线性代数同济大学第四版习题答案04

第四章 向量组的线性相关性

1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3. 解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T

T

=(1-0, 1-1, 0-1)

T

=(1, 0, -1) .

3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3⨯1+2⨯0-3, 3⨯1+2⨯1-4, 3⨯0+2⨯1-0) T =(0, 1, 2).

2. 设3(a 1-a ) +2(a 2+a ) =5(a 3+a ) , 求a , 其中a 1=(2, 5, 1, 3)T , a 2=(10, 1, 5, 10), a 3=(4, 1, -1, 1). 解 由3(a 1-a ) +2(a 2+a ) =5(a 3+a ) 整理得 a =

T

T T

1

(3a 1+2a 2-5a 3) 6

1

3(2, 5, 1, 3) T +2(10, 1, 5, 10) T -5(4, 1, -1, 1) T ] 6

=

=(1, 2, 3, 4)T . 3. 已知向量组

A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a3=(2, 3, 0, 1)T ; B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由

⎛0 1

(A , B ) =

2 3⎝⎛1r 0

~

0 0⎝

30122301

204⎫1-24⎪111⎪213⎪⎭⎛1

0~ 0 0⎝

r 031-24⎫32204⎪

1-6-15-7⎪2-8-17-9⎪⎭

031-24⎫

1-6-15-7⎪

041-35⎪00000⎪⎭

031-24⎫

1-6-15-7⎪0205-1525⎪041-35⎪⎭⎛1

r ~ 0

0 0⎝

知R (A ) =R (A , B ) =3, 所以B 组能由A 组线性表示.

⎛204⎫⎛102⎫⎛1 1-24⎪r 0-22⎪r 0

B = ~~111⎪ 01-1⎪ 0

213⎪ 01-1⎪ 0⎝⎭⎝⎭⎝

4. 已知向量组

A : a 1=(0, 1, 1), a 2=(1, 1, 0);

T

T

02⎫

1-1⎪

00⎪00⎪⎭

知R (B ) =2. 因为R (B ) ≠R (B , A ) , 所以A 组不能由B 组线性表示.

B : b 1=(-1, 0, 1), b 2=(1, 2, 1), b3=(3, 2, -1) , 证明A 组与B 组等价. 证明 由

T T T

⎛-11301⎫r ⎛-11301⎫r ⎛-11301⎫

(B , A ) = 02211⎪~ 02211⎪~ 02211⎪,

11-110⎪ 02211⎪ 00000⎪⎝⎭⎝⎭⎝⎭

知R (B ) =R (B , A ) =2. 显然在A 中有二阶非零子式, 故R (A ) ≥2, 又R (A ) ≤R (B , A ) =2, 所以R (A ) =2, 从而R (A ) =R (B ) =R (A , B ) . 因此A 组与B 组等价.

5. 已知R (a 1, a 2, a 3) =2, R (a 2, a 3, a 4) =3, 证明 (1) a1能由a 2, a 3线性表示; (2) a4不能由a 1, a 2, a 3线性表示.

证明 (1)由R (a 2, a 3, a 4) =3知a 2, a 3, a 4线性无关, 故a 2, a 3也线性无关. 又由R (a 1, a 2, a 3) =2知a 1, a 2, a 3线性相关, 故a 1能由a 2, a 3线性表示.

(2)假如a 4能由a 1, a 2, a 3线性表示, 则因为a 1能由a 2, a 3线性表示, 故a 4能由a 2, a 3线性表示, 从而a 2, a 3, a 4线性相关, 矛盾. 因此a 4不能由a 1, a 2, a 3线性表示.

6. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .

解 (1)以所给向量为列向量的矩阵记为A . 因为

⎛-121⎫r ⎛-121⎫r ⎛-121⎫

A = 314⎪~ 077⎪~ 011⎪,

101⎪ 022⎪ 000⎪⎝⎭⎝⎭⎝⎭

所以R (A ) =2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为

2-10

|B |=340=22≠0,

002

所以R (B ) =3等于向量的个数, 从而所给向量组线性相无关.

7. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1, a , -1) T , a3=(1, -1, a ) T . 解 以所给向量为列向量的矩阵记为A . 由

a 11

|A |=1a -1=a (a -1)(a +1)

1-1a

知, 当a =-1、0、1时, R (A )

8. 设a 1, a 2线性无关, a 1+b , a 2+b 线性相关, 求向量b 用a 1, a 2线性表示的表示式. 解 因为a 1+b , a 2+b 线性相关, 故存在不全为零的数λ1, λ2使 λ1(a 1+b ) +λ2(a 2+b ) =0, 由此得 b =-

λλλλa 1-a 2=-a 1-(1-a 2,

λ1+λ2λ1+λ2λ1+λ2λ1+λ2

, 则

设c =-

λ1λ1+λ2

b =c a 1-(1+c ) a 2, c ∈R .

9. 设a 1, a 2线性相关, b 1, b 2也线性相关, 问a 1+b 1, a 2+b 2是否一定线性相关?试举例说明之.

解 不一定.

例如, 当a 1=(1, 2)T , a 2=(2, 4)T , b 1=(-1, -1) T , b 2=(0, 0)T 时, 有 a 1+b 1=(1, 2)T +b 1=(0, 1)T , a 2+b 2=(2, 4)T +(0, 0)T =(2, 4)T , 而a 1+b 1, a 2+b 2的对应分量不成比例, 是线性无关的.

10. 举例说明下列各命题是错误的:

(1)若向量组a 1, a 2, ⋅ ⋅ ⋅, a m 是线性相关的, 则a 1可由a 2, ⋅ ⋅ ⋅, a m 线性表示.

解 设a 1=e 1=(1, 0, 0, ⋅ ⋅ ⋅, 0), a 2=a 3= ⋅ ⋅ ⋅ =a m =0, 则a 1, a 2, ⋅ ⋅ ⋅, a m 线性相关, 但a 1不能由a 2, ⋅ ⋅ ⋅, a m 线性表示.

(2)若有不全为0的数λ1, λ2, ⋅ ⋅ ⋅, λm 使

λ1a 1+ ⋅ ⋅ ⋅ +λm a m +λ1b 1+ ⋅ ⋅ ⋅ +λm b m =0

成立, 则a 1, a 2, ⋅ ⋅ ⋅, a m 线性相关, b 1, b 2, ⋅ ⋅ ⋅, b m 亦线性相关. 解 有不全为零的数λ1, λ2, ⋅ ⋅ ⋅, λm 使

λ1a 1+ ⋅ ⋅ ⋅ +λm a m +λ1b 1+ ⋅ ⋅ ⋅ +λm b m =0,

原式可化为

λ1(a 1+b 1) + ⋅ ⋅ ⋅ +λm (a m +b m ) =0.

取a 1=e 1=-b 1, a 2=e 2=-b 2, ⋅ ⋅ ⋅, a m =e m =-b m , 其中e 1, e 2, ⋅ ⋅ ⋅, e m 为单位坐标向量, 则上式成立, 而a 1, a 2, ⋅ ⋅ ⋅, a m 和b 1, b 2, ⋅ ⋅ ⋅, b m 均线性无关.

(3)若只有当λ1, λ2, ⋅ ⋅ ⋅, λm 全为0时, 等式

λ1a 1+ ⋅ ⋅ ⋅ +λm a m +λ1b 1+ ⋅ ⋅ ⋅ +λm b m =0

才能成立, 则a 1, a 2, ⋅ ⋅ ⋅, a m 线性无关, b 1, b 2, ⋅ ⋅ ⋅, b m 亦线性无关. 解 由于只有当λ1, λ2, ⋅ ⋅ ⋅, λm 全为0时, 等式

由λ1a 1+ ⋅ ⋅ ⋅ +λm a m +λ1b 1+ ⋅ ⋅ ⋅ +λm b m =0

成立, 所以只有当λ1, λ2, ⋅ ⋅ ⋅, λm 全为0时, 等式

λ1(a 1+b 1) +λ2(a 2+b 2) + ⋅ ⋅ ⋅ +λm (a m +b m ) =0

成立. 因此a 1+b 1, a 2+b 2, ⋅ ⋅ ⋅, a m +b m 线性无关.

取a 1=a 2= ⋅ ⋅ ⋅ =a m =0, 取b 1, ⋅ ⋅ ⋅, b m 为线性无关组, 则它们满足以上条件, 但a 1, a 2, ⋅ ⋅ ⋅, a m 线性相关.

(4)若a 1, a 2, ⋅ ⋅ ⋅, a m 线性相关, b 1, b 2, ⋅ ⋅ ⋅, b m 亦线性相关, 则有不全为0的数, λ1, λ2, ⋅ ⋅ ⋅,

λm 使

λ1a 1+ ⋅ ⋅ ⋅ +λm a m =0, λ1b 1+ ⋅ ⋅ ⋅ +λm b m =0

同时成立.

解 a 1=(1, 0), a 2=(2, 0), b 1=(0, 3), b 2=(0, 4),

T

T

T

T

λ1a 1+λ2a 2 =0⇒λ1=-2λ2, λ1b 1+λ2b 2 =0⇒λ1=-(3/4)λ2,

⇒λ1=λ2=0, 与题设矛盾.

11. 设b 1=a 1+a 2, b 2=a 2+a 3, b3=a 3+a 4, b4=a 4+a 1, 证明向量组b 1, b 2, b 3, b 4线性相关. 证明 由已知条件得

a 1=b 1-a 2, a 2=b 2-a 3, a3=b 3-a 4, a4=b 4-a 1, 于是 a 1 =b 1-b 2+a 3

=b 1-b 2+b 3-a 4

=b 1-b 2+b 3-b 4+a 1, 从而 b 1-b 2+b 3-b 4=0,

这说明向量组b 1, b 2, b 3, b 4线性相关.

12. 设b 1=a 1, b 2=a 1+a 2, ⋅ ⋅ ⋅, b r =a 1+a 2+ ⋅ ⋅ ⋅ +a r , 且向量组a 1, a 2, ⋅ ⋅ ⋅ , a r 线性无关, 证明向量组b 1, b 2, ⋅ ⋅ ⋅ , b r 线性无关. 证明 已知的r 个等式可以写成

⎛1 0

(b 1, b 2, ⋅ ⋅ ⋅ , b r ) =(a 1, a 2, ⋅ ⋅ ⋅ , a r )

⋅⋅⋅ 0⎝

关.

13. 求下列向量组的秩, 并求一个最大无关组:

11⋅⋅⋅0⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

1⎫1⎪, ⋅⋅⋅⎪1⎪⎭

上式记为B =AK . 因为|K |=1≠0, K 可逆, 所以R (B ) =R (A ) =r , 从而向量组b 1, b 2, ⋅ ⋅ ⋅ , b r 线性无

(1)a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a3=(-2, -4, 2, -8) T ; 解 由

9-2⎫⎛19-2⎫⎛1⎛1

r 2100-4⎪ 0820⎪r 0

(a 1, a 2, a 3) = ~~-1102⎪ 0190⎪ 0

4⎪ 0-320⎪ 04-8⎝⎭⎝⎭⎝

最大无关组.

(2)a 1T =(1, 2, 1, 3), a 2T =(4, -1, -5, -6) , a3T =(1, -3, -4, -7) . 解 由

9-2⎫

10⎪

,

00⎪00⎪⎭

知R (a 1, a 2, a3) =2. 因为向量a 1与a 2的分量不成比例, 故a 1, a 2线性无关, 所以a 1, a 2是一个

41⎫⎛141⎫⎛141⎫⎛1

2-1-3⎪r 0-9-5⎪r 0-9-5⎪

, (a 1, a 2, a 3) = ~~1-5-4⎪ 0-9-5⎪ 000⎪

3-6-7⎪ 0-18-10⎪ 000⎪⎝⎭⎝⎭⎝⎭

知R (a 1T , a 2T , a3T ) =R (a 1, a 2, a3) =2. 因为向量a 1T 与a 2T 的分量不成比例, 故a 1T , a 2T 线性无关, 所以a 1, a 2是一个最大无关组.

