):看研究对象跟周围其他物体有几个接触点(面),先对某个接触点(面)分析,若有挤压,则画出弹力,若还有相对运动或相对运动的趋势,

则再画出摩擦力。分析完一个接触点(面)后,再依次分析其他的接触点(面)。

d .再画其他场力:看是否有电、磁场力作用,如有则画出。

(3)验证:

a .每一个力都应找到对应的施力物体 b.受的力应与物体的运动状态对应。

说明:

(1)只分析研究对象受的根据性质命名的实际力(如:重力、弹力、摩擦力等) ,不画它对别的物体的作用力。

(2)合力和分力不能同时作为物体所受的力。

(3)每一个力都应找到施力物体,防止“漏力”和“添力”。

(4)可看成质点的物体,力的作用点可画在重心上,对有转动效果的物体,则力应画在实际位置上。

(5)为了使问题简化,常忽略某些次要的力。如物体速度不大时的空气阻力、物体在空气中所受的浮力等。

(6)分析物体受力时,除了考虑它与周围物体的作用外,还要考虑物体的运动情况(平衡状态、加速或减速) ,当物体的运动情况不同时,其情况也不同。

4. 受力分析的辅助手段

(1)物体的平衡条件(共点力作用下物体的平衡条件是合力为零)

(2)牛顿第二定律(物体有加速度时)

(3)牛顿第三定律(内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上)

5. 常见的错误及防范的办法:

(1)多画力。

a. 研究对象不明,错将其他物体受到的力画入。

b. 虚构力,将不存在的力画入。

c. 将合力和分力重复画入。

要防止多画力。第一,彻底隔离研究对象。第二,每画一个力要心中默念受力物体和施力物体。

(2) 少画力。

少画力往往是由受力分析过程混乱所致,因此

a. 要严格按顺序分析。

b. 分析弹力和摩擦力时,所有接触点都要分析到。

(3) 错画力。即把力的方向画错。防范办法是要按规律作

三、分类例析

1.弹力有、无的判断

弹力的产生条件是接触且发生弹性形变。但有的形变明显,有的不明显。那么如何判断相互接触的物体间有无弹力?

法1: “假设法”,即假设接触物体撤去,判断研究对象是否能维持现状。若维持现状则接触物体对研究对象没有弹力,因为接触物体使研究对象维持现状等同于没有接触物,即接触物形同虚设,故没有弹力。若不能维持现状则有弹力,因为接触物撤去随之撤去了应该有的弹力,从而改变了研究对象的现状。可见接触物对研究对象维持现状起着举足轻重的作用,故有弹力。

难点之二 传送带问题

一、难点形成的原因:

1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向

如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清;

2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误;

3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。

二、难点突破策略:

(1)突破难点1

在以上三个难点中,第1个难点应属于易错点,突破方法是先让学生正确理解摩擦力产生的条件、方向的判断方法、大小的决定因素等等。通过对不同类型题目的分析练习,让学生做到准确灵活地分析摩擦力的有无、大小和方向。

摩擦力的产生条件是:第一,物体间相互接触、挤压; 第二,接触面不光滑; 第三,物体间有相对运动趋势或相对运动。

前两个产生条件对于学生来说没有困难,第三个条件就比较容易出问题了。若物体是轻轻地放在了匀速运动的传送带上,那么物体一定要和传送带之间产生相对滑动,物体和传送带一定同时受到方向相反的滑动摩擦力。关于物体所受滑动摩擦力的方向判断有两种方法:一是根据滑动摩擦力一定要阻碍物体间的相对运动或相对运动趋势,先判断物体相对传送带的运动方向,可用假设法,若无摩擦,物体将停在原处,则显然物体相对传送带有向后运动的趋势,因此物体要受到沿传送带前进方向的摩擦力,由牛顿第三定律,传送带要受到向后的阻碍它运动的滑动摩擦力;二是根据摩擦力产生的作用效果来分析它的方向,物体只所以能由静止开始向前运动,则一定受到向前的动力作用,这个水平方向上的力只能由传送带提供,因此物体一定受沿传送带前进方向的摩擦力,传送带必须要由电动机带动才能持续而稳定地工作,电动机给传送带提供动力作用,那么物体给传送带的就是阻力作用,与传送带的运动方向相反。

若物体是静置在传送带上,与传送带一起由静止开始加速,若物体与传送带之间的动摩擦因数较大,加速度相对较小,物体和传送带保持相对静止,它们之间存在着静摩擦力,物体的加速就是静摩擦力作用的结果,因此物体一定受沿传送带前进方向的摩擦力;若物体与传送带之间的动摩擦因数较小,加速度相对较大,物体和传送带不能保持相对静止,物体将跟不上传送带的运动,但它相对地面仍然是向前加速运动的,它们之间存在着滑动摩擦力,同样物体的加速就是该摩擦力的结果,因此物体一定受沿传送带前进方向的摩擦力。

若物体与传送带保持相对静止一起匀速运动,则它们之间无摩擦力,否则物体不可能匀速运动。

若物体以大于传送带的速度沿传送带运动方向滑上传送带,则物体将受到传送带提供的使它减速的摩擦力作用,直到减速到和传送带有相同的速度、相对传送带静止为止。因此该摩擦力方向一定与物体运动方向相反。

若物体与传送带保持相对静止一起匀速运动一段时间后,开始减速,因物体速度越来越小,故受到传送带提供的使它减速的摩擦力作用,方向与物体的运动方向相反,传送带则受到与传送带运动方向相同的摩擦力作用。

若传送带是倾斜方向的,情况就更为复杂了,因为在运动方向上,物体要受重力沿斜面的下滑分力作用,该力和物体运动的初速度共同决定相对运动或相对运动趋势方向。

难点之三:圆周运动的实例分析

一、难点形成的原因

1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。

2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用;

3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。

4、圆周运动的周期性把握不准。

5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。

二、难点突破

(1)匀速圆周运动与非匀速圆周运动

a. 圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。

b. 最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。

c. 匀速圆周运动只是速度方向改变,而速度大小不变。做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。

难点之四 卫星问题分析

一、难点形成原因:

卫星问题是高中物理内容中的牛顿运动定律、运动学基本规律、能量守恒定律、万有引力定律甚至还有电磁学规律的综合应用。其之所以成为高中物理教学难点之一,不外乎有以下几个方面的原因。

1、不能正确建立卫星的物理模型而导致认知负迁移

由于高中学生认知心理的局限性以及由牛顿运动定律研究地面物体运动到由天体运动规律研究卫星问题的跨度,使其对卫星、飞船、空间站、航天飞机等天体物体绕地球运转以及对地球表面物体随地球自转的运动学特点、受力情形的动力学特点分辩不清,无法建立卫星或天体的匀速圆周运动的物理学模型(包括过程模型和状态模型),解题时自然不自然界的受制于旧有的运动学思路方法,导致认知的负迁移,出现分析与判断的失误。

2、不能正确区分卫星种类导致理解混淆

人造卫星按运行轨道可分为低轨道卫星、中高轨道卫星、地球同步轨道卫星、地球静止卫星、太阳同步轨道卫星、大椭圆轨道卫星和极轨道卫星;按科学用途可分为气象卫星、通讯卫星、侦察卫星、科学卫星、应用卫星和技术试验卫星。。。。。。由于不同称谓的卫星对应不同的规律与状态,而学生对这些分类名称与所学教材中的卫星知识又不能吻合对应,因而导致理解与应用上的错误。

3、不能正确理解物理意义导致概念错误

卫星问题中有诸多的名词与概念,如,卫星、双星、行星、恒星、黑洞;月球、地球、土星、火星、太阳;卫星的轨道半径、卫星的自身半径;卫星的公转周期、卫星的自转周期;卫星的向心加速度、卫星所在轨道的重力加速度、地球表面上的重力加速度;卫星的追赶、对接、变轨、喷气、同步、发射、环绕等问题。。。。。。因为不清楚卫星问题涉及到的诸多概念的含义,时常导致读题、审题、求解过程中概念错乱的错误。

4、不能正确分析受力导致规律应用错乱

由于高一时期所学物体受力分析的知识欠缺不全和疏于深化理解,牛顿运动定律、圆周运动规律、曲线运动知识的不熟悉甚至于淡忘,以至于不能将这些知识迁移并应用于卫星运行原理的分析,无法建立正确的分析思路,导致公式、规律的胡乱套用,其解题错误也就在所难免。

5、不能全面把握卫星问题的知识体系,以致于无法正确区分类近知识点的不同。如,开普勒行星运动规律与万有引力定律的不同;赤道物体随地球自转的向心加速度与同步卫星环绕地球运行的向心加速度的不同;月球绕地球运动的向心加速度与月球轨道上的重力加速度的不同;卫星绕地球运动的向心加速度与切向加速度的不同;卫星的运行速度与发射速度的不同;由万有引力、重力、向心力构成的三个等量关系式的不同;天体的自身半径与卫星的轨道半径的不同;两个天体之间的距离L与某一天体的运行轨道半径r的不同。。。。。。只有明确的把握这些类近而相关的知识点的异同时才能正确的分析求解卫星问题。

二、难点突破策略:

(一)明确卫星的概念与适用的规律:

1、卫星的概念:

由人类制作并发射到太空中、能环绕地球在空间轨道上运行(至少一圈)、用于

科研应用的无人或载人航天器,简称人造卫星。高中物理的学习过程中要将其抽象为一个能环绕地球做圆周运动的物体。

2、适用的规律:

牛顿运动定律、万有引力定律、开普勒天体运动定律、能量守恒定律以及圆周运

动、曲线运动的规律、电磁感应规律。。。。。均适应于卫星问题。但必须注意到“天上”运行的卫星与“地上”运动物体的受力情况的根本区别。

(二)认清卫星的分类:

高中物理的学习过程中,无须知道各种卫星及其轨道形状的具体分类,只要认清地球同步卫星(与地球相对静止)与一般卫星(绕地球运转)的特点与区别即可。

(1)、地球同步卫星:

①、同步卫星的概念:所谓地球同步卫星,是指相对于地球静止、处在特定高度的轨道上、具有特定速度且与地球具有相同周期、相同角速度的卫星的一种。

②、同步卫星的特性:

-5不快不慢------具有特定的运行线速度(V=3100m/s)、特定的角速度(ω=7.26x10 ra

d/s )和特定的周期(T=24小时)。

7不高不低------具有特定的位置高度和轨道半径,高度H=3.58 x10m, 轨道半径

7r=4.22 x10m.

不偏不倚------同步卫星的运行轨道平面必须处于地球赤道平面上,轨道中心与地心重合,只能‘静止’在赤道上方的特定的点上。

证明如下:

如图4-1所示,假设卫星在轨道A 上跟着地球的自转同步地匀速圆周运动,卫星运动的向心力来自地球对它的引力F引,F引中除用来作向心力的F1外,还有另一分力F2,由于F2的作用将使卫星运行轨道靠向赤道,只有赤道上空,同步卫星才可能在稳定的轨道上运行。

由 G ∙Mm =m ω2R 得R =

GM 2R

∴h=R-R地 是一个定值。(h是同步卫星距离地面的高度)

因此,同步卫星一定具有特定的位置高度和轨道半径。

③、同步卫星的科学应用:

同步卫星一般应用于通讯与气象预报,高中物理中出现的通讯卫星与气象卫星一般是指同步卫星。

(2)、一般卫星:

①、定义:

一般卫星指的是,能围绕地球做圆周运动,其轨道半径、轨道平面、运行速度、运

行周期各不相同的一些卫星。

②、、卫星绕行速度与半径的关系: 由G Mm =m v 2 得:v =r r r 即 v ∝r (r越大v 越小)

③、、卫星绕行角速度与半径的关系: 由G Mm =m ω2r 得:ω=r 2r 即ω∝r ;(r 越大ω越小) ④、、卫星绕行周期与半径的关系: Mm ⎛2π⎫G =mr ⎪T r ⎝⎭由得:T =42r 3

GM 即T ∝r 3(r 越大T越大),

(3)双星问题

两颗靠得很近的、质量可以相比的、相互绕着两者连线上某点做匀速圆周运的星体,叫做双星.双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提供.由于引力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,因两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等的,线速度与两子星的轨道半径成正比.