14. 利用初等行变换求下列矩阵的列向量组的一个最大无关组:

T

T

⎛25

75 (1)

75 25⎝

[***********]13213448

⎫⎪⎪; ⎪⎭

解 因为

⎛25 75 75 25⎝⎛1 0 (2)

2 1⎝

⎛1 0 2 1⎝

[***********]13213448

⎫⎪⎪⎪⎭

r 2-3r 1r 3-3r 1r 4-r 1

~

⎛25 0 0 0⎝

31111

1743⎫23⎪35⎪35⎪⎭

r 4-r 3r 3-r 2

~

⎛25

0 0 0⎝

31100

1743⎫23⎪

,

13⎪00⎪⎭

所以第1、2、3列构成一个最大无关组.

1

201213025-14

1⎫-1⎪

. 3⎪-1⎪⎭

⎛1

0 0 0⎝

12-20

21-1-2

25-52

1⎫-1⎪1⎪-2⎪⎭

⎛1

0 0 0⎝

120021-20

25201⎫-1⎪

, -2⎪0⎪⎭

解 因为

1

201213025-14

1⎫-1⎪3⎪-1⎪⎭

r 3-2r 1r 4-r 1

~

r 3+r 2r 3r 4

~

所以第1、2、3列构成一个最大无关组.

15. 设向量组

(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T

的秩为2, 求a , b .

解 设a 1=(a , 3, 1), a 2=(2, b , 3), a3=(1, 2, 1), a 4=(2, 3, 1). 因为

T

T

T

T

13⎫r ⎛1113⎫⎛12a 2⎫r ⎛11

(a 3, a 4, a 1, a 2) = 233b ⎪~ 01a -1-1⎪~ 01a -1-1⎪,

1113⎪ 01⎪ 002-a b -5⎪1b -6⎝⎭⎝⎭⎝⎭

而R (a 1, a 2, a 3, a 4) =2, 所以a =2, b =5.

16. 设a 1, a 2, ⋅ ⋅ ⋅, a n 是一组n 维向量, 已知n 维单位坐标向量e 1, e 2,⋅ ⋅ ⋅, e n 能由它们线性表示, 证明a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关.

证法一 记A =(a 1, a 2, ⋅ ⋅ ⋅, a n ) , E =(e 1, e 2,⋅ ⋅ ⋅, e n ) . 由已知条件知, 存在矩阵K , 使

E =AK .

两边取行列式, 得

|E |=|A ||K |.

可见|A |≠0, 所以R (A ) =n , 从而a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关.

证法二 因为e 1, e 2,⋅ ⋅ ⋅, e n 能由a 1, a 2, ⋅ ⋅ ⋅, a n 线性表示, 所以

R (e 1, e 2,⋅ ⋅ ⋅, e n ) ≤R (a 1, a 2, ⋅ ⋅ ⋅, a n ) ,

而R (e 1, e 2,⋅ ⋅ ⋅, e n ) =n , R (a 1, a 2, ⋅ ⋅ ⋅, a n ) ≤n , 所以R (a 1, a 2, ⋅ ⋅ ⋅, a n ) =n , 从而a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关.

17. 设a 1, a 2, ⋅ ⋅ ⋅, a n 是一组n 维向量, 证明它们线性无关的充分必要条件是: 任一n 维向量都可由它们线性表示.

证明 必要性: 设a 为任一n 维向量. 因为a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关, 而a 1, a 2, ⋅ ⋅ ⋅, a n , a 是n +1个n 维向量, 是线性相关的, 所以a 能由a 1, a 2, ⋅ ⋅ ⋅, a n 线性表示, 且表示式是唯一的.

充分性: 已知任一n 维向量都可由a 1, a 2, ⋅ ⋅ ⋅, a n 线性表示, 故单位坐标向量组e 1, e 2, ⋅ ⋅ ⋅, e n 能由a 1, a 2, ⋅ ⋅ ⋅, a n 线性表示, 于是有

n =R (e 1, e 2, ⋅ ⋅ ⋅, e n ) ≤R (a 1, a 2, ⋅ ⋅ ⋅, a n ) ≤n ,

即R (a 1, a 2, ⋅ ⋅ ⋅, a n ) =n , 所以a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关.

18. 设向量组a 1, a 2, ⋅ ⋅ ⋅, a m 线性相关, 且a 1≠0, 证明存在某个向量a k (2≤k ≤m ) , 使a k 能由a 1, a 2, ⋅ ⋅ ⋅, a k -1线性表示.

证明 因为a 1, a 2, ⋅ ⋅ ⋅, a m 线性相关, 所以存在不全为零的数λ1, λ2, ⋅ ⋅ ⋅, λm , 使

λ1a 1+λ2a 2+ ⋅ ⋅ ⋅ +λm a m =0,

而且λ2, λ3,⋅ ⋅ ⋅, λm 不全为零. 这是因为, 如若不然, 则λ1a 1=0, 由a 1≠0知λ1=0, 矛盾. 因此存在k (2≤k ≤m ) , 使

λk ≠0, λk +1=λk +2= ⋅ ⋅ ⋅ =λm =0,

于是

λ1a 1+λ2a 2+ ⋅ ⋅ ⋅ +λk a k =0,

a k =-(1/λk )(λ1a 1+λ2a 2+ ⋅ ⋅ ⋅ +λk -1a k -1) ,

即a k 能由a 1, a 2, ⋅ ⋅ ⋅, a k -1线性表示.

19. 设向量组B : b 1, ⋅ ⋅ ⋅, b r 能由向量组A : a 1, ⋅ ⋅ ⋅, a s 线性表示为

(b 1, ⋅ ⋅ ⋅, b r ) =(a 1, ⋅ ⋅ ⋅, a s ) K , 其中K 为s ⨯r 矩阵, 且A 组线性无关. 证明B 组线性无关的充分必要条件是矩阵K 的秩R (K ) =r .

证明 令B =(b 1, ⋅ ⋅ ⋅, b r ) , A =(a 1, ⋅ ⋅ ⋅, a s ) , 则有B =AK . 必要性: 设向量组B 线性无关.

由向量组B 线性无关及矩阵秩的性质, 有 r =R (B ) =R (AK ) ≤min{R (A ) , R (K )}≤R (K ) , 及 R (K ) ≤min{r , s }≤r . 因此R (K ) =r .

充分性: 因为R (K ) =r , 所以存在可逆矩阵C , 使KC (b 1, ⋅ ⋅ ⋅, b r ) C =( a1, ⋅ ⋅ ⋅, a s ) KC =(a 1, ⋅ ⋅ ⋅, a r ) .

因为C 可逆, 所以R (b 1, ⋅ ⋅ ⋅, b r ) =R (a 1, ⋅ ⋅ ⋅, a r ) =r , 从而b 1, ⋅ ⋅ ⋅, b r 线性无关.

20. 设

⎛E ⎫

= r ⎪为K 的标准形. 于是 ⎝O ⎭

⎧β1= α2+α3+ ⋅ ⋅ ⋅ +αn ⎪β2=α1 +α3+ ⋅ ⋅ ⋅ +αn

⎨ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , ⎪

⎩βn =α1+α2+α3+ ⋅ ⋅ ⋅ +αn -1

证明向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 等价. 证明 将已知关系写成

⎛0 1

(β1, β2, ⋅ ⋅ ⋅ , βn ) =(α1, α2, ⋅ ⋅ ⋅ , αn ) 1

⋅⋅⋅ ⎝1

将上式记为B =AK . 因为

101⋅⋅⋅1110⋅⋅⋅1⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

1⎫1⎪1⎪, ⋅⋅⋅⎪⎪0⎭

01|K |=1

⋅⋅⋅1101⋅⋅⋅1110⋅⋅⋅1⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅11

1=(-1) n -1(n -1) ≠0, ⋅⋅⋅0

所以K 可逆, 故有A =BK -1. 由B =AK 和A =BK -1可知向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 可相互线性表示. 因此向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 等价.

21. 已知3阶矩阵A 与3维列向量x 满足A 3x =3A x -A 2x , 且向量组x , A x , A 2x 线性无关.

(1)记P =(x , A x , A 2x ) , 求3阶矩阵B , 使AP =PB ; 解 因为

AP =A (x , A x , A 2x ) =(A x , A 2x , A 3x ) =(A x , A 2x , 3A x -A 2x )

⎛000⎫

=(x , A x , A x ) 103⎪,

01-1⎪⎝⎭

2

⎛000⎫

所以B = 103⎪.

01-1⎪⎝⎭

(2)求|A |.

解 由A 3x =3A x -A 2x , 得A (3x -A x -A 2x ) =0. 因为x , A x , A 2x 线性无关, 故3x -A x -A 2x ≠0, 即方程A x =0有非零解, 所以R (A )

x -8x 2+10x 3+2x 4=0⎧⎪1

(1)⎨2x 1+4x 2+5x 3-x 4=0;

⎪⎩3x 1+8x 2+6x 3-2x 4=0

解 对系数矩阵进行初等行变换, 有

40⎫⎛1-8102⎫r ⎛10

A = 245-1⎪ ~ 01-3/4-1/4⎪,

386-2⎪ 00⎪00⎝⎭⎝⎭

于是得

⎧x 1=-4x 3

⎨x =(3/4) x +(1/4) x . ⎩234

T

T

T

T

取(x 3, x 4) =(4, 0), 得(x 1, x 2) =(-16, 3); 取(x 3, x 4) T =(0, 4)T , 得(x 1, x 2) T =(0, 1)T . 因此方程组的基础解系为

ξ1=(-16, 3, 4, 0), ξ2=(0, 1, 0, 4).

T

T

2x -3x 2-2x 3+x 4=0⎧⎪1

(2)⎨3x 1+5x 2+4x 3-2x 4=0.

⎪⎩8x 1+7x 2+6x 3-3x 4=0

解 对系数矩阵进行初等行变换, 有

⎛2-3-21⎫r ⎛102/19-1/19⎫

4-2⎪ ~ 0114/19-7/19⎪, A = 35

876-3⎪ 0000⎪⎝⎭⎝⎭

于是得

⎧x 1=-(2/19) x 3+(1/19) x 4

⎨x =-(14/19) x +(7/19) x . ⎩234

取(x 3, x 4) T =(19, 0)T , 得(x 1, x 2) T =(-2, 14)T ; 取(x 3, x 4) T =(0, 19)T , 得(x 1, x 2) T =(1, 7)T . 因此方程组的基础解系为

ξ1=(-2, 14, 19, 0)T , ξ2=(1, 7, 0, 19)T .

(3)nx 1 +(n -1) x 2+ ⋅ ⋅ ⋅ +2x n -1+x n =0. 解 原方程组即为

x n =-nx 1-(n -1) x 2- ⋅ ⋅ ⋅ -2x n -1.

取x 1=1, x 2=x 3= ⋅ ⋅ ⋅ =x n -1=0, 得x n =-n ;

取x 2=1, x 1=x 3=x 4= ⋅ ⋅ ⋅ =x n -1=0, 得x n =-(n -1) =-n +1; ⋅ ⋅ ⋅ ;

取x n -1=1, x 1=x 2= ⋅ ⋅ ⋅ =x n -2=0, 得x n =-2. 因此方程组的基础解系为 ξ1=(1, 0, 0, ⋅ ⋅ ⋅, 0, -n ) T , ξ2=(0, 1, 0, ⋅ ⋅ ⋅, 0, -n +1) T , ⋅ ⋅ ⋅,

ξn -1=(0, 0, 0, ⋅ ⋅ ⋅, 1, -2) T .

23. 设A = R (B ) =2.

解 显然B 的两个列向量应是方程组AB =0的两个线性无关的解. 因为 A =

r

⎛2-213⎫, 求一个4⨯2矩阵B , 使AB =0, 且

9-528⎝⎭

1/8⎫⎛2-213⎫ ~ ⎛10-1/8

⎪ 01-5/8-11/8⎪,

9-528⎝⎭⎝⎭

所以与方程组AB =0同解方程组为

⎧x 1=(1/8) x 3-(1/8) x 4

⎨x =(5/8) x +(11/8) x . ⎩234

取(x 3, x 4) T =(8, 0)T , 得(x 1, x 2) T =(1, 5)T ; 取(x 3, x 4) T =(0, 8)T , 得(x 1, x 2) T =(-1, 11)T . 方程组AB =0的基础解系为

ξ1=(1, 5, 8, 0)T , ξ2=(-1, 11, 0, 8)T .

⎛1

5

因此所求矩阵为B =

8 0⎝

-1⎫11⎪

. 0⎪8⎪⎭

24. 求一个齐次线性方程组, 使它的基础解系为

ξ1=(0, 1, 2, 3)T , ξ2=(3, 2, 1, 0)T .

解 显然原方程组的通解为

⎛x 1⎫⎧x 1=3k 2⎛0⎫⎛3⎫ x ⎪ 1⎪ 2⎪⎪x 2=k 1+2k 2

2

, 即=k +k ⎪1 ⎪2 ⎪⎨x =2k +k , (k 1, k 2∈R ) ,

21x 312

⎪⎪3 3⎪ 0⎪

⎝⎭⎝⎭⎩x 4=3k 1⎝x 4⎭

消去k 1, k 2得

⎧2x 1-3x 2+x 4=0

⎨x -3x +2x =0, ⎩134

此即所求的齐次线性方程组.

25. 设四元齐次线性方程组 I :

⎧x 1+x 2=0

⎨x -x =0 , II: ⎩24⎧x 1-x 2+x 3=0

⎨x -x +x =0. ⎩234

求: (1)方程I 与II 的基础解系; (2) I与II 的公共解. 解 (1)由方程I 得⎨

⎧x 1=-x 4

.

x =x ⎩24

取(x 3, x 4) T =(1, 0)T , 得(x 1, x 2) T =(0, 0)T ; 取(x 3, x 4) T =(0, 1)T , 得(x 1, x 2) T =(-1, 1)T . 因此方程I 的基础解系为

ξ1=(0, 0, 1, 0)T , ξ2=(-1, 1, 0, 1)T . 由方程II 得⎨

⎧x 1=-x 4

.

x =x -x ⎩234

T

T

T

取(x 3, x 4) T =(1, 0)T , 得(x 1, x 2) T =(0, 1)T ; 取(x 3, x 4) =(0, 1), 得(x 1, x 2) =(-1, -1) . 因此方程II 的基础解系为

ξ1=(0, 1, 1, 0)T , ξ2=(-1, -1, 0, 1)T . (2) I与II 的公共解就是方程

T

⎧x 1+x 2=0⎪x -x 4=0

III : ⎨2

x 1-x 2+x 3=0⎪

⎩x 2-x 3+x 4=0

的解. 因为方程组III 的系数矩阵

⎛1100⎫⎛1 010-1⎪r 0

A = ~

1-110⎪ 0 01-11⎪ 0⎝⎭⎝

所以与方程组III 同解的方程组为

100

01⎫0-1⎪

,

1-2⎪00⎪⎭

x =-x 4⎧⎪1

⎨x 2=x 4.

⎪⎩x 3=2x 4

取x 4=1, 得(x 1, x 2, x 3) =(-1, 1, 2), 方程组III 的基础解系为 ξ=(-1, 1, 2, 1)T .

因此I 与II 的公共解为x =c (-1, 1, 2, 1)T , c ∈R .

26. 设n 阶矩阵A 满足A =A , E 为n 阶单位矩阵, 证明

R (A ) +R (A -E ) =n .

证明 因为A (A -E ) =A 2-A =A -A =0, 所以R (A ) +R (A -E ) ≤n . 又R (A -E ) =R (E -A ) , 可知

R (A ) +R (A -E ) =R (A ) +R (E -A ) ≥R (A +E -A ) =R (E ) =n ,

由此R (A ) +R (A -E ) =n .

27. 设A 为n 阶矩阵(n ≥2) , A *为A 的伴随阵, 证明

2T

T

⎧n 当R (A ) =n

R (A *)=⎨1 当R (A ) =n -1.

⎪⎩0 当R (A ) ≤n -2

证明 当R (A ) =n 时, |A |≠0, 故有 |AA *|=||A |E |=|A |≠0, |A *|≠0, 所以R (A *)=n .

当R (A ) =n -1时, |A |=0, 故有 AA *=|A |E =0,

即A *的列向量都是方程组A x =0的解. 因为R (A ) =n -1, 所以方程组A x =0的基础解系中只含一个解向量, 即基础解系的秩为1. 因此R (A *)=1.

当R (A ) ≤n -2时, A 中每个元素的代数余子式都为0, 故A *=O , 从而R (A *)=0. 28. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:

x +x 2=5⎧⎪1

(1)⎨2x 1+x 2+x 3+2x 4=1;

⎪⎩5x 1+3x 2+2x 3+2x 4=3

解 对增广矩阵进行初等行变换, 有

⎛11005⎫r ⎛1010-8⎫

B = 21121⎪ ~ 01-1013⎪.

53223⎪ 00012⎪⎝⎭⎝⎭

与所给方程组同解的方程为

x =-x 3-8⎧⎪1

⎨x 2= x 3+13. ⎪⎩x 4= 2

当x 3=0时, 得所给方程组的一个解η=(-8, 13, 0, 2). 与对应的齐次方程组同解的方程为

T

x =-x 3⎧⎪1

⎨x 2= x 3. ⎪⎩x 4=0

当x 3=1时, 得对应的齐次方程组的基础解系ξ=(-1, 1, 1, 0).

T

x -5x 2+2x 3-3x 4=11⎧⎪1

(2)⎨5x 1+3x 2+6x 3-x 4=-1.

⎪⎩2x 1+4x 2+2x 3+x 4=-6

解 对增广矩阵进行初等行变换, 有

⎛1-52-311⎫r ⎛109/7-1/21⎫ B = 536-1-1⎪ ~ 01-1/71/2-2⎪.

2421-6⎪ 000⎪00⎝⎭⎝⎭

与所给方程组同解的方程为

⎧x 1=-(9/7) x 3+(1/2) x 4+1⎨x =(1/7)x -(1/2) x -2. ⎩234

当x 3=x 4=0时, 得所给方程组的一个解

η=(1, -2, 0, 0)T .

与对应的齐次方程组同解的方程为

⎧x 1=-(9/7) x 3+(1/2) x 4⎨x =(1/7)x -(1/2) x . ⎩234

分别取(x 3, x 4) =(1, 0), (0, 1), 得对应的齐次方程组的基础解系

T

T

T

ξ1=(-9, 1, 7, 0)T . ξ2=(1, -1, 0, 2)T .

29. 设四元非齐次线性方程组的系数矩阵的秩为3, 已知η1, η2, η3是它的三个解向量. 且

η1=(2, 3, 4, 5)T , η2+η3=(1, 2, 3, 4)T ,

求该方程组的通解.

解 由于方程组中未知数的个数是4, 系数矩阵的秩为3, 所以对应的齐次线性方程组的基础解系含有一个向量, 且由于η1, η2, η3均为方程组的解, 由非齐次线性方程组解的结构性质得

2η1-(η2+η3) =(η1-η2) +(η1-η3) = (3, 4, 5, 6)

为其基础解系向量, 故此方程组的通解:

x =k (3, 4, 5, 6)T +(2, 3, 4, 5)T , (k ∈R ) .

30. 设有向量组A : a 1=(α, 2, 10), a 2=(-2, 1, 5), a3=(-1, 1, 4), 及b =(1, β, -1) , 问α, β为何值时

(1)向量b 不能由向量组A 线性表示;

(2)向量b 能由向量组A 线性表示, 且表示式唯一;

(3)向量b 能由向量组A 线性表示, 且表示式不唯一, 并求一般表示式.

T

T

T

T

T

⎛-1-2α1⎫

12β⎪ 解 (a 3, a 2, a 1, b ) = 1

4510-1⎪⎝⎭1⎫⎛-1-2α

~ 0-11+αβ+1⎪. 004+α-3β⎪⎝⎭

r

(1)当α=-4, β≠0时, R (A ) ≠R (A , b ) , 此时向量b 不能由向量组A 线性表示.

(2)当α≠-4时, R (A ) =R (A , b ) =3, 此时向量组a 1, a 2, a 3线性无关, 而向量组a 1, a 2, a 3, b 线

性相关, 故向量b 能由向量组A 线性表示, 且表示式唯一.

(3)当α=-4, β=0时, R (A ) =R (A , b ) =2, 此时向量b 能由向量组A 线性表示, 且表示式不唯一.

当α=-4, β=0时,

⎛-1-2-41⎫

(a 3, a 2, a 1, b ) = 1120⎪

4510-1⎪⎝⎭

方程组(a 3, a 2, a 1) x =b 的解为

⎛10-21⎫

~ 013-1⎪, 0000⎪⎝⎭

r

⎛x 1⎫⎛2⎫⎛1⎫⎛2c +1⎫

x 2⎪=c -3⎪+ -1⎪= -3c -1⎪, c ∈R .

⎪ 1⎪ 0⎪ c ⎪

⎭⎝⎭⎝⎭⎝x 3⎭⎝

因此 b =(2c +1) a 3+(-3c -1) a 2+c a 1, 即 b = ca 1+(-3c -1) a 2+(2c +1) a 3, c∈R .

31. 设a =(a 1, a 2, a 3) T , b =(b 1, b 2, b 3) T , c=(c 1, c 2, c 3) T , 证明三直线 l 1: a 1x +b 1y +c 1=0,

l 2: a 2x +b 2y +c 2=0, (a i +b i ≠0, i =1, 2, 3) l 3: a 3x +b 3y +c 3=0,

相交于一点的充分必要条件为: 向量组a , b 线性无关, 且向量组a , b , c 线性相关. 证明 三直线相交于一点的充分必要条件为方程组

2

2

a x +b 1y +c 1=0a x +b 1y =-c 1⎧⎧⎪1⎪1

⎨a 2x +b 2y +c 2=0, 即⎨a 2x +b 2y =-c 2 ⎪⎪⎩a 3x +b 3y +c 3=0⎩a 3x +b 3y =-c 3

有唯一解. 上述方程组可写为x a +y b =-c . 因此三直线相交于一点的充分必要条件为c 能由a , b 唯一线性表示, 而c 能由a , b 唯一线性表示的充分必要条件为向量组a , b 线性无关, 且向量组a , b , c 线性相关.

32. 设矩阵A =(a 1, a 2, a 3, a 4) , 其中a 2, a 3, a 4线性无关, a 1=2a 2- a 3. 向量b =a 1+a 2+a 3+a 4, 求方程A x =b 的通解.

解 由b =a 1+a 2+a 3+a 4知η=(1, 1, 1, 1)T 是方程A x =b 的一个解. 由a 1=2a 2- a 3得a 1-2a 2+a 3=0, 知ξ=(1, -2, 1, 0)T 是A x =0的一个解.

由a 2, a 3, a 4线性无关知R (A ) =3, 故方程A x =b 所对应的齐次方程A x =0的基础解系中含

一个解向量. 因此ξ=(1, -2, 1, 0)T 是方程A x =0的基础解系. 方程A x =b 的通解为

x =c (1, -2, 1, 0)T +(1, 1, 1, 1)T , c ∈R .

33. 设η*是非齐次线性方程组A x =b 的一个解, ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r ,是对应的齐次线性方程组的一个基础解系, 证明:

(1)η*, ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 线性无关; (2)η*, η*+ξ1, η*+ξ2, ⋅ ⋅ ⋅, η*+ξn -r 线性无关.

证明 (1)反证法, 假设η*, ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 线性相关. 因为ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 线性无关, 而

η*, ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 线性相关, 所以η*可由ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 线性表示, 且表示式是唯一的, 这说

明η*也是齐次线性方程组的解, 矛盾.

(2)显然向量组η*, η*+ξ1, η*+ξ2, ⋅ ⋅ ⋅, η*+ξn -r 与向量组η*, ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 可以相互表示, 故这两个向量组等价, 而由(1)知向量组η*, ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 线性无关, 所以向量组η*, η*+ξ1,

η*+ξ2, ⋅ ⋅ ⋅, η*+ξn -r 也线性无关.