(三)运用力学规律研究卫星问题的思维基础:

①光年,是长度单位,1光年= 9.46×1012千米 ρ=②认为星球质量分布均匀,密度M 4V =πR 32S =4πR V ,球体体积3,表面积 ③地球公转周期是一年(约365天,折合 8760 小时),自转周期是一天(约24小时)。 ④月球绕地球运行周期是一个月(约28天,折合672小时;实际是27.3天)

⑤围绕地球运行飞船内的物体,受重力,但处于完全失重状态。

⑥发射卫星时,火箭要克服地球引力做功。由于地球周围存在稀薄的大气,卫星在运行过程中要受到空气阻力,动能要变小,速率要变小,轨道要降低,即半径

变小。

⑦视天体的运动近似看成匀速圆周运动,其所需向心力都是来自万有

引力, 即m g '=G Mm =ma 向=m v =mr ω2=mr 4π=m ωv r r T 22 应用时根据实际情况选用适当的公式进行分析。

⑧天体质量M、密度ρ的估算:

图4-2

测出卫星围绕天体作匀速圆周运动的半径r 和周期T, 22332π⎫得:M =4πr ,ρ=M =3πr 由G Mm =m ⎛(当卫星绕天体表面 ⎪r 2r ⎝T ⎭GT V GT R

运动时,ρ=3π/GT2)

⑨发射同步通讯卫星一般都要采用变轨道发射的方法:点火,卫星进入停泊轨道(圆形轨道,高度200—300km ),当卫星穿过赤道平面时,点火,卫星进入转移轨道(椭圆轨道),当卫星达到远地点时,点火,进入静止轨道(同步轨道)。如图4-2所示。

⑩明确三个宇宙速度:

第一宇宙速度(环绕速度):v=7.9千米/秒;(地球卫星的最小发射速度)

第二宇宙速度(脱离速度):v=11.2千米/秒;(卫星挣脱地球束缚的最小发射速度) 第三宇宙速度(逃逸速度):v=16.7千米/秒。(卫星挣脱太阳束缚的最小发射速度) 人造卫星在圆轨道上的运行速度是随着高度的增大而减小的,但是发射高度大的卫星克服地球的引力做功多,所以将卫星发射到离地球远的轨道,在地面上的发射速度就越大。

三、运用力学规律研究卫星问题的基本要点

1、必须区别开普勒行星运动定律与万有引力定律的不同

(1) 开普勒行星运动定律

开普勒第一定律:所有行星围绕太阳运动的轨道均是椭圆,太阳处在这些椭圆轨道的一个公共焦点上。

开普勒第二定律(面积定律):太阳和运动着的行星之间的联线,在相等的时间内

扫过的面积总相等。

开普勒第三定律(周期定律):各个行星绕太阳公转周期的平方和它们的椭圆轨道的半长轴的立方成正比。若用r 表示椭圆轨道的半长轴,用T 表示行星的公转周期,则有k=r3/T2是一个与行星无关的常量。

开普勒总结了第谷对天体精确观测的记录,经过辛勤地整理和计算,归纳出行星绕太阳运行的三条基本规律。开普勒定律只涉及运动学、几何学方面的内容。开普勒定律为万有引力定律的提出奠定了理论基础,此三定律也是星球之间万有引力作用的必然结果。

(2)万有引力定律

万有引力定律的内容是:

宇宙间一切物体都是相互吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们间的距离的平方成反比。

万有引力定律的公式是: F=G m 1m 2-, (G=6.67×1011牛顿·米2/千克2,叫作万有引力恒量)。 2r

万有引力定律的适用条件是:

严格来说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身大小时公式也近似适用,但此时它们间距离r 应为两物体质心间距离。

(3)开普勒行星运动定律与万有引力定律的关系:

万有引力定律是牛顿根据行星绕太阳(或恒星)运动的宇宙现象推知行星所需要的

向心力必然是由太阳对行星的万有引力提供,进而运用开普勒行星运动定律推导发现了万有引力定律. 开普勒行星运动定律是万有引力定律的理论基础。

开普勒行星运动定律从轨道形状、运动速度、转动周期、轨道半径等方面描述、揭

示了行星绕太阳(或恒星)运动的宇宙现象,表明了天体运动运动学特征和规律。万有引力定律是从行星转动所需要的向心力来源与本质上揭示了行星与太阳(或恒星)以及宇宙万物间的引力关系,描述的是行星运动的动力学特征与规律。

难点之五 功与能

一、难点形成原因:

1、对功的概念及计算方法掌握不到位

高中学生刚接触矢量与标量,对功有正负但又是标量不能理解,而在计算的时候,又不能准确应用公式W =Fl cos α,误以为计算功套上该公式就万事大吉,岂不知该公式一般仅仅适用于恒力做功。

2、不能灵活运用动能定理

动能定理是高中物理中应用非常广泛的一个定理,应用动能定理有很多优点,但是同学对该定理理解不深,或者不能正确的分析初、末状态,或者不能正确的求出合外力的功,或者不能正确的表示动能变化量,导致对该规律的应用错误百出。

3、对守恒思想理解不够深刻

在高中物理学习过程中,既要学习到普遍适用的守恒定律——能量守恒定律,又要

学习到条件限制下的守恒定律——机械能守恒定律。学生掌握守恒定律的困难在于:对于能量守恒定律,分析不清楚哪些能量发生了相互转化,即哪几种能量之和守恒;而对于机械能守恒定律,又不能正确的分析何时守恒,何时不守恒。

4、对功和能混淆不清

在整个高中物理学习过程中,很多同学一直错误的认为功与能是一回事,甚至可以互相代换,其实功是功,能是能,功和能是两个不同的概念,对二者的关系应把握为:功是能量转化的量度。

二、难点突破:

1、加深对功概念的理解、掌握功的常用计算方法

功是力对位移的积累,其作用效果是改变物体的动能,力做功有两个不可缺少的因素:力和物体在力的方向上的位移,这两个因素同时存在,力才对物体做功。尤其要明确,功虽有正负,但功是标量,功的正负不表示方向,仅仅是表示力做正功还是克服力做功。

功的常用计算方法有以下几种:

(1)功的公式:W =Fl cos α,其中l cos α是力的作用点沿力的方向上的位移,该公

式主要用于求恒力做功和F 随l 做线性变化的变力功(此时F 须取平均值)

(2)公式W =Pt ,适用于求恒力做功,也适用于求以恒定功率做功的变力功。

(3)由动能定理W =∆E K 求恒力做功,也可以求变力做功。

(4)根据F-s 图象的物理意义计算力对物体做的功,如图5-1所示,图中阴影部分面积的数值等于功的大小,但要注意,横轴上方的面积表示做正功,横轴下方的面积表示做负功。

(5)功是能量转化的量度,由此,对于大小、方向都随时变化的变力F 所做的功,可以通过对物理过程的分析,从能量转化多少的角度来求解。

难点之六 物体在重力作用下的运动

一、难点形成原因:

1、不能正确理解竖直上抛运动中物体的速度、位移方向的改变和时间、速率等物理量的对称性

由于高中学生认知还不够深入,对物理现象和物理过程的分析不到位,加之对匀变速直线运动形成了各矢量方向不变的思维定势,导致在竖直上抛运动中对速度方向的改变、位移方向的改变缺乏思考,对运动时间、位移、速率等物理量的对称性不会分析,更谈不上用整体法处理上抛运动时的符号规则了。

2、不能应用所学,找不到解决平抛和斜抛物体运动问题的思路

在抛体运动中由于速度方向和加速度方向不共线,物体做曲线运动,由于学生对运动(矢量)的合成与分解知识的欠缺和疏于理解,以至于不能将其迁移并应用于抛体运动中,无法建立正确的分析思路,导致公式、规律的胡乱套用。

二、难点突破策略

对于重力作用下物体运动的问题应首先明确其基本概念的内函,所述物理意义的外延,理解其运动的基本性质,掌握其基本规律,并学会解决问题的基本方法。只有这样才能对难点有所突破,有所理解,有所掌握,达到融会贯通之效果。下面就对该部分的难点从基本概念、运动性质、基本处理方法等几个方面进行解读。

1、竖直上抛

(1)定义:将一个物体以某一初速度v 0竖直向上抛出,抛出的物体只受重力,这个物体的运动就是竖直上抛运动。竖直上抛运动的加速度大小为g ,方向竖直向下,竖直上抛运动是匀变速直线运动。

(2)运动性质:初速度为v 0

方向为正方向)

(3)适应规律

速度公式:v t ≠0,加速度为-g 的匀变速直线运动(通常规定以初速度v 0的=v 0-gt 12gt 2位移公式:h =v 0t -

速度位移关系式:v t

2-v 02=-2gh

(4)处理方法

①分段处理:

上升过程:初速度为v 0≠0加速度为g 的匀减速直线运动

1=v 0-gt h =v 0t -gt 2 v t 2-v 02=-2gh 2

1=gt h =gt 2 v t 2=2g h 2基本规律:v t 下降过程:自由落体运动 基本规律:v t

②整体处理:设抛出时刻t=0,向上的方向为正方向,抛出位置h=0,则有:

若v t >0,表明物体处于上升;阶段

v t =v 0-gt 若v =0,表明物体上升到最度 大;高t

若v t <0,表明物体处于下降。阶段

运动;12若h >0,表明物体在抛出点上方h =v 0t -gt 若h =0,表明物体正处在抛出点 ;2若h <0,表明物体在抛出点的下方运动。

v t 2-v 02=-2gh

用此方法处理竖直上抛运动问题时,一定要注意正方向的选取和各物理量正负号的选取;特别是t=0时h 的正负。

(5)几个特征量

①上升到最高点的时间:t =v 02v ;从上升开始到落回到抛出点的时间:t =0。 g g

v 02v 02②上升的最大高度:h =;从抛出点出发到再回到抛出点物体运动的路程:h = 2g g

③上升阶段与下降阶段抛体通过同一段距离所用的时间相等(时间对称性:t 上

④上升阶段与下降阶段抛体通过同一位置时的速度等大反向(速度对称性:v 上

2、平抛运动

(1)定义:将物体用一定的初速度沿水平方向抛出,物体只在重力作用下(不考虑空气阻力)所做的运动,叫做平抛运动。

(2)运动性质

①平抛运动性质:物体做平抛运动时,由于只受重力,所以加速度为重力加速度g 。而物体速度方向与重力方向不在一条直线上,故平抛运动是匀变速曲线运动。在运动过程中任何相等时间△t 内速度变化量均相等,均为∆v =g ∆t ,并且速度变化方向始终是竖直向下的。 ②平抛运动中的独立性:平抛运动中水平方向和竖直方向的分运动是相互独立的,其中每个=t 下) =-v 下)

分运动都不会因另一个运动的存在而受到影响。水平方向和竖直方向的两个分运动及其合运动具有等时性。时间相同是联系两个分运动及其合运动的桥梁,求解时往往根据竖直方向的分运动求时间。