34. 设η1, η2, ⋅ ⋅ ⋅, ηs 是非齐次线性方程组A x =b 的s 个解, k 1, k 2, ⋅ ⋅ ⋅, k s 为实数, 满足k 1+k 2+ ⋅ ⋅ ⋅ +k s =1. 证明

x =k 1η1+k 2η2+ ⋅ ⋅ ⋅ +k s ηs

也是它的解.

证明 因为η1, η2, ⋅ ⋅ ⋅, ηs 都是方程组A x =b 的解, 所以 A ηi =b (i =1, 2, ⋅ ⋅ ⋅, s ) ,

从而 A (k 1η1+k 2η2+ ⋅ ⋅ ⋅ +k s ηs ) =k 1A η1+k 2A η2+ ⋅ ⋅ ⋅ +k s A ηs =(k 1+k 2+ ⋅ ⋅ ⋅ +k s ) b =b . 因此x =k 1η1+k 2η2+ ⋅ ⋅ ⋅ +k s ηs 也是方程的解.

35. 设非齐次线性方程组A x =b 的系数矩阵的秩为r , η1, η2, ⋅ ⋅ ⋅, ηn -r +1是它的n -r +1个线性无关的解. 试证它的任一解可表示为

x =k 1η1+k 2η2+ ⋅ ⋅ ⋅ +k n -r +1ηn -r +1, (其中k 1+k 2+ ⋅ ⋅ ⋅ +k n -r +1=1).

证明 因为η1, η2, ⋅ ⋅ ⋅, ηn -r +1均为A x =b 的解, 所以ξ1=η2-η1, ξ2=η3-η1, ⋅ ⋅ ⋅, ξn -r =η

n -r +1-1均为

η

A x =b 的解.

用反证法证: ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 线性无关.

设它们线性相关, 则存在不全为零的数λ1, λ2, ⋅ ⋅ ⋅, λn -r , 使得 λ1ξ1+ λ2ξ2+ ⋅ ⋅ ⋅ + λ n-r ξ n-r =0,

即 λ1(η2-η1) + λ2(η3-η1) + ⋅ ⋅ ⋅ + λ n-r (ηn -r +1-η1) =0, 亦即 -(λ1+λ2+ ⋅ ⋅ ⋅ +λn -r ) η1+λ1η2+λ2η3+ ⋅ ⋅ ⋅ +λ n-r ηn -r +1=0, 由η1, η2, ⋅ ⋅ ⋅, ηn -r +1线性无关知

-(λ1+λ2+ ⋅ ⋅ ⋅ +λn -r ) =λ1=λ2= ⋅ ⋅ ⋅ =λn -r =0,

矛盾. 因此ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 线性无关. ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 为A x =b 的一个基础解系.

设x 为A x =b 的任意解, 则x -η1为A x =0的解, 故x -η1可由ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 线性表出, 设 x -η1=k 2ξ1+k 3ξ2+ ⋅ ⋅ ⋅ +k n -r +1ξn -r

=k 2(η2-η1) +k 3(η3-η1) + ⋅ ⋅ ⋅ +k n -r +1(ηn -r +1-η1) , x =η1(1-k 2-k 3 ⋅ ⋅ ⋅ -k n -r +1) +k 2η2+k 3η3+ ⋅ ⋅ ⋅ +k n-r +1ηn -r +1. 令k 1=1-k 2-k 3 ⋅ ⋅ ⋅ -k n -r +1, 则k 1+k 2+k 3 ⋅ ⋅ ⋅ -k n -r +1=1, 于是 x =k 1η1+k 2η2+ ⋅ ⋅ ⋅ +k n -r +1ηn -r +1.

36. 设

V 1={x =(x 1, x 2, ⋅ ⋅ ⋅, x n ) T | x 1, ⋅ ⋅ ⋅, x n ∈R 满足x 1+x 2+ ⋅ ⋅ ⋅ +x n =0}, V 2={x =(x 1, x 2, ⋅ ⋅ ⋅, x n ) | x 1, ⋅ ⋅ ⋅, x n ∈R 满足x 1+x 2+ ⋅ ⋅ ⋅ +x n =1},

问V 1, V 2是不是向量空间?为什么? 解 V 1是向量空间, 因为任取

α=(a 1, a 2, ⋅ ⋅ ⋅, a n ) T ∈V 1, β=(b 1, b 2, ⋅ ⋅ ⋅, b n ) T ∈V 1, λ∈∈R , 有 a 1+a 2+ ⋅ ⋅ ⋅ +a n =0, b 1+b 2+ ⋅ ⋅ ⋅ +b n =0,

从而 (a 1+b 1) +(a 2+b 2) + ⋅ ⋅ ⋅ +(a n +b n ) =(a 1+a 2+ ⋅ ⋅ ⋅ +a n ) +(b 1+b 2+ ⋅ ⋅ ⋅ +b n ) =0, λa 1+λa 2+ ⋅ ⋅ ⋅ +λa n =λ(a 1+a 2+ ⋅ ⋅ ⋅ +a n ) =0, 所以 α+β=(a 1+b 1, a 2+b 2, ⋅ ⋅ ⋅, a n +b n ) T ∈V 1, λα=(λa 1, λa 2, ⋅ ⋅ ⋅, λa n ) T ∈V 1. V 2不是向量空间, 因为任取

α=(a 1, a 2, ⋅ ⋅ ⋅, a n ) T ∈V 1, β=(b 1, b 2, ⋅ ⋅ ⋅, b n ) T ∈V 1, 有 a 1+a 2+ ⋅ ⋅ ⋅ +a n =1, b 1+b 2+ ⋅ ⋅ ⋅ +b n =1,

从而 (a 1+b 1) +(a 2+b 2) + ⋅ ⋅ ⋅ +(a n +b n ) =(a 1+a 2+ ⋅ ⋅ ⋅ +a n ) +(b 1+b 2+ ⋅ ⋅ ⋅ +b n ) =2,

T

所以 α+β=(a 1+b 1, a 2+b 2, ⋅ ⋅ ⋅, a n +b n ) T ∉V 1.

37. 试证: 由a 1=(0, 1, 1), a 2=(1, 0, 1), a3=(1, 1, 0)所生成的向量空间就是R . 证明 设A =(a 1, a2, a 3) , 由

T

T

T

3

011

|A |=101=-2≠0,

110

知R (A ) =3, 故a 1, a2, a 3线性无关, 所以a 1, a2, a 3是三维空间R 3的一组基, 因此由a 1, a2, a 3所生成的向量空间就是R .

38. 由a 1=(1, 1, 0, 0) T , a 2=(1, 0, 1, 1) T 所生成的向量空间记作V 1, 由b 1=(2, -1, 3, 3) T , b 2=(0, 1, -1, -1) 所生成的向量空间记作V 2, 试证V 1=V 2. 证明 设A =(a 1, a2) , B =(b 1, b2) . 显然R (A ) =R (B ) =2, 又由

T

3

⎛1 1

(A , B ) =

0 0⎝

10112-133

0⎫⎛11⎪r 0 ~ -1⎪ 0

0-1⎪⎭⎝

1

-1002-300

0⎫1⎪, 0⎪0⎪⎭

知R (A , B ) =2, 所以R (A ) =R (B ) =R (A , B ) , 从而向量组a 1, a2与向量组b 1, b2等价. 因为向量组a 1, a2与向量组b 1, b2等价, 所以这两个向量组所生成的向量空间相同, 即V 1=V 2.

39. 验证a 1=(1, -1, 0) T , a 2=(2, 1, 3) T , a 3=(3, 1, 2) T 为R 3的一个基, 并把v 1=(5, 0, 7) T , v 2=(-9, -8, -13) T 用这个基线性表示. 解 设A =(a 1, a2, a3) . 由

123

|(a 1, a 2, a 3) |=-111=-6≠0,

032

知R (A ) =3, 故a 1, a2, a3线性无关, 所以a 1, a2, a3为R 的一个基. 设x 1a 1+x 2a 2+x 3a 3=v 1, 则

3

x +2x 2+3x 3=5⎧⎪1

⎨-x 1+x 2+x 3=0, ⎪⎩3x 2+2x 3=7

解之得x 1=2, x 2=3, x 3=-1, 故线性表示为v 1=2a 1+3a 2-a 3. 设x 1a 1+x 2a 2+x 3a 3=v 2, 则

x +2x 2+3x 3=-9⎧⎪1

⎨-x 1+x 2+x 3=-8, ⎪⎩3x 2+2x 3=-13

解之得x 1=3, x 2=-3, x 3=-2, 故线性表示为v 2=3a 1-3a 2-2a 3.

40. 已知R 的两个基为

a 1=(1, 1, 1), a 2=(1, 0, -1) , a 3=(1, 0, 1), b 1=(1, 2, 1)T , b 2=(2, 3, 4)T , b 3=(3, 4, 3)T . 求由基a 1, a 2, a 3到基b 1, b 2, b 3的过渡矩阵P . 解 设e 1, e 2, e 3是三维单位坐标向量组, 则

T

T

T

3

⎛111⎫

(a 1, a 2, a 3) =(e 1, e 2, e 3) 100⎪,

1-11⎪⎝⎭

⎛111⎫

(e 1, e 2, e 3) =(a 1, a 2, a 3) 100⎪,

1-11⎪⎝⎭⎛123⎫

于是 (b 1, b 2, b 3) =(e 1, e 2, e 3) 234⎪

143⎪⎝⎭

-1

⎛111⎫⎛123⎫

=(a 1, a 2, a 3) 100⎪ 234⎪,

1-11⎪ 143⎪⎝⎭⎝⎭

由基a 1, a 2, a 3到基b 1, b 2, b 3的过渡矩阵为

-1

⎛111⎫⎛123⎫⎛234⎫

P = 100⎪ 234⎪= 0-10⎪. 1-11⎪ 143⎪ -10-1⎪⎝⎭⎝⎭⎝⎭

-1

第四章 向量组的线性相关性

1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3. 解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T

T

=(1-0, 1-1, 0-1)

T

=(1, 0, -1) .

3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3⨯1+2⨯0-3, 3⨯1+2⨯1-4, 3⨯0+2⨯1-0) T =(0, 1, 2).

2. 设3(a 1-a ) +2(a 2+a ) =5(a 3+a ) , 求a , 其中a 1=(2, 5, 1, 3)T , a 2=(10, 1, 5, 10), a 3=(4, 1, -1, 1). 解 由3(a 1-a ) +2(a 2+a ) =5(a 3+a ) 整理得 a =

T

T T

1

(3a 1+2a 2-5a 3) 6

1

3(2, 5, 1, 3) T +2(10, 1, 5, 10) T -5(4, 1, -1, 1) T ] 6

=

=(1, 2, 3, 4)T . 3. 已知向量组

A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a3=(2, 3, 0, 1)T ; B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由

⎛0 1

(A , B ) =

2 3⎝⎛1r 0

~

0 0⎝

30122301

204⎫1-24⎪111⎪213⎪⎭⎛1

0~ 0 0⎝

r 031-24⎫32204⎪

1-6-15-7⎪2-8-17-9⎪⎭

031-24⎫

1-6-15-7⎪

041-35⎪00000⎪⎭

031-24⎫

1-6-15-7⎪0205-1525⎪041-35⎪⎭⎛1

r ~ 0

0 0⎝

知R (A ) =R (A , B ) =3, 所以B 组能由A 组线性表示.

⎛204⎫⎛102⎫⎛1 1-24⎪r 0-22⎪r 0

B = ~~111⎪ 01-1⎪ 0

213⎪ 01-1⎪ 0⎝⎭⎝⎭⎝

4. 已知向量组

A : a 1=(0, 1, 1), a 2=(1, 1, 0);

T

T

02⎫

1-1⎪

00⎪00⎪⎭

知R (B ) =2. 因为R (B ) ≠R (B , A ) , 所以A 组不能由B 组线性表示.

B : b 1=(-1, 0, 1), b 2=(1, 2, 1), b3=(3, 2, -1) , 证明A 组与B 组等价. 证明 由

T T T

⎛-11301⎫r ⎛-11301⎫r ⎛-11301⎫

(B , A ) = 02211⎪~ 02211⎪~ 02211⎪,

11-110⎪ 02211⎪ 00000⎪⎝⎭⎝⎭⎝⎭

知R (B ) =R (B , A ) =2. 显然在A 中有二阶非零子式, 故R (A ) ≥2, 又R (A ) ≤R (B , A ) =2, 所以R (A ) =2, 从而R (A ) =R (B ) =R (A , B ) . 因此A 组与B 组等价.

5. 已知R (a 1, a 2, a 3) =2, R (a 2, a 3, a 4) =3, 证明 (1) a1能由a 2, a 3线性表示; (2) a4不能由a 1, a 2, a 3线性表示.

证明 (1)由R (a 2, a 3, a 4) =3知a 2, a 3, a 4线性无关, 故a 2, a 3也线性无关. 又由R (a 1, a 2, a 3) =2知a 1, a 2, a 3线性相关, 故a 1能由a 2, a 3线性表示.

(2)假如a 4能由a 1, a 2, a 3线性表示, 则因为a 1能由a 2, a 3线性表示, 故a 4能由a 2, a 3线性表示, 从而a 2, a 3, a 4线性相关, 矛盾. 因此a 4不能由a 1, a 2, a 3线性表示.

6. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .

解 (1)以所给向量为列向量的矩阵记为A . 因为

⎛-121⎫r ⎛-121⎫r ⎛-121⎫

A = 314⎪~ 077⎪~ 011⎪,

101⎪ 022⎪ 000⎪⎝⎭⎝⎭⎝⎭

所以R (A ) =2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为

2-10

|B |=340=22≠0,

002

所以R (B ) =3等于向量的个数, 从而所给向量组线性相无关.

7. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1, a , -1) T , a3=(1, -1, a ) T . 解 以所给向量为列向量的矩阵记为A . 由

a 11

|A |=1a -1=a (a -1)(a +1)

1-1a

知, 当a =-1、0、1时, R (A )

8. 设a 1, a 2线性无关, a 1+b , a 2+b 线性相关, 求向量b 用a 1, a 2线性表示的表示式. 解 因为a 1+b , a 2+b 线性相关, 故存在不全为零的数λ1, λ2使 λ1(a 1+b ) +λ2(a 2+b ) =0, 由此得 b =-

λλλλa 1-a 2=-a 1-(1-a 2,

λ1+λ2λ1+λ2λ1+λ2λ1+λ2

, 则

设c =-

λ1λ1+λ2

b =c a 1-(1+c ) a 2, c ∈R .

9. 设a 1, a 2线性相关, b 1, b 2也线性相关, 问a 1+b 1, a 2+b 2是否一定线性相关?试举例说明之.

解 不一定.

例如, 当a 1=(1, 2)T , a 2=(2, 4)T , b 1=(-1, -1) T , b 2=(0, 0)T 时, 有 a 1+b 1=(1, 2)T +b 1=(0, 1)T , a 2+b 2=(2, 4)T +(0, 0)T =(2, 4)T , 而a 1+b 1, a 2+b 2的对应分量不成比例, 是线性无关的.

10. 举例说明下列各命题是错误的:

(1)若向量组a 1, a 2, ⋅ ⋅ ⋅, a m 是线性相关的, 则a 1可由a 2, ⋅ ⋅ ⋅, a m 线性表示.

解 设a 1=e 1=(1, 0, 0, ⋅ ⋅ ⋅, 0), a 2=a 3= ⋅ ⋅ ⋅ =a m =0, 则a 1, a 2, ⋅ ⋅ ⋅, a m 线性相关, 但a 1不能由a 2, ⋅ ⋅ ⋅, a m 线性表示.

(2)若有不全为0的数λ1, λ2, ⋅ ⋅ ⋅, λm 使

λ1a 1+ ⋅ ⋅ ⋅ +λm a m +λ1b 1+ ⋅ ⋅ ⋅ +λm b m =0

成立, 则a 1, a 2, ⋅ ⋅ ⋅, a m 线性相关, b 1, b 2, ⋅ ⋅ ⋅, b m 亦线性相关. 解 有不全为零的数λ1, λ2, ⋅ ⋅ ⋅, λm 使

λ1a 1+ ⋅ ⋅ ⋅ +λm a m +λ1b 1+ ⋅ ⋅ ⋅ +λm b m =0,

原式可化为

λ1(a 1+b 1) + ⋅ ⋅ ⋅ +λm (a m +b m ) =0.

取a 1=e 1=-b 1, a 2=e 2=-b 2, ⋅ ⋅ ⋅, a m =e m =-b m , 其中e 1, e 2, ⋅ ⋅ ⋅, e m 为单位坐标向量, 则上式成立, 而a 1, a 2, ⋅ ⋅ ⋅, a m 和b 1, b 2, ⋅ ⋅ ⋅, b m 均线性无关.

(3)若只有当λ1, λ2, ⋅ ⋅ ⋅, λm 全为0时, 等式

λ1a 1+ ⋅ ⋅ ⋅ +λm a m +λ1b 1+ ⋅ ⋅ ⋅ +λm b m =0

才能成立, 则a 1, a 2, ⋅ ⋅ ⋅, a m 线性无关, b 1, b 2, ⋅ ⋅ ⋅, b m 亦线性无关. 解 由于只有当λ1, λ2, ⋅ ⋅ ⋅, λm 全为0时, 等式

由λ1a 1+ ⋅ ⋅ ⋅ +λm a m +λ1b 1+ ⋅ ⋅ ⋅ +λm b m =0

成立, 所以只有当λ1, λ2, ⋅ ⋅ ⋅, λm 全为0时, 等式

λ1(a 1+b 1) +λ2(a 2+b 2) + ⋅ ⋅ ⋅ +λm (a m +b m ) =0

成立. 因此a 1+b 1, a 2+b 2, ⋅ ⋅ ⋅, a m +b m 线性无关.

取a 1=a 2= ⋅ ⋅ ⋅ =a m =0, 取b 1, ⋅ ⋅ ⋅, b m 为线性无关组, 则它们满足以上条件, 但a 1, a 2, ⋅ ⋅ ⋅, a m 线性相关.

(4)若a 1, a 2, ⋅ ⋅ ⋅, a m 线性相关, b 1, b 2, ⋅ ⋅ ⋅, b m 亦线性相关, 则有不全为0的数, λ1, λ2, ⋅ ⋅ ⋅,

λm 使

λ1a 1+ ⋅ ⋅ ⋅ +λm a m =0, λ1b 1+ ⋅ ⋅ ⋅ +λm b m =0

同时成立.

解 a 1=(1, 0), a 2=(2, 0), b 1=(0, 3), b 2=(0, 4),

T

T

T

T

λ1a 1+λ2a 2 =0⇒λ1=-2λ2, λ1b 1+λ2b 2 =0⇒λ1=-(3/4)λ2,

⇒λ1=λ2=0, 与题设矛盾.

11. 设b 1=a 1+a 2, b 2=a 2+a 3, b3=a 3+a 4, b4=a 4+a 1, 证明向量组b 1, b 2, b 3, b 4线性相关. 证明 由已知条件得

a 1=b 1-a 2, a 2=b 2-a 3, a3=b 3-a 4, a4=b 4-a 1, 于是 a 1 =b 1-b 2+a 3

=b 1-b 2+b 3-a 4

=b 1-b 2+b 3-b 4+a 1, 从而 b 1-b 2+b 3-b 4=0,

这说明向量组b 1, b 2, b 3, b 4线性相关.

12. 设b 1=a 1, b 2=a 1+a 2, ⋅ ⋅ ⋅, b r =a 1+a 2+ ⋅ ⋅ ⋅ +a r , 且向量组a 1, a 2, ⋅ ⋅ ⋅ , a r 线性无关, 证明向量组b 1, b 2, ⋅ ⋅ ⋅ , b r 线性无关. 证明 已知的r 个等式可以写成

⎛1 0

(b 1, b 2, ⋅ ⋅ ⋅ , b r ) =(a 1, a 2, ⋅ ⋅ ⋅ , a r )

⋅⋅⋅ 0⎝

关.

13. 求下列向量组的秩, 并求一个最大无关组:

11⋅⋅⋅0⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

1⎫1⎪, ⋅⋅⋅⎪1⎪⎭

上式记为B =AK . 因为|K |=1≠0, K 可逆, 所以R (B ) =R (A ) =r , 从而向量组b 1, b 2, ⋅ ⋅ ⋅ , b r 线性无

(1)a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a3=(-2, -4, 2, -8) T ; 解 由

9-2⎫⎛19-2⎫⎛1⎛1

r 2100-4⎪ 0820⎪r 0

(a 1, a 2, a 3) = ~~-1102⎪ 0190⎪ 0

4⎪ 0-320⎪ 04-8⎝⎭⎝⎭⎝

最大无关组.

(2)a 1T =(1, 2, 1, 3), a 2T =(4, -1, -5, -6) , a3T =(1, -3, -4, -7) . 解 由

9-2⎫

10⎪

,

00⎪00⎪⎭

知R (a 1, a 2, a3) =2. 因为向量a 1与a 2的分量不成比例, 故a 1, a 2线性无关, 所以a 1, a 2是一个

41⎫⎛141⎫⎛141⎫⎛1

2-1-3⎪r 0-9-5⎪r 0-9-5⎪

, (a 1, a 2, a 3) = ~~1-5-4⎪ 0-9-5⎪ 000⎪

3-6-7⎪ 0-18-10⎪ 000⎪⎝⎭⎝⎭⎝⎭

知R (a 1T , a 2T , a3T ) =R (a 1, a 2, a3) =2. 因为向量a 1T 与a 2T 的分量不成比例, 故a 1T , a 2T 线性无关, 所以a 1, a 2是一个最大无关组.

14. 利用初等行变换求下列矩阵的列向量组的一个最大无关组:

T

T

⎛25

75 (1)

75 25⎝

[***********]13213448

⎫⎪⎪; ⎪⎭

解 因为

⎛25 75 75 25⎝⎛1 0 (2)

2 1⎝

⎛1 0 2 1⎝

[***********]13213448

⎫⎪⎪⎪⎭

r 2-3r 1r 3-3r 1r 4-r 1

~

⎛25 0 0 0⎝

31111

1743⎫23⎪35⎪35⎪⎭

r 4-r 3r 3-r 2

~

⎛25

0 0 0⎝

31100

1743⎫23⎪

,

13⎪00⎪⎭

所以第1、2、3列构成一个最大无关组.

1

201213025-14

1⎫-1⎪

. 3⎪-1⎪⎭

⎛1

0 0 0⎝

12-20

21-1-2

25-52

1⎫-1⎪1⎪-2⎪⎭

⎛1

0 0 0⎝

120021-20

25201⎫-1⎪

, -2⎪0⎪⎭

解 因为

1

201213025-14

1⎫-1⎪3⎪-1⎪⎭

r 3-2r 1r 4-r 1

~

r 3+r 2r 3r 4

~

所以第1、2、3列构成一个最大无关组.

15. 设向量组

(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T

的秩为2, 求a , b .

解 设a 1=(a , 3, 1), a 2=(2, b , 3), a3=(1, 2, 1), a 4=(2, 3, 1). 因为

T

T

T

T

13⎫r ⎛1113⎫⎛12a 2⎫r ⎛11

(a 3, a 4, a 1, a 2) = 233b ⎪~ 01a -1-1⎪~ 01a -1-1⎪,

1113⎪ 01⎪ 002-a b -5⎪1b -6⎝⎭⎝⎭⎝⎭

而R (a 1, a 2, a 3, a 4) =2, 所以a =2, b =5.

16. 设a 1, a 2, ⋅ ⋅ ⋅, a n 是一组n 维向量, 已知n 维单位坐标向量e 1, e 2,⋅ ⋅ ⋅, e n 能由它们线性表示, 证明a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关.