(3)处理方法—“化曲为直”如图6-1

以“化曲为直”为指导思想,根据运动的合成和分解的规律把平抛运动分解成水平方向的匀速直线运动和竖直方向的自由落体运动。

(4)适应规律

①水平方向的分运动是匀速直线运动:

速度大小:v x =v 0 位移大小:x =v 0t

12gt 2

6-1 ②竖直方向的分运动是自由落体运动: 速度大小:v y =gt 位移大小:y =③合运动:速度大小:v =

位移大小:S v x 2+v y 2=v 02+(gt ) 2 =x 2+y 2

合运动方向:速度V 与水平方向夹角α满足:tan α=v y gt = v x v 0

位移S 与水平方向夹角φ满足:tan φ

④平抛运动的两个推论:

a 、由上面可看出tan α=y gt =x 2v 0=2tan φ,即做平抛(或类平抛)运动的物体在任一时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为φ,则t an α=2t an φ。

v y 12y x /b 、图6-1中x =v 0t , y =gt , v y =gt , 又tan α=即做平抛(或=, 解得x =2v 0x -x /2

类平抛)运动的物体在任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图6-1中x /所示。 ⑤飞行时间(运动时间)t = g

g 2x 22v 0⑥竖直位移y 与水平位移x 的函数关系:y =

3、斜抛运动

(1)定义:以一定的初速度将物体斜向上或斜向下抛出,在空气阻力可以忽略的情况下,物体所做的运动叫做斜抛运动。

(2)运动性质

①斜抛运动性质:物体做斜抛运动时,由于只受重力,所以加速度为重力加速度g 。而物体速度方向与重力方向不在一条直线上,故斜抛运动是匀变速曲线运动。在运动过程中任何相等时间△t 内速度变化量均相等,均为∆v =g ∆t ,并且速度变化方向始终是竖直向下的。 ②斜抛运动中的独立性:斜抛运动中水平方向和竖直方向的分运动是相互独立的,其中每个分运动都不会因另一个运动的存在而受到影响。水平

方向和竖直方向的两个分运动及其合运动具有等时

性。时间相同是联系两个分运动及其合运动的桥梁。

(3)处理方法—“化曲为直” 如图6-2

以“化曲为直”为指导思想,根据运动的合成和分

解的规律把斜抛运动分解成水平方向的匀速直线运动

和竖直方向的竖直上抛运动。

(4)适应规律:

①水平方向的分运动是匀速直线运动:

速度大小:v x 图

6-2 =v 0cos α 位移大小:x =v 0cos αt

1=v 0sin α-gt 位移大小:y =v 0sin αt -gt 2 2②竖直方向的分运动是竖直上抛运动: 速度大小:v y

③合运动:速度大小:v =v x 2+v y 2=(v 0cos α) 2+(v 0sin α-gt ) 2 位移大小:S =x 2+y 2

合运动方向:速度V 与水平方向夹角α满足:tan α

位移S 与水平方向夹角φ满足:tan φ

(5)几个特征量: ①到最高点的时间:t =v y v x =y x =v 0sin α g

=2v 0sin α g 落回到与抛出点在同一水平面上的点的时间(飞行时间):T

(v 0sin α) 2

②最大高度(射高):H =;在最大高度处的速度为:v =v x =v 0cos α 2g

③上抛阶段与下降阶段抛体通过对称的相同一段距离所用的时间相等(时间对称性) ④上抛阶段与下降阶段抛体通过同一高度时的速度大小相等(速率对称性)

2v 0sin αv 02sin 2α⑤飞行的最大水平距离(射程):X m =v 0cos αT =v 0cos α⨯ =g g

4、思维拓展

物体在重力作用下的运动,物体所在的物体系内由于只受到重力作用,而无其它内力和外力做功,所以系统的机械能是守恒的,因此所有的抛体运动包括自由落体在内都能应用机械能守恒定律和动能定理去解决。

难点之七 法拉第电磁感应定律

一、难点形成原因

1、关于表达式E =n ∆φ ∆t

此公式在应用时容易漏掉匝数n ,实际上n 匝线圈产生的感应电动势是串联在一起的,其次∆φ是合磁通量的变化,尤其变化过程中磁场方向改变的情况特别容易出错,并且感应电动势E 与φ、∆φ、∆φ的关系容易混淆不清。 ∆t

1=Bl 2ω、E=nBsωsin θ(或22、应用法拉第电磁感应定律的三种特殊情况E=Blv、E

E=nBsωcos θ)解决问题时,不注意各公式应用的条件,造成公式应用混乱从而形成难点。

3、公式E=nBsωsin θ(或E=nBsωcos θ)的记忆和推导是难点,造成推导困难的原因主要是此情况下,线圈在三维空间运动,不少同学缺乏立体思维。

二、难点突破

1、φ、∆φ、∆φ∆v 同v 、△v 、一样都是容易混淆的物理量,如果理不清它们之间∆t ∆t

磁通量变化量∆φ 磁通量变化率的关系,求解感应电动势就会受到影响,要真正掌握它们的区别应从以下几个方面深入理解。

物理

意义 磁通量φ 磁通量越大,某时刻穿过磁场中某个面的磁感线

条数越多 ∆φ ∆t 某段时间穿过某个面的末、表述磁场中穿过某个面的初磁通量的差值 磁通量变化快慢的物理量

大小

计算 φ=BS ⊥,S ⊥为与B 垂直∆φ=φ2-φ1,∆φ=B ∆S

的面积 或∆φ=S ∆B ∆φ∆S =B ∆t ∆t ∆φ∆B =S 或 ∆t ∆t

既不表示磁通量的大小,也

不表示变化的多少,在

φ—t 图象中用图线的

斜率表示 注 意 若穿过某个面有方向相反的磁场,则不能直接用开始和转过1800时平面都与磁场垂直,穿过平面的磁通量是不同的,一正一负,△φ=2 BS ,φ=BS ⊥,应考虑相反

方向的磁通量相互抵

消以后所剩余的磁通

量 而不是零

2、明确感应电动势的三种特殊情况中各公式的具体用法及应用时须注意的问题

⑪导体切割磁感线产生的感应电动势E=Blv,应用此公式时B 、l 、v 三个量必须是两两相互垂直,若不垂直应转化成相互垂直的有效分量进行计算,生硬地套用公式会导致错误。有的注意到三者之间的关系,发现不垂直后,在不明白θ角含义的情况下用E=Blvsinθ求解,这也是不可取的。处理这类问题,最好画图找B 、l 、v 三个量的关系,如若不两两垂直则在图上画出它们两两垂直的有效分量,然后将有效分量代入公式E=Blv求解。此公式也可计算平均感应电动势,只要将v 代入平均速度即可。

⑫导体棒以端点为轴在垂直于磁感线的匀强磁场中匀速转动,计算此时产生的感应电动势须注意棒上各点的线速度不同,应用平均速度(即中点位置的线速度)来计算,所以

1E =Bl 2ω。 2

⑬矩形线圈在匀强磁场中,绕垂直于磁场的任意轴匀速转动产生的感应电动势何时用E=nBsωsin θ计算,何时用E=nBsωcos θ计算,最容易记混。其实这两个公式的区别是计时起点不同,记住两个特殊位置是关键。当线圈转至中性面(即线圈平面与磁场垂直的位置)时E=0,当线圈转至垂直中性面的位置(即线圈平面与磁场平行)时E=nBsω。这样,线圈从中性面开始计时感应电动势按E=nBsωsin θ规律变化,线圈从垂直中性面的位置开始计时感应电动势按E=nBsωcos θ规律变化。并且用这两个公式可以求某时刻线圈的磁通量变化率△φ/△t ,不少同学没有这种意识。推导这两个公式时,如果能根据三维空间的立体图准确画出二维空间的平面图,问题就会迎刃而解。 另外,E =n ∆φ求的是整个闭合回路的平均感应电动势,△t →0的极限值才等于瞬时∆t

感应电动势。当△φ均匀变化时,平均感应电动势等于瞬时感应电动势。但三种特殊情况中的公式通常用来求感应电动势的瞬时值。

难点之八 带电粒子在电场中的运动

一、难点突破策略:

带电微粒在电场中运动是电场知识和力学知识的结合,分析方法和力学的分析方法是基本相同的:先受力分析,再分析运动过程,选择恰当物理规律解题。处理问题所需的知识都在电场和力学中学习过了,关键是怎样把学过的知识有机地组织起来,这就需要有较强的分析与综合的能力,为有效突破难点,学习中应重视以下几方面:

1. 在分析物体受力时,是否考虑重力要依据具体情况而定。

(1)基本粒子:如电子、质子、α粒子、离子等,除有说明或有明确的暗示以外一般都忽略不计。 (2)带电颗粒:如尘埃、液滴、小球等,除有说明或有明确的暗示以外一般都不能忽略。

“带电粒子”一般是指电子、质子及其某些离子或原子核等微观的带电体,它们的质量都很小,例如:电子的质量仅为0.91×10-30千克、质子的质量也只有1.67×10-27千克。(有些离子和原子核的质量虽比电子、质子的质量大一些,但从“数量级”上来盾,仍然是很小的。)如果近似地取g=10米/秒2,则电子所受的重力也仅仅是m e g=0.91×10-30×10=0.91×10-29(牛) 。但是电子的电量为q=1.60×10-19库(虽然也很小,但相对而言10-19比10-30就大了10-11倍),如果一个电子处于E=1.0×104牛/库的匀强电场中(此电场的场强并不很大),那这个电子所受的电场力F=qE=1.60×10-19×1.0×104=1.6×10-15(牛),看起来虽然也很小,但是比起前面算出的重力就大多了(从“数量级”比较,电场力比重力大了1014倍),由此可知:电子在不很强的匀强电场中,它所受的电场力也远大于它所受的重力——qE>>me g 。所以在处理微观带电粒子在匀强电场中运动的问题时,一般都可忽略重力的影响。

但是要特别注意:有时研究的问题不是微观带电粒子,而是宏观带电物体,那就不允许忽略重力影响了。例如:一个质量为1毫克的宏观颗粒,变换单位后是1×10-6千克,它所受的重力约为mg=1×10-6×10=1×10-5(牛),有可能比它所受的电场力还大,因此就不能再忽略重力的影响了。

2.加强力学知识与规律公式的基础教学,循序渐进的引入到带电粒子在电场中的运动,注意揭示相关知识的区别和联系。

3.注重带电粒子在电场中运动的过程分析与运动性质分析(平衡、加速或减速、轨迹是直线还是曲线),注意从力学思路和能量思路考虑问题,且两条思路并重;同时选择好解决问题的物理知识和规律。

带电粒子在匀强电场中的运动,是一种力电综合问题。解答这种问题经常运用电场和力学两方面的知识和规律,具体内容如下:

F U 所需电场的知识和规律有:E =→F=qE;W=qU;E =;电场线的性质和分布;等势q d

面的概念和分布:电势、电势差、电势能、电场力做功与电势能变化关系。

所需力学的知识和规律有:牛顿第二定律F=ma;动能定理W=ΔE k ;动能和重力势能的概念和性质;能的转化和守恒定律;匀变速直线运动的规律;抛物体运动的规律;动量定理;动量守恒定律;

解答“带电粒子在匀强电场中运动”的问题,既需要掌握较多的物理知识,又需要具有一定的分析综合能力。处理带电粒子运动问题的一般有三条途径:(1)匀变速直线运动公式和牛顿运动定律(2)动能定理或能量守恒定律(3)动量定理和动量守恒定律

处理直线变速运动问题,除非题目指定求加速度或力,否则最好不要用牛顿第二定律来计算。要优先考虑使用场力功与粒子动能变化关系,使用动能定理来解,尤其是在非匀强电场中,我们无法使用牛顿第二定律来处理的过程,而动能定理只考虑始末状态,不考虑中间过程。一般来说,问题涉及时间则优先考虑冲量、动量,问题涉及空间则优先考虑功、动能。

对带电粒子在非匀强电场中运动的问题,对中学生要求不高,不会有难度过大的问题。

4.强化物理条件意识,运用数学工具(如,抛物线方程、直线方程、反比例函数等)加以

分析求解。

(一)带电粒子的加速

1. 运动状态分析

带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做加速(或减速)直线运动。

2. 用功能观点分析

粒子动能的变化量等于电场力做的功。

(1)若粒子的初速度为零,则qU=mv2

2

(2)若粒子的初速度不为零,则qU=mv/2- mv02 3. 用牛顿运动定律和运动学公式分析:带电粒子平行电场线方向进入匀强电场,则带电粒子做匀变速直线运动,可由电场力求得加速度进而求出末速度、位移或时间。

说明:

(1)不管是匀强电场还是非匀强电场加速带电粒子W=qU都适应,而W=qEd,只适应于匀强电场.