证法一 记A =(a 1, a 2, ⋅ ⋅ ⋅, a n ) , E =(e 1, e 2,⋅ ⋅ ⋅, e n ) . 由已知条件知, 存在矩阵K , 使

E =AK .

两边取行列式, 得

|E |=|A ||K |.

可见|A |≠0, 所以R (A ) =n , 从而a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关.

证法二 因为e 1, e 2,⋅ ⋅ ⋅, e n 能由a 1, a 2, ⋅ ⋅ ⋅, a n 线性表示, 所以

R (e 1, e 2,⋅ ⋅ ⋅, e n ) ≤R (a 1, a 2, ⋅ ⋅ ⋅, a n ) ,

而R (e 1, e 2,⋅ ⋅ ⋅, e n ) =n , R (a 1, a 2, ⋅ ⋅ ⋅, a n ) ≤n , 所以R (a 1, a 2, ⋅ ⋅ ⋅, a n ) =n , 从而a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关.

17. 设a 1, a 2, ⋅ ⋅ ⋅, a n 是一组n 维向量, 证明它们线性无关的充分必要条件是: 任一n 维向量都可由它们线性表示.

证明 必要性: 设a 为任一n 维向量. 因为a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关, 而a 1, a 2, ⋅ ⋅ ⋅, a n , a 是n +1个n 维向量, 是线性相关的, 所以a 能由a 1, a 2, ⋅ ⋅ ⋅, a n 线性表示, 且表示式是唯一的.

充分性: 已知任一n 维向量都可由a 1, a 2, ⋅ ⋅ ⋅, a n 线性表示, 故单位坐标向量组e 1, e 2, ⋅ ⋅ ⋅, e n 能由a 1, a 2, ⋅ ⋅ ⋅, a n 线性表示, 于是有

n =R (e 1, e 2, ⋅ ⋅ ⋅, e n ) ≤R (a 1, a 2, ⋅ ⋅ ⋅, a n ) ≤n ,

即R (a 1, a 2, ⋅ ⋅ ⋅, a n ) =n , 所以a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关.

18. 设向量组a 1, a 2, ⋅ ⋅ ⋅, a m 线性相关, 且a 1≠0, 证明存在某个向量a k (2≤k ≤m ) , 使a k 能由a 1, a 2, ⋅ ⋅ ⋅, a k -1线性表示.

证明 因为a 1, a 2, ⋅ ⋅ ⋅, a m 线性相关, 所以存在不全为零的数λ1, λ2, ⋅ ⋅ ⋅, λm , 使

λ1a 1+λ2a 2+ ⋅ ⋅ ⋅ +λm a m =0,

而且λ2, λ3,⋅ ⋅ ⋅, λm 不全为零. 这是因为, 如若不然, 则λ1a 1=0, 由a 1≠0知λ1=0, 矛盾. 因此存在k (2≤k ≤m ) , 使

λk ≠0, λk +1=λk +2= ⋅ ⋅ ⋅ =λm =0,

于是

λ1a 1+λ2a 2+ ⋅ ⋅ ⋅ +λk a k =0,

a k =-(1/λk )(λ1a 1+λ2a 2+ ⋅ ⋅ ⋅ +λk -1a k -1) ,

即a k 能由a 1, a 2, ⋅ ⋅ ⋅, a k -1线性表示.

19. 设向量组B : b 1, ⋅ ⋅ ⋅, b r 能由向量组A : a 1, ⋅ ⋅ ⋅, a s 线性表示为

(b 1, ⋅ ⋅ ⋅, b r ) =(a 1, ⋅ ⋅ ⋅, a s ) K , 其中K 为s ⨯r 矩阵, 且A 组线性无关. 证明B 组线性无关的充分必要条件是矩阵K 的秩R (K ) =r .

证明 令B =(b 1, ⋅ ⋅ ⋅, b r ) , A =(a 1, ⋅ ⋅ ⋅, a s ) , 则有B =AK . 必要性: 设向量组B 线性无关.

由向量组B 线性无关及矩阵秩的性质, 有 r =R (B ) =R (AK ) ≤min{R (A ) , R (K )}≤R (K ) , 及 R (K ) ≤min{r , s }≤r . 因此R (K ) =r .

充分性: 因为R (K ) =r , 所以存在可逆矩阵C , 使KC (b 1, ⋅ ⋅ ⋅, b r ) C =( a1, ⋅ ⋅ ⋅, a s ) KC =(a 1, ⋅ ⋅ ⋅, a r ) .

因为C 可逆, 所以R (b 1, ⋅ ⋅ ⋅, b r ) =R (a 1, ⋅ ⋅ ⋅, a r ) =r , 从而b 1, ⋅ ⋅ ⋅, b r 线性无关.

20. 设

⎛E ⎫

= r ⎪为K 的标准形. 于是 ⎝O ⎭

⎧β1= α2+α3+ ⋅ ⋅ ⋅ +αn ⎪β2=α1 +α3+ ⋅ ⋅ ⋅ +αn

⎨ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , ⎪

⎩βn =α1+α2+α3+ ⋅ ⋅ ⋅ +αn -1

证明向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 等价. 证明 将已知关系写成

⎛0 1

(β1, β2, ⋅ ⋅ ⋅ , βn ) =(α1, α2, ⋅ ⋅ ⋅ , αn ) 1

⋅⋅⋅ ⎝1

将上式记为B =AK . 因为

101⋅⋅⋅1110⋅⋅⋅1⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

1⎫1⎪1⎪, ⋅⋅⋅⎪⎪0⎭

01|K |=1

⋅⋅⋅1101⋅⋅⋅1110⋅⋅⋅1⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅11

1=(-1) n -1(n -1) ≠0, ⋅⋅⋅0

所以K 可逆, 故有A =BK -1. 由B =AK 和A =BK -1可知向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 可相互线性表示. 因此向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 等价.

21. 已知3阶矩阵A 与3维列向量x 满足A 3x =3A x -A 2x , 且向量组x , A x , A 2x 线性无关.

(1)记P =(x , A x , A 2x ) , 求3阶矩阵B , 使AP =PB ; 解 因为

AP =A (x , A x , A 2x ) =(A x , A 2x , A 3x ) =(A x , A 2x , 3A x -A 2x )

⎛000⎫

=(x , A x , A x ) 103⎪,

01-1⎪⎝⎭

2

⎛000⎫

所以B = 103⎪.

01-1⎪⎝⎭

(2)求|A |.

解 由A 3x =3A x -A 2x , 得A (3x -A x -A 2x ) =0. 因为x , A x , A 2x 线性无关, 故3x -A x -A 2x ≠0, 即方程A x =0有非零解, 所以R (A )

x -8x 2+10x 3+2x 4=0⎧⎪1

(1)⎨2x 1+4x 2+5x 3-x 4=0;

⎪⎩3x 1+8x 2+6x 3-2x 4=0

解 对系数矩阵进行初等行变换, 有

40⎫⎛1-8102⎫r ⎛10

A = 245-1⎪ ~ 01-3/4-1/4⎪,

386-2⎪ 00⎪00⎝⎭⎝⎭

于是得

⎧x 1=-4x 3

⎨x =(3/4) x +(1/4) x . ⎩234

T

T

T

T

取(x 3, x 4) =(4, 0), 得(x 1, x 2) =(-16, 3); 取(x 3, x 4) T =(0, 4)T , 得(x 1, x 2) T =(0, 1)T . 因此方程组的基础解系为

ξ1=(-16, 3, 4, 0), ξ2=(0, 1, 0, 4).

T

T

2x -3x 2-2x 3+x 4=0⎧⎪1

(2)⎨3x 1+5x 2+4x 3-2x 4=0.

⎪⎩8x 1+7x 2+6x 3-3x 4=0

解 对系数矩阵进行初等行变换, 有

⎛2-3-21⎫r ⎛102/19-1/19⎫

4-2⎪ ~ 0114/19-7/19⎪, A = 35

876-3⎪ 0000⎪⎝⎭⎝⎭

于是得

⎧x 1=-(2/19) x 3+(1/19) x 4

⎨x =-(14/19) x +(7/19) x . ⎩234

取(x 3, x 4) T =(19, 0)T , 得(x 1, x 2) T =(-2, 14)T ; 取(x 3, x 4) T =(0, 19)T , 得(x 1, x 2) T =(1, 7)T . 因此方程组的基础解系为

ξ1=(-2, 14, 19, 0)T , ξ2=(1, 7, 0, 19)T .

(3)nx 1 +(n -1) x 2+ ⋅ ⋅ ⋅ +2x n -1+x n =0. 解 原方程组即为

x n =-nx 1-(n -1) x 2- ⋅ ⋅ ⋅ -2x n -1.

取x 1=1, x 2=x 3= ⋅ ⋅ ⋅ =x n -1=0, 得x n =-n ;

取x 2=1, x 1=x 3=x 4= ⋅ ⋅ ⋅ =x n -1=0, 得x n =-(n -1) =-n +1; ⋅ ⋅ ⋅ ;

取x n -1=1, x 1=x 2= ⋅ ⋅ ⋅ =x n -2=0, 得x n =-2. 因此方程组的基础解系为 ξ1=(1, 0, 0, ⋅ ⋅ ⋅, 0, -n ) T , ξ2=(0, 1, 0, ⋅ ⋅ ⋅, 0, -n +1) T , ⋅ ⋅ ⋅,

ξn -1=(0, 0, 0, ⋅ ⋅ ⋅, 1, -2) T .

23. 设A = R (B ) =2.

解 显然B 的两个列向量应是方程组AB =0的两个线性无关的解. 因为 A =

r

⎛2-213⎫, 求一个4⨯2矩阵B , 使AB =0, 且

9-528⎝⎭

1/8⎫⎛2-213⎫ ~ ⎛10-1/8

⎪ 01-5/8-11/8⎪,

9-528⎝⎭⎝⎭

所以与方程组AB =0同解方程组为

⎧x 1=(1/8) x 3-(1/8) x 4

⎨x =(5/8) x +(11/8) x . ⎩234

取(x 3, x 4) T =(8, 0)T , 得(x 1, x 2) T =(1, 5)T ; 取(x 3, x 4) T =(0, 8)T , 得(x 1, x 2) T =(-1, 11)T . 方程组AB =0的基础解系为

ξ1=(1, 5, 8, 0)T , ξ2=(-1, 11, 0, 8)T .

⎛1

5

因此所求矩阵为B =

8 0⎝

-1⎫11⎪

. 0⎪8⎪⎭

24. 求一个齐次线性方程组, 使它的基础解系为

ξ1=(0, 1, 2, 3)T , ξ2=(3, 2, 1, 0)T .

解 显然原方程组的通解为

⎛x 1⎫⎧x 1=3k 2⎛0⎫⎛3⎫ x ⎪ 1⎪ 2⎪⎪x 2=k 1+2k 2

2

, 即=k +k ⎪1 ⎪2 ⎪⎨x =2k +k , (k 1, k 2∈R ) ,

21x 312

⎪⎪3 3⎪ 0⎪

⎝⎭⎝⎭⎩x 4=3k 1⎝x 4⎭

消去k 1, k 2得

⎧2x 1-3x 2+x 4=0

⎨x -3x +2x =0, ⎩134

此即所求的齐次线性方程组.

25. 设四元齐次线性方程组 I :

⎧x 1+x 2=0

⎨x -x =0 , II: ⎩24⎧x 1-x 2+x 3=0

⎨x -x +x =0. ⎩234

求: (1)方程I 与II 的基础解系; (2) I与II 的公共解. 解 (1)由方程I 得⎨

⎧x 1=-x 4

.

x =x ⎩24

取(x 3, x 4) T =(1, 0)T , 得(x 1, x 2) T =(0, 0)T ; 取(x 3, x 4) T =(0, 1)T , 得(x 1, x 2) T =(-1, 1)T . 因此方程I 的基础解系为

ξ1=(0, 0, 1, 0)T , ξ2=(-1, 1, 0, 1)T . 由方程II 得⎨

⎧x 1=-x 4

.

x =x -x ⎩234

T

T

T

取(x 3, x 4) T =(1, 0)T , 得(x 1, x 2) T =(0, 1)T ; 取(x 3, x 4) =(0, 1), 得(x 1, x 2) =(-1, -1) . 因此方程II 的基础解系为

ξ1=(0, 1, 1, 0)T , ξ2=(-1, -1, 0, 1)T . (2) I与II 的公共解就是方程

T

⎧x 1+x 2=0⎪x -x 4=0

III : ⎨2

x 1-x 2+x 3=0⎪

⎩x 2-x 3+x 4=0

的解. 因为方程组III 的系数矩阵

⎛1100⎫⎛1 010-1⎪r 0

A = ~

1-110⎪ 0 01-11⎪ 0⎝⎭⎝

所以与方程组III 同解的方程组为

100

01⎫0-1⎪

,

1-2⎪00⎪⎭

x =-x 4⎧⎪1

⎨x 2=x 4.

⎪⎩x 3=2x 4

取x 4=1, 得(x 1, x 2, x 3) =(-1, 1, 2), 方程组III 的基础解系为 ξ=(-1, 1, 2, 1)T .

因此I 与II 的公共解为x =c (-1, 1, 2, 1)T , c ∈R .

26. 设n 阶矩阵A 满足A =A , E 为n 阶单位矩阵, 证明

R (A ) +R (A -E ) =n .

证明 因为A (A -E ) =A 2-A =A -A =0, 所以R (A ) +R (A -E ) ≤n . 又R (A -E ) =R (E -A ) , 可知

R (A ) +R (A -E ) =R (A ) +R (E -A ) ≥R (A +E -A ) =R (E ) =n ,

由此R (A ) +R (A -E ) =n .

27. 设A 为n 阶矩阵(n ≥2) , A *为A 的伴随阵, 证明

2T

T

⎧n 当R (A ) =n

R (A *)=⎨1 当R (A ) =n -1.

⎪⎩0 当R (A ) ≤n -2

证明 当R (A ) =n 时, |A |≠0, 故有 |AA *|=||A |E |=|A |≠0, |A *|≠0, 所以R (A *)=n .

当R (A ) =n -1时, |A |=0, 故有 AA *=|A |E =0,

即A *的列向量都是方程组A x =0的解. 因为R (A ) =n -1, 所以方程组A x =0的基础解系中只含一个解向量, 即基础解系的秩为1. 因此R (A *)=1.

当R (A ) ≤n -2时, A 中每个元素的代数余子式都为0, 故A *=O , 从而R (A *)=0. 28. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:

x +x 2=5⎧⎪1

(1)⎨2x 1+x 2+x 3+2x 4=1;

⎪⎩5x 1+3x 2+2x 3+2x 4=3

解 对增广矩阵进行初等行变换, 有

⎛11005⎫r ⎛1010-8⎫

B = 21121⎪ ~ 01-1013⎪.

53223⎪ 00012⎪⎝⎭⎝⎭

与所给方程组同解的方程为

x =-x 3-8⎧⎪1

⎨x 2= x 3+13. ⎪⎩x 4= 2

当x 3=0时, 得所给方程组的一个解η=(-8, 13, 0, 2). 与对应的齐次方程组同解的方程为

T

x =-x 3⎧⎪1

⎨x 2= x 3. ⎪⎩x 4=0

当x 3=1时, 得对应的齐次方程组的基础解系ξ=(-1, 1, 1, 0).

T

x -5x 2+2x 3-3x 4=11⎧⎪1

(2)⎨5x 1+3x 2+6x 3-x 4=-1.

⎪⎩2x 1+4x 2+2x 3+x 4=-6

解 对增广矩阵进行初等行变换, 有

⎛1-52-311⎫r ⎛109/7-1/21⎫ B = 536-1-1⎪ ~ 01-1/71/2-2⎪.

2421-6⎪ 000⎪00⎝⎭⎝⎭

与所给方程组同解的方程为

⎧x 1=-(9/7) x 3+(1/2) x 4+1⎨x =(1/7)x -(1/2) x -2. ⎩234

当x 3=x 4=0时, 得所给方程组的一个解

η=(1, -2, 0, 0)T .

与对应的齐次方程组同解的方程为

⎧x 1=-(9/7) x 3+(1/2) x 4⎨x =(1/7)x -(1/2) x . ⎩234

分别取(x 3, x 4) =(1, 0), (0, 1), 得对应的齐次方程组的基础解系

T

T

T

ξ1=(-9, 1, 7, 0)T . ξ2=(1, -1, 0, 2)T .

29. 设四元非齐次线性方程组的系数矩阵的秩为3, 已知η1, η2, η3是它的三个解向量. 且

η1=(2, 3, 4, 5)T , η2+η3=(1, 2, 3, 4)T ,

求该方程组的通解.

解 由于方程组中未知数的个数是4, 系数矩阵的秩为3, 所以对应的齐次线性方程组的基础解系含有一个向量, 且由于η1, η2, η3均为方程组的解, 由非齐次线性方程组解的结构性质得

2η1-(η2+η3) =(η1-η2) +(η1-η3) = (3, 4, 5, 6)

为其基础解系向量, 故此方程组的通解:

x =k (3, 4, 5, 6)T +(2, 3, 4, 5)T , (k ∈R ) .

30. 设有向量组A : a 1=(α, 2, 10), a 2=(-2, 1, 5), a3=(-1, 1, 4), 及b =(1, β, -1) , 问α, β为何值时

(1)向量b 不能由向量组A 线性表示;

(2)向量b 能由向量组A 线性表示, 且表示式唯一;

(3)向量b 能由向量组A 线性表示, 且表示式不唯一, 并求一般表示式.

T

T

T

T

T

⎛-1-2α1⎫

12β⎪ 解 (a 3, a 2, a 1, b ) = 1

4510-1⎪⎝⎭1⎫⎛-1-2α

~ 0-11+αβ+1⎪. 004+α-3β⎪⎝⎭

r

(1)当α=-4, β≠0时, R (A ) ≠R (A , b ) , 此时向量b 不能由向量组A 线性表示.

(2)当α≠-4时, R (A ) =R (A , b ) =3, 此时向量组a 1, a 2, a 3线性无关, 而向量组a 1, a 2, a 3, b 线

性相关, 故向量b 能由向量组A 线性表示, 且表示式唯一.

(3)当α=-4, β=0时, R (A ) =R (A , b ) =2, 此时向量b 能由向量组A 线性表示, 且表示式不唯一.

当α=-4, β=0时,

⎛-1-2-41⎫

(a 3, a 2, a 1, b ) = 1120⎪

4510-1⎪⎝⎭

方程组(a 3, a 2, a 1) x =b 的解为

⎛10-21⎫

~ 013-1⎪, 0000⎪⎝⎭

r

⎛x 1⎫⎛2⎫⎛1⎫⎛2c +1⎫

x 2⎪=c -3⎪+ -1⎪= -3c -1⎪, c ∈R .

⎪ 1⎪ 0⎪ c ⎪

⎭⎝⎭⎝⎭⎝x 3⎭⎝

因此 b =(2c +1) a 3+(-3c -1) a 2+c a 1, 即 b = ca 1+(-3c -1) a 2+(2c +1) a 3, c∈R .

31. 设a =(a 1, a 2, a 3) T , b =(b 1, b 2, b 3) T , c=(c 1, c 2, c 3) T , 证明三直线 l 1: a 1x +b 1y +c 1=0,

l 2: a 2x +b 2y +c 2=0, (a i +b i ≠0, i =1, 2, 3) l 3: a 3x +b 3y +c 3=0,

相交于一点的充分必要条件为: 向量组a , b 线性无关, 且向量组a , b , c 线性相关. 证明 三直线相交于一点的充分必要条件为方程组

2

2

a x +b 1y +c 1=0a x +b 1y =-c 1⎧⎧⎪1⎪1

⎨a 2x +b 2y +c 2=0, 即⎨a 2x +b 2y =-c 2 ⎪⎪⎩a 3x +b 3y +c 3=0⎩a 3x +b 3y =-c 3

有唯一解. 上述方程组可写为x a +y b =-c . 因此三直线相交于一点的充分必要条件为c 能由a , b 唯一线性表示, 而c 能由a , b 唯一线性表示的充分必要条件为向量组a , b 线性无关, 且向量组a , b , c 线性相关.

32. 设矩阵A =(a 1, a 2, a 3, a 4) , 其中a 2, a 3, a 4线性无关, a 1=2a 2- a 3. 向量b =a 1+a 2+a 3+a 4, 求方程A x =b 的通解.

解 由b =a 1+a 2+a 3+a 4知η=(1, 1, 1, 1)T 是方程A x =b 的一个解. 由a 1=2a 2- a 3得a 1-2a 2+a 3=0, 知ξ=(1, -2, 1, 0)T 是A x =0的一个解.

由a 2, a 3, a 4线性无关知R (A ) =3, 故方程A x =b 所对应的齐次方程A x =0的基础解系中含

一个解向量. 因此ξ=(1, -2, 1, 0)T 是方程A x =0的基础解系. 方程A x =b 的通解为

x =c (1, -2, 1, 0)T +(1, 1, 1, 1)T , c ∈R .

33. 设η*是非齐次线性方程组A x =b 的一个解, ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r ,是对应的齐次线性方程组的一个基础解系, 证明:

(1)η*, ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 线性无关; (2)η*, η*+ξ1, η*+ξ2, ⋅ ⋅ ⋅, η*+ξn -r 线性无关.

证明 (1)反证法, 假设η*, ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 线性相关. 因为ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 线性无关, 而

η*, ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 线性相关, 所以η*可由ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 线性表示, 且表示式是唯一的, 这说

明η*也是齐次线性方程组的解, 矛盾.

(2)显然向量组η*, η*+ξ1, η*+ξ2, ⋅ ⋅ ⋅, η*+ξn -r 与向量组η*, ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 可以相互表示, 故这两个向量组等价, 而由(1)知向量组η*, ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 线性无关, 所以向量组η*, η*+ξ1,

η*+ξ2, ⋅ ⋅ ⋅, η*+ξn -r 也线性无关.

34. 设η1, η2, ⋅ ⋅ ⋅, ηs 是非齐次线性方程组A x =b 的s 个解, k 1, k 2, ⋅ ⋅ ⋅, k s 为实数, 满足k 1+k 2+ ⋅ ⋅ ⋅ +k s =1. 证明

x =k 1η1+k 2η2+ ⋅ ⋅ ⋅ +k s ηs

也是它的解.

证明 因为η1, η2, ⋅ ⋅ ⋅, ηs 都是方程组A x =b 的解, 所以 A ηi =b (i =1, 2, ⋅ ⋅ ⋅, s ) ,

从而 A (k 1η1+k 2η2+ ⋅ ⋅ ⋅ +k s ηs ) =k 1A η1+k 2A η2+ ⋅ ⋅ ⋅ +k s A ηs =(k 1+k 2+ ⋅ ⋅ ⋅ +k s ) b =b . 因此x =k 1η1+k 2η2+ ⋅ ⋅ ⋅ +k s ηs 也是方程的解.

35. 设非齐次线性方程组A x =b 的系数矩阵的秩为r , η1, η2, ⋅ ⋅ ⋅, ηn -r +1是它的n -r +1个线性无关的解. 试证它的任一解可表示为

x =k 1η1+k 2η2+ ⋅ ⋅ ⋅ +k n -r +1ηn -r +1, (其中k 1+k 2+ ⋅ ⋅ ⋅ +k n -r +1=1).

证明 因为η1, η2, ⋅ ⋅ ⋅, ηn -r +1均为A x =b 的解, 所以ξ1=η2-η1, ξ2=η3-η1, ⋅ ⋅ ⋅, ξn -r =η

n -r +1-1均为

η

A x =b 的解.

用反证法证: ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 线性无关.