(2)对于直线加速,实质上是电势能转化为动能,解决的思路是列动能定理的方程(能量观点)来求解。

难点之九:带电粒子在磁场中的运动

一、难点突破策略

(一)明确带电粒子在磁场中的受力特点

1. 产生洛伦兹力的条件:

①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用. ②电荷的运动速度方向与磁场方向不平行.

2. 洛伦兹力大小: 当电荷运动方向与磁场方向平行时,洛伦兹力f=0; 当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ; 当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ 3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断

4. 洛伦兹力不做功.

(二)明确带电粒子在匀强磁场中的运动规律

带电粒子在只受洛伦兹力作用的条件下:

1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.

2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.

①向心力由洛伦兹力提供:

②轨道半径公式:

③周期:,可见T 只与有关,与v 、R 无关。

(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、

轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。

1. "带电粒子在匀强磁场中的圆周运动" 的基本型问题

(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系()作为辅助。圆心的确定,通常有以下两种方法。

① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。 ② 已知入射方向和出射点的位置,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图9-2,P 为入射点,M 为出射点)。

(2)半径的确定和计算:利用平面几何关系,求出该圆的可能半径或圆心角。并注意以下两个重要的特点:

① 粒子速度的偏向角等于回旋角α,并等于AB 弦与切线的夹角(弦切角θ)的2倍,如图9-3所示。即:。

② 相对的弦切角θ相等,与相邻的弦切角θ/互补,即θ+θ/=180o 。

(3)运动时间的确定

粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示。

注意:带电粒子在匀强磁场中的圆周运动具有对称性。

① 带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向、出射速度方向与边界的夹角相等;

② 在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。

应用对称性可以快速地确定运动的轨迹。

例1:如图9-4所示,在y 小于0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面外,磁感应强度为B ,一带正电的粒子以速度从O 点射入磁场,入射速度方向为xy 平面内,与x 轴正向的夹角为θ,若粒子射出磁场的位置与O 点的距离为L ,求该粒子电量与质量之比。

难点之十 电学实验

一、难点形成的原因

1、对电流表、电压表的读数规则认识模糊,导致读数的有效数字错误

2、对滑动变阻器的限流、分压两种控制电路的原理把握不准,导致控制电路选用不当

3、对实验测量电路、电学仪器的选用原则把握不准,导致电路、仪器选用错误

4、对电学实验的重点内容“电阻的测量”方法无明确的归类,导致思路混乱

5、对于创新型实验设计平时缺乏对实验思想方法(如模拟法,转换法,放大法,比较法,替代法等)进行归纳,在全新的实验情景下,找不到实验设计的原理,无法设计合理可行的方案。受思维定势影响,缺乏对已掌握的实验原理,仪器的使用进行新情境下的迁移利用,缺乏创新意识。

二、难点突破

1、电流表、电压表的读数规则:

电流表量程一般有两种——0.1~0.6A ,0~3A ;电压表量程一般有两种——0~3V ,0~15V 。如图10-1所示:

图10-1

因为同一个电流表、电压表有不同的量程,因此,对应不同的量程,每个小格所代表的电流、电压值不相同,所以电流表、电压表的读数比较复杂,测量值的有效数字位数比较容易出错。下面是不同表,不同量程下的读数规则:

电压表、电流表若用0~3V、0~3A量程,其最小刻度(精确度)分别为0.1V 、0.1A ,为10分度仪表读数,读数规则较为简单,只需在精确度后加一估读数即可。

如图所示,电压表读数为1.88V ,电流表读数为0.83A 。若指针恰好指在2上,则读数为2.00V (或A )。

电压表若用0~15V量程,则其最小刻度为0.5V ,为2分度仪表读数,所读数值小数点后只能有一位小数,也必须有一位小数。

如图所示,若指针指在整刻度线上,如指在10上应读做10.0V ,指在紧靠10刻度线右侧的刻度线上(即表盘上的第21条小刻度线)读数为10.5V ,若指在这两条刻度线间的中间某个位置,则可根据指针靠近两刻度线的程度,分别读做10.1V ,或10.2V ,或10.3V ,或10.4V ,即使是指在正中央,也不能读做10.25V ,若这样,则会出现两位不准确的数,即小数点后的2和5,不符合读数规则,如上图中所示,读数应为9.3V 。

电流表若用0-0.6A 量程,则其最小刻度为0.02A ,为5分度仪表读数,其读数规则与0—15V 电压表相似,所读数值小数点后只能有两位小数,也必须有两位小数。

如上图所示,电流表读数为0.17A ,若指针指在第11条刻度线上,则读数为0.22A ,指在第10条刻度线上,读数为0.20A ,指在第12条刻度线上,读数为0.24A 。

2、滑动变阻器应用分析

滑动变阻器是电学实验中常用的仪器,近几年高考电学设计性实验命题对其应用多次直接或渗透考查. 如何选择滑动变阻器的接法设计控制电路仍是历届考生应考的难点.

滑动变阻器的限流接法与分压接法的特点:如图10-2所示的两种电路中,滑动变阻器(最大阻值为R 0)对负载R L 的电压、电流强度都起控制调节作用,通常把图(a )电路称为限流接法,图(b )电路称为分压接法.

图10-2

①限流法. 如图(a )所示,待测电阻上电压调节范围为R L E ~E . 显然,当R 0

时,在移动滑动触头的过程中,电流的变化范围很小,总电流几乎不变,U L 也几乎不变,无法读取数据;当R 0>>R L 时,滑动触头在从b 向a 滑动的过程中,先是电流表、电压表的示数变化不大,后来在很小的电阻变化范围内,电流表、电压表的读数变化很快,也不方便读数,只有当R L 与R 0差不多大小时,才能对电流、电压有明显的调控作用. 在同样能达到目的的前提下,限流法较为省电,电路连接也较为简单.

②分压法. 如图(b )所示,待测电阻上电压调节范围为0~E ,且R 0相对于R L 越小,R 上的电压变化的线性就越好. 当R 0>>R L 时,尽管U L 变化范围仍是0~E ,但数据几乎没有可记录性,因为在这种情况下,滑片从左端滑起,要一直快到右端时,电压表上示数一直几乎为零,然后突然上升到E ,对测量几乎没有用处. 因此,分压接法要用全阻值较小的滑动变阻器。

滑动变阻器的限流接法与分压接法:两种电路均可调节负载电阻电压和电流的大小,但在不同条件下,调节效果大不一样,滑动变阻器以何种接法接入电路,应遵循安全性、精确性、节能性、方便性原则综合考虑,灵活选取.

1. 下列三种情况必须选用分压式接法

(1)要求回路中某部分电路电流或电压实现从零开始可连续调节时(如:测定导体的伏安特性、校对改装后的电表等电路),即大范围内测量时,必须采用分压接法.

(2)当用电器的电阻R L 远大于滑动变阻器的最大值R 0时,必须采用分压接法. 因为按图(b )连接时,因R L >>R 0>R ap , 所以R L 与R ap 的并联值R 并≈R ap ,而整个电路的总阻值约为R 0,那么R L 两端电压U L =IR 并=U ·R ap ,显然U L ∝R ap , 且R ap 越小,这种线性关系越好,电表R 0

的变化越平稳均匀,越便于观察和操作.

(3)若采用限流接法,电路中实际电压(或电流)的最小值仍超过R L 的额定值时,只能采用分压接法.

2. 下列情况可选用限流式接法

(1)测量时对电路中的电流或电压没有要求从零开始连续调节,只是小范围内测量,且R L 与R 0相差不大或R L 略小于R 0,采用限流式接法.

(2)电源的放电电流或滑动变阻器的额定电流太小,不能满足分压式接法的要求时,采用限流式接法.

(3)没有很高的要求,仅从安全性和精确性角度分析两者均可采用时,可考虑安装简便和节能因素优先采用限流式接法.

难点之一 物体受力分析

一、难点形成原因:

1、力是物体间的相互作用。受力分析时,这种相互作用只能凭着各力的产生条件和方向要求,再加上抽象的思维想象去画,不想实物那么明显,这对于刚升入高中的学生来说,多习惯于直观形象,缺乏抽象的逻辑思惟,所以形成了难点。

2、有些力的方向比较好判断,如:重力、电场力、磁场力等,但有些力的方向难以确定。如:弹力、摩擦力等,虽然发生在接触处,但在接触的地方是否存在、方向如何却难以把握。

3、受力分析时除了将各力的产生要求、方向的判断方法熟练掌握外,同时还要与物体的运动状态相联系,这就需要一定的综合能力。由于学生对物理知识掌握不全,导致综合分析能力下降,影响了受力分析准确性和全面性。

4、教师的教学要求和教学方法不当造成难点。教学要求不符合学生的实际,要求过高,想一步到位,例如:一开始就给学生讲一些受力个数多、且又难以分析的物体的受力情况等。这样势必在学生心理上会形成障碍。

二、难点突破策略:

物体的受力情况决定了物体的运动状态,正确分析物体的受力,是研究力学问题的关键。受力分析就是分析物体受到周围其它物体的作用。为了保证分析结果正确,应从以下几个方面突破难点。

1. 受力分析的方法:整体法和隔离法

2. 受力分析的依据:各种性质力的产生条件及各力方向的特点

3. 受力分析的步骤 :

为了在受力分析时不多分析力,也不漏力,一般情况下按下面的步骤进行:

(1)确定研究对象 —可以是某个物体也可以是整体。

(2)按顺序画力

a .先画重力:作用点画在物体的重心,方向竖直向下。

b .次画已知力

c .再画接触力—(弹力和摩擦力):看研究对象跟周围其他物体有几个接触点(面),先对某个接触点(面)分析,若有挤压,则画出弹力,若还有相对运动或相对运动的趋势,

则再画出摩擦力。分析完一个接触点(面)后,再依次分析其他的接触点(面)。

d .再画其他场力:看是否有电、磁场力作用,如有则画出。

(3)验证:

a .每一个力都应找到对应的施力物体 b.受的力应与物体的运动状态对应。

说明:

(1)只分析研究对象受的根据性质命名的实际力(如:重力、弹力、摩擦力等) ,不画它对别的物体的作用力。

(2)合力和分力不能同时作为物体所受的力。

(3)每一个力都应找到施力物体,防止“漏力”和“添力”。

(4)可看成质点的物体,力的作用点可画在重心上,对有转动效果的物体,则力应画在实际位置上。

(5)为了使问题简化,常忽略某些次要的力。如物体速度不大时的空气阻力、物体在空气中所受的浮力等。

(6)分析物体受力时,除了考虑它与周围物体的作用外,还要考虑物体的运动情况(平衡状态、加速或减速) ,当物体的运动情况不同时,其情况也不同。

4. 受力分析的辅助手段

(1)物体的平衡条件(共点力作用下物体的平衡条件是合力为零)

(2)牛顿第二定律(物体有加速度时)

(3)牛顿第三定律(内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上)

5. 常见的错误及防范的办法:

(1)多画力。

a. 研究对象不明,错将其他物体受到的力画入。

b. 虚构力,将不存在的力画入。

c. 将合力和分力重复画入。

要防止多画力。第一,彻底隔离研究对象。第二,每画一个力要心中默念受力物体和施力物体。

(2) 少画力。

少画力往往是由受力分析过程混乱所致,因此

a. 要严格按顺序分析。

b. 分析弹力和摩擦力时,所有接触点都要分析到。

(3) 错画力。即把力的方向画错。防范办法是要按规律作

三、分类例析

1.弹力有、无的判断

弹力的产生条件是接触且发生弹性形变。但有的形变明显,有的不明显。那么如何判断相互接触的物体间有无弹力?

法1: “假设法”,即假设接触物体撤去,判断研究对象是否能维持现状。若维持现状则接触物体对研究对象没有弹力,因为接触物体使研究对象维持现状等同于没有接触物,即接触物形同虚设,故没有弹力。若不能维持现状则有弹力,因为接触物撤去随之撤去了应该有的弹力,从而改变了研究对象的现状。可见接触物对研究对象维持现状起着举足轻重的作用,故有弹力。

难点之二 传送带问题

一、难点形成的原因:

1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向

如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清;

2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误;

3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。

二、难点突破策略:

(1)突破难点1

在以上三个难点中,第1个难点应属于易错点,突破方法是先让学生正确理解摩擦力产生的条件、方向的判断方法、大小的决定因素等等。通过对不同类型题目的分析练习,让学生做到准确灵活地分析摩擦力的有无、大小和方向。

摩擦力的产生条件是:第一,物体间相互接触、挤压; 第二,接触面不光滑; 第三,物体间有相对运动趋势或相对运动。

前两个产生条件对于学生来说没有困难,第三个条件就比较容易出问题了。若物体是轻轻地放在了匀速运动的传送带上,那么物体一定要和传送带之间产生相对滑动,物体和传送带一定同时受到方向相反的滑动摩擦力。关于物体所受滑动摩擦力的方向判断有两种方法:一是根据滑动摩擦力一定要阻碍物体间的相对运动或相对运动趋势,先判断物体相对传送带的运动方向,可用假设法,若无摩擦,物体将停在原处,则显然物体相对传送带有向后运动的趋势,因此物体要受到沿传送带前进方向的摩擦力,由牛顿第三定律,传送带要受到向后的阻碍它运动的滑动摩擦力;二是根据摩擦力产生的作用效果来分析它的方向,物体只所以能由静止开始向前运动,则一定受到向前的动力作用,这个水平方向上的力只能由传送带提供,因此物体一定受沿传送带前进方向的摩擦力,传送带必须要由电动机带动才能持续而稳定地工作,电动机给传送带提供动力作用,那么物体给传送带的就是阻力作用,与传送带的运动方向相反。

若物体是静置在传送带上,与传送带一起由静止开始加速,若物体与传送带之间的动摩擦因数较大,加速度相对较小,物体和传送带保持相对静止,它们之间存在着静摩擦力,物体的加速就是静摩擦力作用的结果,因此物体一定受沿传送带前进方向的摩擦力;若物体与传送带之间的动摩擦因数较小,加速度相对较大,物体和传送带不能保持相对静止,物体将跟不上传送带的运动,但它相对地面仍然是向前加速运动的,它们之间存在着滑动摩擦力,同样物体的加速就是该摩擦力的结果,因此物体一定受沿传送带前进方向的摩擦力。

若物体与传送带保持相对静止一起匀速运动,则它们之间无摩擦力,否则物体不可能匀速运动。

若物体以大于传送带的速度沿传送带运动方向滑上传送带,则物体将受到传送带提供的使它减速的摩擦力作用,直到减速到和传送带有相同的速度、相对传送带静止为止。因此该摩擦力方向一定与物体运动方向相反。

若物体与传送带保持相对静止一起匀速运动一段时间后,开始减速,因物体速度越来越小,故受到传送带提供的使它减速的摩擦力作用,方向与物体的运动方向相反,传送带则受到与传送带运动方向相同的摩擦力作用。

若传送带是倾斜方向的,情况就更为复杂了,因为在运动方向上,物体要受重力沿斜面的下滑分力作用,该力和物体运动的初速度共同决定相对运动或相对运动趋势方向。

难点之三:圆周运动的实例分析

一、难点形成的原因

1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。

2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用;

3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。

4、圆周运动的周期性把握不准。

5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。

二、难点突破

(1)匀速圆周运动与非匀速圆周运动

a. 圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。

b. 最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。

c. 匀速圆周运动只是速度方向改变,而速度大小不变。做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。

难点之四 卫星问题分析

一、难点形成原因:

卫星问题是高中物理内容中的牛顿运动定律、运动学基本规律、能量守恒定律、万有引力定律甚至还有电磁学规律的综合应用。其之所以成为高中物理教学难点之一,不外乎有以下几个方面的原因。

1、不能正确建立卫星的物理模型而导致认知负迁移

由于高中学生认知心理的局限性以及由牛顿运动定律研究地面物体运动到由天体运动规律研究卫星问题的跨度,使其对卫星、飞船、空间站、航天飞机等天体物体绕地球运转以及对地球表面物体随地球自转的运动学特点、受力情形的动力学特点分辩不清,无法建立卫星或天体的匀速圆周运动的物理学模型(包括过程模型和状态模型),解题时自然不自然界的受制于旧有的运动学思路方法,导致认知的负迁移,出现分析与判断的失误。

2、不能正确区分卫星种类导致理解混淆

人造卫星按运行轨道可分为低轨道卫星、中高轨道卫星、地球同步轨道卫星、地球静止卫星、太阳同步轨道卫星、大椭圆轨道卫星和极轨道卫星;按科学用途可分为气象卫星、通讯卫星、侦察卫星、科学卫星、应用卫星和技术试验卫星。。。。。。由于不同称谓的卫星对应不同的规律与状态,而学生对这些分类名称与所学教材中的卫星知识又不能吻合对应,因而导致理解与应用上的错误。

3、不能正确理解物理意义导致概念错误

卫星问题中有诸多的名词与概念,如,卫星、双星、行星、恒星、黑洞;月球、地球、土星、火星、太阳;卫星的轨道半径、卫星的自身半径;卫星的公转周期、卫星的自转周期;卫星的向心加速度、卫星所在轨道的重力加速度、地球表面上的重力加速度;卫星的追赶、对接、变轨、喷气、同步、发射、环绕等问题。。。。。。因为不清楚卫星问题涉及到的诸多概念的含义,时常导致读题、审题、求解过程中概念错乱的错误。

4、不能正确分析受力导致规律应用错乱

由于高一时期所学物体受力分析的知识欠缺不全和疏于深化理解,牛顿运动定律、圆周运动规律、曲线运动知识的不熟悉甚至于淡忘,以至于不能将这些知识迁移并应用于卫星运行原理的分析,无法建立正确的分析思路,导致公式、规律的胡乱套用,其解题错误也就在所难免。

5、不能全面把握卫星问题的知识体系,以致于无法正确区分类近知识点的不同。如,开普勒行星运动规律与万有引力定律的不同;赤道物体随地球自转的向心加速度与同步卫星环绕地球运行的向心加速度的不同;月球绕地球运动的向心加速度与月球轨道上的重力加速度的不同;卫星绕地球运动的向心加速度与切向加速度的不同;卫星的运行速度与发射速度的不同;由万有引力、重力、向心力构成的三个等量关系式的不同;天体的自身半径与卫星的轨道半径的不同;两个天体之间的距离L与某一天体的运行轨道半径r的不同。。。。。。只有明确的把握这些类近而相关的知识点的异同时才能正确的分析求解卫星问题。

二、难点突破策略:

(一)明确卫星的概念与适用的规律:

1、卫星的概念:

由人类制作并发射到太空中、能环绕地球在空间轨道上运行(至少一圈)、用于

科研应用的无人或载人航天器,简称人造卫星。高中物理的学习过程中要将其抽象为一个能环绕地球做圆周运动的物体。

2、适用的规律:

牛顿运动定律、万有引力定律、开普勒天体运动定律、能量守恒定律以及圆周运

动、曲线运动的规律、电磁感应规律。。。。。均适应于卫星问题。但必须注意到“天上”运行的卫星与“地上”运动物体的受力情况的根本区别。

(二)认清卫星的分类:

高中物理的学习过程中,无须知道各种卫星及其轨道形状的具体分类,只要认清地球同步卫星(与地球相对静止)与一般卫星(绕地球运转)的特点与区别即可。

(1)、地球同步卫星:

①、同步卫星的概念:所谓地球同步卫星,是指相对于地球静止、处在特定高度的轨道上、具有特定速度且与地球具有相同周期、相同角速度的卫星的一种。

②、同步卫星的特性:

-5不快不慢------具有特定的运行线速度(V=3100m/s)、特定的角速度(ω=7.26x10 ra

d/s )和特定的周期(T=24小时)。

7不高不低------具有特定的位置高度和轨道半径,高度H=3.58 x10m, 轨道半径

7r=4.22 x10m.

不偏不倚------同步卫星的运行轨道平面必须处于地球赤道平面上,轨道中心与地心重合,只能‘静止’在赤道上方的特定的点上。

证明如下:

如图4-1所示,假设卫星在轨道A 上跟着地球的自转同步地匀速圆周运动,卫星运动的向心力来自地球对它的引力F引,F引中除用来作向心力的F1外,还有另一分力F2,由于F2的作用将使卫星运行轨道靠向赤道,只有赤道上空,同步卫星才可能在稳定的轨道上运行。

由 G ∙Mm =m ω2R 得R =

GM 2R

∴h=R-R地 是一个定值。(h是同步卫星距离地面的高度)

因此,同步卫星一定具有特定的位置高度和轨道半径。

③、同步卫星的科学应用:

同步卫星一般应用于通讯与气象预报,高中物理中出现的通讯卫星与气象卫星一般是指同步卫星。

(2)、一般卫星:

①、定义:

一般卫星指的是,能围绕地球做圆周运动,其轨道半径、轨道平面、运行速度、运

行周期各不相同的一些卫星。

②、、卫星绕行速度与半径的关系: 由G Mm =m v 2 得:v =r r r 即 v ∝r (r越大v 越小)

③、、卫星绕行角速度与半径的关系: 由G Mm =m ω2r 得:ω=r 2r 即ω∝r ;(r 越大ω越小) ④、、卫星绕行周期与半径的关系: Mm ⎛2π⎫G =mr ⎪T r ⎝⎭由得:T =42r 3

GM 即T ∝r 3(r 越大T越大),

(3)双星问题

两颗靠得很近的、质量可以相比的、相互绕着两者连线上某点做匀速圆周运的星体,叫做双星.双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提供.由于引力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,因两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等的,线速度与两子星的轨道半径成正比.