设它们线性相关, 则存在不全为零的数λ1, λ2, ⋅ ⋅ ⋅, λn -r , 使得 λ1ξ1+ λ2ξ2+ ⋅ ⋅ ⋅ + λ n-r ξ n-r =0,

即 λ1(η2-η1) + λ2(η3-η1) + ⋅ ⋅ ⋅ + λ n-r (ηn -r +1-η1) =0, 亦即 -(λ1+λ2+ ⋅ ⋅ ⋅ +λn -r ) η1+λ1η2+λ2η3+ ⋅ ⋅ ⋅ +λ n-r ηn -r +1=0, 由η1, η2, ⋅ ⋅ ⋅, ηn -r +1线性无关知

-(λ1+λ2+ ⋅ ⋅ ⋅ +λn -r ) =λ1=λ2= ⋅ ⋅ ⋅ =λn -r =0,

矛盾. 因此ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 线性无关. ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 为A x =b 的一个基础解系.

设x 为A x =b 的任意解, 则x -η1为A x =0的解, 故x -η1可由ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 线性表出, 设 x -η1=k 2ξ1+k 3ξ2+ ⋅ ⋅ ⋅ +k n -r +1ξn -r

=k 2(η2-η1) +k 3(η3-η1) + ⋅ ⋅ ⋅ +k n -r +1(ηn -r +1-η1) , x =η1(1-k 2-k 3 ⋅ ⋅ ⋅ -k n -r +1) +k 2η2+k 3η3+ ⋅ ⋅ ⋅ +k n-r +1ηn -r +1. 令k 1=1-k 2-k 3 ⋅ ⋅ ⋅ -k n -r +1, 则k 1+k 2+k 3 ⋅ ⋅ ⋅ -k n -r +1=1, 于是 x =k 1η1+k 2η2+ ⋅ ⋅ ⋅ +k n -r +1ηn -r +1.

36. 设

V 1={x =(x 1, x 2, ⋅ ⋅ ⋅, x n ) T | x 1, ⋅ ⋅ ⋅, x n ∈R 满足x 1+x 2+ ⋅ ⋅ ⋅ +x n =0}, V 2={x =(x 1, x 2, ⋅ ⋅ ⋅, x n ) | x 1, ⋅ ⋅ ⋅, x n ∈R 满足x 1+x 2+ ⋅ ⋅ ⋅ +x n =1},

问V 1, V 2是不是向量空间?为什么? 解 V 1是向量空间, 因为任取

α=(a 1, a 2, ⋅ ⋅ ⋅, a n ) T ∈V 1, β=(b 1, b 2, ⋅ ⋅ ⋅, b n ) T ∈V 1, λ∈∈R , 有 a 1+a 2+ ⋅ ⋅ ⋅ +a n =0, b 1+b 2+ ⋅ ⋅ ⋅ +b n =0,

从而 (a 1+b 1) +(a 2+b 2) + ⋅ ⋅ ⋅ +(a n +b n ) =(a 1+a 2+ ⋅ ⋅ ⋅ +a n ) +(b 1+b 2+ ⋅ ⋅ ⋅ +b n ) =0, λa 1+λa 2+ ⋅ ⋅ ⋅ +λa n =λ(a 1+a 2+ ⋅ ⋅ ⋅ +a n ) =0, 所以 α+β=(a 1+b 1, a 2+b 2, ⋅ ⋅ ⋅, a n +b n ) T ∈V 1, λα=(λa 1, λa 2, ⋅ ⋅ ⋅, λa n ) T ∈V 1. V 2不是向量空间, 因为任取

α=(a 1, a 2, ⋅ ⋅ ⋅, a n ) T ∈V 1, β=(b 1, b 2, ⋅ ⋅ ⋅, b n ) T ∈V 1, 有 a 1+a 2+ ⋅ ⋅ ⋅ +a n =1, b 1+b 2+ ⋅ ⋅ ⋅ +b n =1,

从而 (a 1+b 1) +(a 2+b 2) + ⋅ ⋅ ⋅ +(a n +b n ) =(a 1+a 2+ ⋅ ⋅ ⋅ +a n ) +(b 1+b 2+ ⋅ ⋅ ⋅ +b n ) =2,

T

所以 α+β=(a 1+b 1, a 2+b 2, ⋅ ⋅ ⋅, a n +b n ) T ∉V 1.

37. 试证: 由a 1=(0, 1, 1), a 2=(1, 0, 1), a3=(1, 1, 0)所生成的向量空间就是R . 证明 设A =(a 1, a2, a 3) , 由

T

T

T

3

011

|A |=101=-2≠0,

110

知R (A ) =3, 故a 1, a2, a 3线性无关, 所以a 1, a2, a 3是三维空间R 3的一组基, 因此由a 1, a2, a 3所生成的向量空间就是R .

38. 由a 1=(1, 1, 0, 0) T , a 2=(1, 0, 1, 1) T 所生成的向量空间记作V 1, 由b 1=(2, -1, 3, 3) T , b 2=(0, 1, -1, -1) 所生成的向量空间记作V 2, 试证V 1=V 2. 证明 设A =(a 1, a2) , B =(b 1, b2) . 显然R (A ) =R (B ) =2, 又由

T

3

⎛1 1

(A , B ) =

0 0⎝

10112-133

0⎫⎛11⎪r 0 ~ -1⎪ 0

0-1⎪⎭⎝

1

-1002-300

0⎫1⎪, 0⎪0⎪⎭

知R (A , B ) =2, 所以R (A ) =R (B ) =R (A , B ) , 从而向量组a 1, a2与向量组b 1, b2等价. 因为向量组a 1, a2与向量组b 1, b2等价, 所以这两个向量组所生成的向量空间相同, 即V 1=V 2.

39. 验证a 1=(1, -1, 0) T , a 2=(2, 1, 3) T , a 3=(3, 1, 2) T 为R 3的一个基, 并把v 1=(5, 0, 7) T , v 2=(-9, -8, -13) T 用这个基线性表示. 解 设A =(a 1, a2, a3) . 由

123

|(a 1, a 2, a 3) |=-111=-6≠0,

032

知R (A ) =3, 故a 1, a2, a3线性无关, 所以a 1, a2, a3为R 的一个基. 设x 1a 1+x 2a 2+x 3a 3=v 1, 则

3

x +2x 2+3x 3=5⎧⎪1

⎨-x 1+x 2+x 3=0, ⎪⎩3x 2+2x 3=7

解之得x 1=2, x 2=3, x 3=-1, 故线性表示为v 1=2a 1+3a 2-a 3. 设x 1a 1+x 2a 2+x 3a 3=v 2, 则

x +2x 2+3x 3=-9⎧⎪1

⎨-x 1+x 2+x 3=-8, ⎪⎩3x 2+2x 3=-13

解之得x 1=3, x 2=-3, x 3=-2, 故线性表示为v 2=3a 1-3a 2-2a 3.

40. 已知R 的两个基为

a 1=(1, 1, 1), a 2=(1, 0, -1) , a 3=(1, 0, 1), b 1=(1, 2, 1)T , b 2=(2, 3, 4)T , b 3=(3, 4, 3)T . 求由基a 1, a 2, a 3到基b 1, b 2, b 3的过渡矩阵P . 解 设e 1, e 2, e 3是三维单位坐标向量组, 则

T

T

T

3

⎛111⎫

(a 1, a 2, a 3) =(e 1, e 2, e 3) 100⎪,

1-11⎪⎝⎭

⎛111⎫

(e 1, e 2, e 3) =(a 1, a 2, a 3) 100⎪,

1-11⎪⎝⎭⎛123⎫

于是 (b 1, b 2, b 3) =(e 1, e 2, e 3) 234⎪

143⎪⎝⎭

-1

⎛111⎫⎛123⎫

=(a 1, a 2, a 3) 100⎪ 234⎪,

1-11⎪ 143⎪⎝⎭⎝⎭

由基a 1, a 2, a 3到基b 1, b 2, b 3的过渡矩阵为

-1

⎛111⎫⎛123⎫⎛234⎫

P = 100⎪ 234⎪= 0-10⎪. 1-11⎪ 143⎪ -10-1⎪⎝⎭⎝⎭⎝⎭

-1


相关内容

  • 大学课后习题答案
  • [大学四年100万份资料大集合] http://www.3che.com/forum.php?mod=viewthread&tid=7083&fromuid=582866 新视野大学英语课后习题答案1-4册全集 http://www.3che.com/forum.php?mod=vi ...

  • 线性代数 李建平版本 复旦大学出版社 答案
  • 线性代数(低分数版) 习题一 1.2.3(答案略) 4. (1) ∵ (奇数) ∴ 为偶数 故所求为 (2) ∵ (奇数) ∴所求为397281564 5.(1)∵ (偶数) ∴项前的符号位 (正号) (2)∵ ∴ 项前的符号位 (负号) 6. (1) (2) (3)原式= 7.8(答案略) 9. ...

  • 超多大学课后习题答案与大家分享啦~~
  • 超多大学课后习题答案与大家分享啦~~.txt男人应该感谢20多岁陪在自己身边的女人.因为20岁是男人人生的最低谷,没钱,没事业:而20岁,却是女人一生中最灿烂的季节.只要锄头舞得好,哪有墙角挖不到?2500份课后答案,很值得收藏,这里只介绍了一部分. 还有很多,可以去课后答案网(http://bbs ...

  • 电气工程师考试资料汇总
  • 基础 书籍: 1. 天大版注册电气工程师考试基础考试复习教材上下册 2. 全国勘察设计注册工程师公共基础考试辅导丛书机械工业出版社 全四册(只是上午的公共基础科) 3. 注册电气工程师考试专业基础考试复习教材中国电力出版社 4. 注册电气工程师考试习题集(上.下册)中国电力出版社 5. 全国勘察设计 ...

  • 数学建模方法与技巧
  • 一.     数学的重要性: 学了这么多年的书,感觉最有用的就是数学课了,相信还是有很多人和我一样的想法的 . 大家回想一下:有什么课自始至终都用到?我想了一下只有数学了,当然还有英语. 特别到了大学,学信号处理和通信方面的课时,更是感到了数学课的重要性.计算机: 数据结构,编程算法....哪个不需 ...

  • [高等数学]详细答案 下册(八--十二)
  • 2014届高联高级钻石卡基础阶段学习计划 <高等数学> 下册(八-十二) 第八章.向量代数和空间解析几何 计划对应教材:高等数学上册 同济大学数学系编 高等教育出版社 第六版 本单元中我们应当学习-- 1. 空间直角坐标系,向量的概念及其表示: 2. 向量的运算(线性运算.数量积.向量积 ...

  • [数学].[书目].大学数学参考书推荐
  • 大学数学参考书推荐 数学分析-高等数学(一) 从数学分析的课本讲起吧. 复旦自己的课本应该可以从六十年代上海科技出的算起(指正式出版), 那本书在香港等地翻印后反应据说非常好, 似乎丘成桐先生做学生的时候也曾收益与此. 到90年代市面上还能看到的课本里面, 有一套陈传璋先生等编的, 可能就是上面的书 ...

  • 经济计量学第三版习题及答案
  • 华南农业大学考试试卷 考试类型:(闭卷) 考试时间:120分钟 学号 姓名 年级专业 题号 得分 评阅人 2007-2008学年第2学期测验 考试科目:经济计量学 总分 李宗璋 1. 根据10个观察值组成的样本,研究博彩支出和收入的关系.建立博彩支出(Y)和收入 (X)的一元线性回归方程,利用Evi ...

  • [转]振动相关经典书籍
  • 1  传统教材及其更新 对我国振动教学的影响影响很大的国外教材当推Timoshenko等的<工程中的振动问题>(S. Timoshenko, S. H. Young, W. Weaver. Vibration Problems in Engineering (4th ed.). John ...

  • 大学分析化学习题+课后答案
  • 原子发射光谱分析习题 一.选择题 1. 原子发射光谱的光源中,火花光源的蒸发温度(Ta )比直流电弧的蒸发温度(T b ) ( ) A Ta= T b B Ta< T b C Ta> T b D 无法确定 2. 光电直读光谱仪中,使用的传感器是 ( ) A 感光板 B 光电倍增管 C 两 ...