(三)运用力学规律研究卫星问题的思维基础:

①光年,是长度单位,1光年= 9.46×1012千米 ρ=②认为星球质量分布均匀,密度M 4V =πR 32S =4πR V ,球体体积3,表面积 ③地球公转周期是一年(约365天,折合 8760 小时),自转周期是一天(约24小时)。 ④月球绕地球运行周期是一个月(约28天,折合672小时;实际是27.3天)

⑤围绕地球运行飞船内的物体,受重力,但处于完全失重状态。

⑥发射卫星时,火箭要克服地球引力做功。由于地球周围存在稀薄的大气,卫星在运行过程中要受到空气阻力,动能要变小,速率要变小,轨道要降低,即半径

变小。

⑦视天体的运动近似看成匀速圆周运动,其所需向心力都是来自万有

引力, 即m g '=G Mm =ma 向=m v =mr ω2=mr 4π=m ωv r r T 22 应用时根据实际情况选用适当的公式进行分析。

⑧天体质量M、密度ρ的估算:

图4-2

测出卫星围绕天体作匀速圆周运动的半径r 和周期T, 22332π⎫得:M =4πr ,ρ=M =3πr 由G Mm =m ⎛(当卫星绕天体表面 ⎪r 2r ⎝T ⎭GT V GT R

运动时,ρ=3π/GT2)

⑨发射同步通讯卫星一般都要采用变轨道发射的方法:点火,卫星进入停泊轨道(圆形轨道,高度200—300km ),当卫星穿过赤道平面时,点火,卫星进入转移轨道(椭圆轨道),当卫星达到远地点时,点火,进入静止轨道(同步轨道)。如图4-2所示。

⑩明确三个宇宙速度:

第一宇宙速度(环绕速度):v=7.9千米/秒;(地球卫星的最小发射速度)

第二宇宙速度(脱离速度):v=11.2千米/秒;(卫星挣脱地球束缚的最小发射速度) 第三宇宙速度(逃逸速度):v=16.7千米/秒。(卫星挣脱太阳束缚的最小发射速度) 人造卫星在圆轨道上的运行速度是随着高度的增大而减小的,但是发射高度大的卫星克服地球的引力做功多,所以将卫星发射到离地球远的轨道,在地面上的发射速度就越大。

三、运用力学规律研究卫星问题的基本要点

1、必须区别开普勒行星运动定律与万有引力定律的不同

(1) 开普勒行星运动定律

开普勒第一定律:所有行星围绕太阳运动的轨道均是椭圆,太阳处在这些椭圆轨道的一个公共焦点上。

开普勒第二定律(面积定律):太阳和运动着的行星之间的联线,在相等的时间内

扫过的面积总相等。

开普勒第三定律(周期定律):各个行星绕太阳公转周期的平方和它们的椭圆轨道的半长轴的立方成正比。若用r 表示椭圆轨道的半长轴,用T 表示行星的公转周期,则有k=r3/T2是一个与行星无关的常量。

开普勒总结了第谷对天体精确观测的记录,经过辛勤地整理和计算,归纳出行星绕太阳运行的三条基本规律。开普勒定律只涉及运动学、几何学方面的内容。开普勒定律为万有引力定律的提出奠定了理论基础,此三定律也是星球之间万有引力作用的必然结果。

(2)万有引力定律

万有引力定律的内容是:

宇宙间一切物体都是相互吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们间的距离的平方成反比。

万有引力定律的公式是: F=G m 1m 2-, (G=6.67×1011牛顿·米2/千克2,叫作万有引力恒量)。 2r

万有引力定律的适用条件是:

严格来说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身大小时公式也近似适用,但此时它们间距离r 应为两物体质心间距离。

(3)开普勒行星运动定律与万有引力定律的关系:

万有引力定律是牛顿根据行星绕太阳(或恒星)运动的宇宙现象推知行星所需要的

向心力必然是由太阳对行星的万有引力提供,进而运用开普勒行星运动定律推导发现了万有引力定律. 开普勒行星运动定律是万有引力定律的理论基础。

开普勒行星运动定律从轨道形状、运动速度、转动周期、轨道半径等方面描述、揭

示了行星绕太阳(或恒星)运动的宇宙现象,表明了天体运动运动学特征和规律。万有引力定律是从行星转动所需要的向心力来源与本质上揭示了行星与太阳(或恒星)以及宇宙万物间的引力关系,描述的是行星运动的动力学特征与规律。

难点之五 功与能

一、难点形成原因:

1、对功的概念及计算方法掌握不到位

高中学生刚接触矢量与标量,对功有正负但又是标量不能理解,而在计算的时候,又不能准确应用公式W =Fl cos α,误以为计算功套上该公式就万事大吉,岂不知该公式一般仅仅适用于恒力做功。

2、不能灵活运用动能定理

动能定理是高中物理中应用非常广泛的一个定理,应用动能定理有很多优点,但是同学对该定理理解不深,或者不能正确的分析初、末状态,或者不能正确的求出合外力的功,或者不能正确的表示动能变化量,导致对该规律的应用错误百出。

3、对守恒思想理解不够深刻

在高中物理学习过程中,既要学习到普遍适用的守恒定律——能量守恒定律,又要

学习到条件限制下的守恒定律——机械能守恒定律。学生掌握守恒定律的困难在于:对于能量守恒定律,分析不清楚哪些能量发生了相互转化,即哪几种能量之和守恒;而对于机械能守恒定律,又不能正确的分析何时守恒,何时不守恒。

4、对功和能混淆不清

在整个高中物理学习过程中,很多同学一直错误的认为功与能是一回事,甚至可以互相代换,其实功是功,能是能,功和能是两个不同的概念,对二者的关系应把握为:功是能量转化的量度。

二、难点突破:

1、加深对功概念的理解、掌握功的常用计算方法

功是力对位移的积累,其作用效果是改变物体的动能,力做功有两个不可缺少的因素:力和物体在力的方向上的位移,这两个因素同时存在,力才对物体做功。尤其要明确,功虽有正负,但功是标量,功的正负不表示方向,仅仅是表示力做正功还是克服力做功。

功的常用计算方法有以下几种:

(1)功的公式:W =Fl cos α,其中l cos α是力的作用点沿力的方向上的位移,该公

式主要用于求恒力做功和F 随l 做线性变化的变力功(此时F 须取平均值)

(2)公式W =Pt ,适用于求恒力做功,也适用于求以恒定功率做功的变力功。

(3)由动能定理W =∆E K 求恒力做功,也可以求变力做功。

(4)根据F-s 图象的物理意义计算力对物体做的功,如图5-1所示,图中阴影部分面积的数值等于功的大小,但要注意,横轴上方的面积表示做正功,横轴下方的面积表示做负功。

(5)功是能量转化的量度,由此,对于大小、方向都随时变化的变力F 所做的功,可以通过对物理过程的分析,从能量转化多少的角度来求解。

难点之六 物体在重力作用下的运动

一、难点形成原因:

1、不能正确理解竖直上抛运动中物体的速度、位移方向的改变和时间、速率等物理量的对称性

由于高中学生认知还不够深入,对物理现象和物理过程的分析不到位,加之对匀变速直线运动形成了各矢量方向不变的思维定势,导致在竖直上抛运动中对速度方向的改变、位移方向的改变缺乏思考,对运动时间、位移、速率等物理量的对称性不会分析,更谈不上用整体法处理上抛运动时的符号规则了。

2、不能应用所学,找不到解决平抛和斜抛物体运动问题的思路

在抛体运动中由于速度方向和加速度方向不共线,物体做曲线运动,由于学生对运动(矢量)的合成与分解知识的欠缺和疏于理解,以至于不能将其迁移并应用于抛体运动中,无法建立正确的分析思路,导致公式、规律的胡乱套用。

二、难点突破策略

对于重力作用下物体运动的问题应首先明确其基本概念的内函,所述物理意义的外延,理解其运动的基本性质,掌握其基本规律,并学会解决问题的基本方法。只有这样才能对难点有所突破,有所理解,有所掌握,达到融会贯通之效果。下面就对该部分的难点从基本概念、运动性质、基本处理方法等几个方面进行解读。

1、竖直上抛

(1)定义:将一个物体以某一初速度v 0竖直向上抛出,抛出的物体只受重力,这个物体的运动就是竖直上抛运动。竖直上抛运动的加速度大小为g ,方向竖直向下,竖直上抛运动是匀变速直线运动。

(2)运动性质:初速度为v 0

方向为正方向)

(3)适应规律

速度公式:v t ≠0,加速度为-g 的匀变速直线运动(通常规定以初速度v 0的=v 0-gt 12gt 2位移公式:h =v 0t -

速度位移关系式:v t

2-v 02=-2gh

(4)处理方法

①分段处理:

上升过程:初速度为v 0≠0加速度为g 的匀减速直线运动

1=v 0-gt h =v 0t -gt 2 v t 2-v 02=-2gh 2

1=gt h =gt 2 v t 2=2g h 2基本规律:v t 下降过程:自由落体运动 基本规律:v t

②整体处理:设抛出时刻t=0,向上的方向为正方向,抛出位置h=0,则有:

若v t >0,表明物体处于上升;阶段

v t =v 0-gt 若v =0,表明物体上升到最度 大;高t

若v t <0,表明物体处于下降。阶段

运动;12若h >0,表明物体在抛出点上方h =v 0t -gt 若h =0,表明物体正处在抛出点 ;2若h <0,表明物体在抛出点的下方运动。

v t 2-v 02=-2gh

用此方法处理竖直上抛运动问题时,一定要注意正方向的选取和各物理量正负号的选取;特别是t=0时h 的正负。

(5)几个特征量

①上升到最高点的时间:t =v 02v ;从上升开始到落回到抛出点的时间:t =0。 g g

v 02v 02②上升的最大高度:h =;从抛出点出发到再回到抛出点物体运动的路程:h = 2g g

③上升阶段与下降阶段抛体通过同一段距离所用的时间相等(时间对称性:t 上

④上升阶段与下降阶段抛体通过同一位置时的速度等大反向(速度对称性:v 上

2、平抛运动

(1)定义:将物体用一定的初速度沿水平方向抛出,物体只在重力作用下(不考虑空气阻力)所做的运动,叫做平抛运动。

(2)运动性质

①平抛运动性质:物体做平抛运动时,由于只受重力,所以加速度为重力加速度g 。而物体速度方向与重力方向不在一条直线上,故平抛运动是匀变速曲线运动。在运动过程中任何相等时间△t 内速度变化量均相等,均为∆v =g ∆t ,并且速度变化方向始终是竖直向下的。 ②平抛运动中的独立性:平抛运动中水平方向和竖直方向的分运动是相互独立的,其中每个=t 下) =-v 下)

分运动都不会因另一个运动的存在而受到影响。水平方向和竖直方向的两个分运动及其合运动具有等时性。时间相同是联系两个分运动及其合运动的桥梁,求解时往往根据竖直方向的分运动求时间。

(3)处理方法—“化曲为直”如图6-1

以“化曲为直”为指导思想,根据运动的合成和分解的规律把平抛运动分解成水平方向的匀速直线运动和竖直方向的自由落体运动。

(4)适应规律

①水平方向的分运动是匀速直线运动:

速度大小:v x =v 0 位移大小:x =v 0t

12gt 2

6-1 ②竖直方向的分运动是自由落体运动: 速度大小:v y =gt 位移大小:y =③合运动:速度大小:v =

位移大小:S v x 2+v y 2=v 02+(gt ) 2 =x 2+y 2

合运动方向:速度V 与水平方向夹角α满足:tan α=v y gt = v x v 0

位移S 与水平方向夹角φ满足:tan φ

④平抛运动的两个推论:

a 、由上面可看出tan α=y gt =x 2v 0=2tan φ,即做平抛(或类平抛)运动的物体在任一时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为φ,则t an α=2t an φ。

v y 12y x /b 、图6-1中x =v 0t , y =gt , v y =gt , 又tan α=即做平抛(或=, 解得x =2v 0x -x /2

类平抛)运动的物体在任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图6-1中x /所示。 ⑤飞行时间(运动时间)t = g

g 2x 22v 0⑥竖直位移y 与水平位移x 的函数关系:y =

3、斜抛运动

(1)定义:以一定的初速度将物体斜向上或斜向下抛出,在空气阻力可以忽略的情况下,物体所做的运动叫做斜抛运动。

(2)运动性质

①斜抛运动性质:物体做斜抛运动时,由于只受重力,所以加速度为重力加速度g 。而物体速度方向与重力方向不在一条直线上,故斜抛运动是匀变速曲线运动。在运动过程中任何相等时间△t 内速度变化量均相等,均为∆v =g ∆t ,并且速度变化方向始终是竖直向下的。 ②斜抛运动中的独立性:斜抛运动中水平方向和竖直方向的分运动是相互独立的,其中每个分运动都不会因另一个运动的存在而受到影响。水平

方向和竖直方向的两个分运动及其合运动具有等时

性。时间相同是联系两个分运动及其合运动的桥梁。

(3)处理方法—“化曲为直” 如图6-2

以“化曲为直”为指导思想,根据运动的合成和分

解的规律把斜抛运动分解成水平方向的匀速直线运动

和竖直方向的竖直上抛运动。

(4)适应规律:

①水平方向的分运动是匀速直线运动:

速度大小:v x 图

6-2 =v 0cos α 位移大小:x =v 0cos αt

1=v 0sin α-gt 位移大小:y =v 0sin αt -gt 2 2②竖直方向的分运动是竖直上抛运动: 速度大小:v y

③合运动:速度大小:v =v x 2+v y 2=(v 0cos α) 2+(v 0sin α-gt ) 2 位移大小:S =x 2+y 2

合运动方向:速度V 与水平方向夹角α满足:tan α

位移S 与水平方向夹角φ满足:tan φ

(5)几个特征量: ①到最高点的时间:t =v y v x =y x =v 0sin α g

=2v 0sin α g 落回到与抛出点在同一水平面上的点的时间(飞行时间):T

(v 0sin α) 2

②最大高度(射高):H =;在最大高度处的速度为:v =v x =v 0cos α 2g

③上抛阶段与下降阶段抛体通过对称的相同一段距离所用的时间相等(时间对称性) ④上抛阶段与下降阶段抛体通过同一高度时的速度大小相等(速率对称性)

2v 0sin αv 02sin 2α⑤飞行的最大水平距离(射程):X m =v 0cos αT =v 0cos α⨯ =g g

4、思维拓展

物体在重力作用下的运动,物体所在的物体系内由于只受到重力作用,而无其它内力和外力做功,所以系统的机械能是守恒的,因此所有的抛体运动包括自由落体在内都能应用机械能守恒定律和动能定理去解决。

难点之七 法拉第电磁感应定律

一、难点形成原因

1、关于表达式E =n ∆φ ∆t

此公式在应用时容易漏掉匝数n ,实际上n 匝线圈产生的感应电动势是串联在一起的,其次∆φ是合磁通量的变化,尤其变化过程中磁场方向改变的情况特别容易出错,并且感应电动势E 与φ、∆φ、∆φ的关系容易混淆不清。 ∆t

1=Bl 2ω、E=nBsωsin θ(或22、应用法拉第电磁感应定律的三种特殊情况E=Blv、E

E=nBsωcos θ)解决问题时,不注意各公式应用的条件,造成公式应用混乱从而形成难点。

3、公式E=nBsωsin θ(或E=nBsωcos θ)的记忆和推导是难点,造成推导困难的原因主要是此情况下,线圈在三维空间运动,不少同学缺乏立体思维。

二、难点突破

1、φ、∆φ、∆φ∆v 同v 、△v 、一样都是容易混淆的物理量,如果理不清它们之间∆t ∆t

磁通量变化量∆φ 磁通量变化率的关系,求解感应电动势就会受到影响,要真正掌握它们的区别应从以下几个方面深入理解。

物理

意义 磁通量φ 磁通量越大,某时刻穿过磁场中某个面的磁感线

条数越多 ∆φ ∆t 某段时间穿过某个面的末、表述磁场中穿过某个面的初磁通量的差值 磁通量变化快慢的物理量

大小

计算 φ=BS ⊥,S ⊥为与B 垂直∆φ=φ2-φ1,∆φ=B ∆S

的面积 或∆φ=S ∆B ∆φ∆S =B ∆t ∆t ∆φ∆B =S 或 ∆t ∆t

既不表示磁通量的大小,也

不表示变化的多少,在

φ—t 图象中用图线的

斜率表示 注 意 若穿过某个面有方向相反的磁场,则不能直接用开始和转过1800时平面都与磁场垂直,穿过平面的磁通量是不同的,一正一负,△φ=2 BS ,φ=BS ⊥,应考虑相反

方向的磁通量相互抵

消以后所剩余的磁通

量 而不是零

2、明确感应电动势的三种特殊情况中各公式的具体用法及应用时须注意的问题

⑪导体切割磁感线产生的感应电动势E=Blv,应用此公式时B 、l 、v 三个量必须是两两相互垂直,若不垂直应转化成相互垂直的有效分量进行计算,生硬地套用公式会导致错误。有的注意到三者之间的关系,发现不垂直后,在不明白θ角含义的情况下用E=Blvsinθ求解,这也是不可取的。处理这类问题,最好画图找B 、l 、v 三个量的关系,如若不两两垂直则在图上画出它们两两垂直的有效分量,然后将有效分量代入公式E=Blv求解。此公式也可计算平均感应电动势,只要将v 代入平均速度即可。

⑫导体棒以端点为轴在垂直于磁感线的匀强磁场中匀速转动,计算此时产生的感应电动势须注意棒上各点的线速度不同,应用平均速度(即中点位置的线速度)来计算,所以

1E =Bl 2ω。 2

⑬矩形线圈在匀强磁场中,绕垂直于磁场的任意轴匀速转动产生的感应电动势何时用E=nBsωsin θ计算,何时用E=nBsωcos θ计算,最容易记混。其实这两个公式的区别是计时起点不同,记住两个特殊位置是关键。当线圈转至中性面(即线圈平面与磁场垂直的位置)时E=0,当线圈转至垂直中性面的位置(即线圈平面与磁场平行)时E=nBsω。这样,线圈从中性面开始计时感应电动势按E=nBsωsin θ规律变化,线圈从垂直中性面的位置开始计时感应电动势按E=nBsωcos θ规律变化。并且用这两个公式可以求某时刻线圈的磁通量变化率△φ/△t ,不少同学没有这种意识。推导这两个公式时,如果能根据三维空间的立体图准确画出二维空间的平面图,问题就会迎刃而解。 另外,E =n ∆φ求的是整个闭合回路的平均感应电动势,△t →0的极限值才等于瞬时∆t

感应电动势。当△φ均匀变化时,平均感应电动势等于瞬时感应电动势。但三种特殊情况中的公式通常用来求感应电动势的瞬时值。

难点之八 带电粒子在电场中的运动

一、难点突破策略:

带电微粒在电场中运动是电场知识和力学知识的结合,分析方法和力学的分析方法是基本相同的:先受力分析,再分析运动过程,选择恰当物理规律解题。处理问题所需的知识都在电场和力学中学习过了,关键是怎样把学过的知识有机地组织起来,这就需要有较强的分析与综合的能力,为有效突破难点,学习中应重视以下几方面:

1. 在分析物体受力时,是否考虑重力要依据具体情况而定。

(1)基本粒子:如电子、质子、α粒子、离子等,除有说明或有明确的暗示以外一般都忽略不计。 (2)带电颗粒:如尘埃、液滴、小球等,除有说明或有明确的暗示以外一般都不能忽略。

“带电粒子”一般是指电子、质子及其某些离子或原子核等微观的带电体,它们的质量都很小,例如:电子的质量仅为0.91×10-30千克、质子的质量也只有1.67×10-27千克。(有些离子和原子核的质量虽比电子、质子的质量大一些,但从“数量级”上来盾,仍然是很小的。)如果近似地取g=10米/秒2,则电子所受的重力也仅仅是m e g=0.91×10-30×10=0.91×10-29(牛) 。但是电子的电量为q=1.60×10-19库(虽然也很小,但相对而言10-19比10-30就大了10-11倍),如果一个电子处于E=1.0×104牛/库的匀强电场中(此电场的场强并不很大),那这个电子所受的电场力F=qE=1.60×10-19×1.0×104=1.6×10-15(牛),看起来虽然也很小,但是比起前面算出的重力就大多了(从“数量级”比较,电场力比重力大了1014倍),由此可知:电子在不很强的匀强电场中,它所受的电场力也远大于它所受的重力——qE>>me g 。所以在处理微观带电粒子在匀强电场中运动的问题时,一般都可忽略重力的影响。

但是要特别注意:有时研究的问题不是微观带电粒子,而是宏观带电物体,那就不允许忽略重力影响了。例如:一个质量为1毫克的宏观颗粒,变换单位后是1×10-6千克,它所受的重力约为mg=1×10-6×10=1×10-5(牛),有可能比它所受的电场力还大,因此就不能再忽略重力的影响了。

2.加强力学知识与规律公式的基础教学,循序渐进的引入到带电粒子在电场中的运动,注意揭示相关知识的区别和联系。

3.注重带电粒子在电场中运动的过程分析与运动性质分析(平衡、加速或减速、轨迹是直线还是曲线),注意从力学思路和能量思路考虑问题,且两条思路并重;同时选择好解决问题的物理知识和规律。

带电粒子在匀强电场中的运动,是一种力电综合问题。解答这种问题经常运用电场和力学两方面的知识和规律,具体内容如下:

F U 所需电场的知识和规律有:E =→F=qE;W=qU;E =;电场线的性质和分布;等势q d

面的概念和分布:电势、电势差、电势能、电场力做功与电势能变化关系。

所需力学的知识和规律有:牛顿第二定律F=ma;动能定理W=ΔE k ;动能和重力势能的概念和性质;能的转化和守恒定律;匀变速直线运动的规律;抛物体运动的规律;动量定理;动量守恒定律;

解答“带电粒子在匀强电场中运动”的问题,既需要掌握较多的物理知识,又需要具有一定的分析综合能力。处理带电粒子运动问题的一般有三条途径:(1)匀变速直线运动公式和牛顿运动定律(2)动能定理或能量守恒定律(3)动量定理和动量守恒定律

处理直线变速运动问题,除非题目指定求加速度或力,否则最好不要用牛顿第二定律来计算。要优先考虑使用场力功与粒子动能变化关系,使用动能定理来解,尤其是在非匀强电场中,我们无法使用牛顿第二定律来处理的过程,而动能定理只考虑始末状态,不考虑中间过程。一般来说,问题涉及时间则优先考虑冲量、动量,问题涉及空间则优先考虑功、动能。

对带电粒子在非匀强电场中运动的问题,对中学生要求不高,不会有难度过大的问题。

4.强化物理条件意识,运用数学工具(如,抛物线方程、直线方程、反比例函数等)加以

分析求解。

(一)带电粒子的加速

1. 运动状态分析

带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做加速(或减速)直线运动。

2. 用功能观点分析

粒子动能的变化量等于电场力做的功。

(1)若粒子的初速度为零,则qU=mv2

2

(2)若粒子的初速度不为零,则qU=mv/2- mv02 3. 用牛顿运动定律和运动学公式分析:带电粒子平行电场线方向进入匀强电场,则带电粒子做匀变速直线运动,可由电场力求得加速度进而求出末速度、位移或时间。

说明:

(1)不管是匀强电场还是非匀强电场加速带电粒子W=qU都适应,而W=qEd,只适应于匀强电场.

(2)对于直线加速,实质上是电势能转化为动能,解决的思路是列动能定理的方程(能量观点)来求解。

难点之九:带电粒子在磁场中的运动

一、难点突破策略

(一)明确带电粒子在磁场中的受力特点

1. 产生洛伦兹力的条件:

①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用. ②电荷的运动速度方向与磁场方向不平行.

2. 洛伦兹力大小: 当电荷运动方向与磁场方向平行时,洛伦兹力f=0; 当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ; 当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ 3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断

4. 洛伦兹力不做功.

(二)明确带电粒子在匀强磁场中的运动规律

带电粒子在只受洛伦兹力作用的条件下:

1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.

2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.

①向心力由洛伦兹力提供:

②轨道半径公式:

③周期:,可见T 只与有关,与v 、R 无关。

(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、

轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。

1. "带电粒子在匀强磁场中的圆周运动" 的基本型问题

(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系()作为辅助。圆心的确定,通常有以下两种方法。

① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。 ② 已知入射方向和出射点的位置,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图9-2,P 为入射点,M 为出射点)。

(2)半径的确定和计算:利用平面几何关系,求出该圆的可能半径或圆心角。并注意以下两个重要的特点:

① 粒子速度的偏向角等于回旋角α,并等于AB 弦与切线的夹角(弦切角θ)的2倍,如图9-3所示。即:。

② 相对的弦切角θ相等,与相邻的弦切角θ/互补,即θ+θ/=180o 。

(3)运动时间的确定

粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示。

注意:带电粒子在匀强磁场中的圆周运动具有对称性。

① 带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向、出射速度方向与边界的夹角相等;

② 在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。

应用对称性可以快速地确定运动的轨迹。

例1:如图9-4所示,在y 小于0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面外,磁感应强度为B ,一带正电的粒子以速度从O 点射入磁场,入射速度方向为xy 平面内,与x 轴正向的夹角为θ,若粒子射出磁场的位置与O 点的距离为L ,求该粒子电量与质量之比。

难点之十 电学实验

一、难点形成的原因

1、对电流表、电压表的读数规则认识模糊,导致读数的有效数字错误

2、对滑动变阻器的限流、分压两种控制电路的原理把握不准,导致控制电路选用不当

3、对实验测量电路、电学仪器的选用原则把握不准,导致电路、仪器选用错误

4、对电学实验的重点内容“电阻的测量”方法无明确的归类,导致思路混乱

5、对于创新型实验设计平时缺乏对实验思想方法(如模拟法,转换法,放大法,比较法,替代法等)进行归纳,在全新的实验情景下,找不到实验设计的原理,无法设计合理可行的方案。受思维定势影响,缺乏对已掌握的实验原理,仪器的使用进行新情境下的迁移利用,缺乏创新意识。

二、难点突破

1、电流表、电压表的读数规则:

电流表量程一般有两种——0.1~0.6A ,0~3A ;电压表量程一般有两种——0~3V ,0~15V 。如图10-1所示:

图10-1

因为同一个电流表、电压表有不同的量程,因此,对应不同的量程,每个小格所代表的电流、电压值不相同,所以电流表、电压表的读数比较复杂,测量值的有效数字位数比较容易出错。下面是不同表,不同量程下的读数规则:

电压表、电流表若用0~3V、0~3A量程,其最小刻度(精确度)分别为0.1V 、0.1A ,为10分度仪表读数,读数规则较为简单,只需在精确度后加一估读数即可。

如图所示,电压表读数为1.88V ,电流表读数为0.83A 。若指针恰好指在2上,则读数为2.00V (或A )。

电压表若用0~15V量程,则其最小刻度为0.5V ,为2分度仪表读数,所读数值小数点后只能有一位小数,也必须有一位小数。

如图所示,若指针指在整刻度线上,如指在10上应读做10.0V ,指在紧靠10刻度线右侧的刻度线上(即表盘上的第21条小刻度线)读数为10.5V ,若指在这两条刻度线间的中间某个位置,则可根据指针靠近两刻度线的程度,分别读做10.1V ,或10.2V ,或10.3V ,或10.4V ,即使是指在正中央,也不能读做10.25V ,若这样,则会出现两位不准确的数,即小数点后的2和5,不符合读数规则,如上图中所示,读数应为9.3V 。

电流表若用0-0.6A 量程,则其最小刻度为0.02A ,为5分度仪表读数,其读数规则与0—15V 电压表相似,所读数值小数点后只能有两位小数,也必须有两位小数。

如上图所示,电流表读数为0.17A ,若指针指在第11条刻度线上,则读数为0.22A ,指在第10条刻度线上,读数为0.20A ,指在第12条刻度线上,读数为0.24A 。

2、滑动变阻器应用分析

滑动变阻器是电学实验中常用的仪器,近几年高考电学设计性实验命题对其应用多次直接或渗透考查. 如何选择滑动变阻器的接法设计控制电路仍是历届考生应考的难点.

滑动变阻器的限流接法与分压接法的特点:如图10-2所示的两种电路中,滑动变阻器(最大阻值为R 0)对负载R L 的电压、电流强度都起控制调节作用,通常把图(a )电路称为限流接法,图(b )电路称为分压接法.

图10-2

①限流法. 如图(a )所示,待测电阻上电压调节范围为R L E ~E . 显然,当R 0

时,在移动滑动触头的过程中,电流的变化范围很小,总电流几乎不变,U L 也几乎不变,无法读取数据;当R 0>>R L 时,滑动触头在从b 向a 滑动的过程中,先是电流表、电压表的示数变化不大,后来在很小的电阻变化范围内,电流表、电压表的读数变化很快,也不方便读数,只有当R L 与R 0差不多大小时,才能对电流、电压有明显的调控作用. 在同样能达到目的的前提下,限流法较为省电,电路连接也较为简单.

②分压法. 如图(b )所示,待测电阻上电压调节范围为0~E ,且R 0相对于R L 越小,R 上的电压变化的线性就越好. 当R 0>>R L 时,尽管U L 变化范围仍是0~E ,但数据几乎没有可记录性,因为在这种情况下,滑片从左端滑起,要一直快到右端时,电压表上示数一直几乎为零,然后突然上升到E ,对测量几乎没有用处. 因此,分压接法要用全阻值较小的滑动变阻器。

滑动变阻器的限流接法与分压接法:两种电路均可调节负载电阻电压和电流的大小,但在不同条件下,调节效果大不一样,滑动变阻器以何种接法接入电路,应遵循安全性、精确性、节能性、方便性原则综合考虑,灵活选取.

1. 下列三种情况必须选用分压式接法

(1)要求回路中某部分电路电流或电压实现从零开始可连续调节时(如:测定导体的伏安特性、校对改装后的电表等电路),即大范围内测量时,必须采用分压接法.

(2)当用电器的电阻R L 远大于滑动变阻器的最大值R 0时,必须采用分压接法. 因为按图(b )连接时,因R L >>R 0>R ap , 所以R L 与R ap 的并联值R 并≈R ap ,而整个电路的总阻值约为R 0,那么R L 两端电压U L =IR 并=U ·R ap ,显然U L ∝R ap , 且R ap 越小,这种线性关系越好,电表R 0

的变化越平稳均匀,越便于观察和操作.

(3)若采用限流接法,电路中实际电压(或电流)的最小值仍超过R L 的额定值时,只能采用分压接法.

2. 下列情况可选用限流式接法

(1)测量时对电路中的电流或电压没有要求从零开始连续调节,只是小范围内测量,且R L 与R 0相差不大或R L 略小于R 0,采用限流式接法.

(2)电源的放电电流或滑动变阻器的额定电流太小,不能满足分压式接法的要求时,采用限流式接法.

(3)没有很高的要求,仅从安全性和精确性角度分析两者均可采用时,可考虑安装简便和节能因素优先采用限流式接法.


相关内容

  • 中学生普遍存在的问题及成因
  • 中学生普遍存在的问题及成因 一.按年级分,学生可能出现的问题: 1.初一.高一学生学习不理想的部分因素: 从小学升到初一: ● 学习没有计划.从小学升入初一,很多学生还保留小学的学习方式和学习状态,学习时没有自己的学习计划,整天忙于应付老师的作业和考试,缺乏主动的学习安排.对自己到底要学什么,怎么学 ...

  • 高中物理新课标教学设计案例(传感器)
  • 高中物理新课标教学设计案例 6.1传感器及其工作原理 浠水一中 李春山 [学习者分析] ①.本人所在学校属于省级示范学校,学生在初中就已经进行了很长时间的探究体验,因此他们有探究的基础,优点是思维活跃,善于观察.总结.提出并回答问题,不过还存在"眼高手低"的问题及实验器材问题. ...

  • 微课在高中物理课堂中的应用
  • 龙源期刊网 http://www.qikan.com.cn 微课在高中物理课堂中的应用 作者:罗章萍 来源:<速读·上旬>2015年第03期 摘 要:物理是以实验为基础的学科,在高中物理教学中应用微课,可以提高教学质量.微课可提供更安全.效果更显著的实验素材,弥补实验教学的不足:微课可以 ...

  • 如何进行教材分析
  • 如何进行教材分析(转) 2008-6-1 21:24:00 一.分析教材对教学的意义 教师讲好一堂课的关键在于备课,只有备好课,才能保证教学质量,而教材分析则是备好课的前提.有的人可能会说,课本对教学内容都作了详尽的阐述,教师按课本讲就是了,对教材还有什么可分析的呢?我们知道,书本上的知识是一种贮存 ...

  • 高中物理基础知识手册
  • 为不负广大读者对<高中物理基础知识手册>的厚爱,我们再次邀请全国各省市部分一线特高级专家型教师,对本书进行了全新修订.在编修过程中,专家们全面.深入地研究了<普通高中物理课程标准>,研究了各版本教材以及高中物理<考试大纲>,吸纳了相关的权威著作和最新报纸.杂志中的 ...

  • 2014年河南省普通高中招生考试命题要求
  • 2014年河南省普通高中招生考试命题要求 语 文 一.命题理念:命题要体现语文课程评价的整体性和综合性,要从知识与能力.过程与方法.情感态度与价值观几个方面进行评价,全面考查学生的语文素养. 二.命题依据:以<全日制义务教育语文课程标准(实验稿)>为命题依据. 三.命题内容与要求:考查语 ...

  • 如何学好高中物理
  • 高一物理全攻略 高一物理:学着容易,做着难?? 一.对高一物理的认识 物理学是研究自然界中生产和生活物理现象的科学.它包括力现象.声音现象.热现象.电和磁现象.光现象.原子和原子核的运动变化等现象.学习物理的主要任务就是研究这些现象,了解产生这些现象的原因,找出其中的规律,以便更好地为生产和生活服务 ...

  • 2016高一物理教学工作总结-教学工作总结
  • 2016--2017年度高一物理教学工作总结 物理组 韩春色 紧张忙碌的高一上学期结束了.回首半年来的物理教学工作,可以说有欣慰,更有许多无奈.这是第二次带高一,虽说对教材内容比较熟悉,并且也有了一点教学经验,但是有些知识总感觉在进行课堂设计时不是很顺手,有些内容在讲解时感觉不是很好.如何教学高一物 ...

  • 历史上十大杰出女性的独特见地
  • 女性一直是漫漫历史长河中的幕后英雄.无论是科学方面,还是为公民争取权利方面,她们都做着巨大的贡献,然而,她们的光芒和贡献却时常被她们的男性同行们所掩盖.此文精选十位伟大女性的名言,她们中不乏各自领域中的先驱.杰出部门或组织的首领.诺贝尔奖获得者.现代科技的发明家.甚至还有为物理定律做出贡献的研究者, ...