空间反射镜结构轻量化设计

第37卷第1期

Vol.37No.1

红外与激光工程

InfraredandLaserEngineering

2008年2月Feb.2008

空间反射镜结构轻量化设计

闫勇

1,2

,金光1,杨洪波

(1.中国科学院长春光学精密机械与物理研究所,吉林长春130033;

2.中国科学院研究生院,北京100039)

要:随着空间光学遥感器分辨率的提高,反射式光学遥感器主镜口径不断增大,反射镜受微

重力和温度的影响更加突出,对反射镜的结构进行轻量化设计已经成为空间大口径反射镜工程的关键技术。从反射镜结构轻量化的角度出发,对国内外空间光学遥感器反射镜的镜体结构和轻量化孔技术进行了系统的总结和评述,分析了轻型空间反射镜技术的现状和发展趋势,为反射镜的镜体轻量化设计提供了一定的参考依据和新思路。

关键词:轻量化;

反射镜;

空间光学遥感器文献标识码:A

文章编号:1007-2276(2008)01-0097-05

中图分类号:TH703;TH801

Lightweightstructuraldesignofspacemirror

YANYong1,2,JINGuang1,YANGHong! bo1

(1.ChangchunInstituteofOptics,FineMechanicsandPhysics,ChineseAcademyofSciences,Changchun130033,China;

2.GraduateSchoolofChineseAcademyofSciences,Beijing100039,China)

Abstract:Withthedevelopmentoftheresolutionofspaceboreremotesensor,thediameterofprimarymirrorisbecominglargerandlarger,andtheinfluenceofmirrormicrogravityandtemperatureisevenmoreevident.Nowthemirrorlightweightdesignisbecomingthekeytechnologyinthelargemirrorengineeringapplication.Thespacialmirrorlightweightstructuretechnologyintheworldissummarizedroundly,anditsactualityandtrendareanalyzed.Somefundamentalsandnewideasduringthelightweightdesignareprovided.

Keywords:Lightweight;

Mirror;

Spaceboreremotesensor

构,尽量减少主镜自重和温度变化对镜面变形的影响,是实现光学遥感器研制成功的关键技术之一。

随着空间光学遥感器地面分辨率的不断提高,导致其视场角、焦距、主镜口径不断增大,对其结构轻量化和稳定性要求也变得越来越苛刻,使光学系统在设计、加工制造、总装调试和检测方面的难度越来越大。同时,口径的增大也使反射镜受重力和温度的影响更加突出,因此,针对大口径光学遥感器地面和在轨工作条件的差异,设计出合理的轻量化主镜及其支撑结

收稿日期:2007-04-18;

修订日期:2007-06-14

0引言

主镜作为反射式光学系统的关键部件,随着其口径的增大,必须对其进行轻量化设计,以减轻自重变形的影响。主镜在轻量化后,随着轻量化率的增加,虽然比刚度在提高,但其结构绝对刚度却在下降,因此镜面对支撑应力的敏感度也在迅速增大。目前,反射镜轻量化实现途径[1-2]一是选用新型性能优良的材料和工艺[3];二是选择新型的超薄反射镜技术[4];三是

基金项目:国家863计划资助项目(2006AA701410)

作者简介:闫勇(1981-),男,山西离石人,博士生,主要研究方向为空间光学遥感器光机结构一体化设计及CAD/CAE工程分析。

Email:cclyy911@163.com

导师简介:金光(1958-),男,吉林长春人,研究员,博士生导师,博士,主要从事空间遥感器总体研究工作。Email:jing@ciomp.ac.cn

杨洪波(1968-),男,黑龙江嫩江人,研究员,博士生导师,博士,主要研究方向为光机电集成计算机辅助工程技术。

Email:yanghb@ciomp.ac.cn

98

红外与激光工程第37卷

选择有效的轻量化结构并确定最优的结构参数[5]。

此文就是在充分考虑反射镜使用环境的复杂性和恶劣性的基础之上,设计最优的反射镜轻量化结构,以保证光学系统的像质满足设计和使用要求。

1.2反射镜的轻量化

目前,国内外镜体轻量化技术研究主要有3种途径:浇铸成型法、高温熔接法或熔接物封接法和机械钻削减重法。3种方法各有优势。前两种方法加工出来的结构刚度比较大,质量轻,轻量化率达到70%以上,可以保证反射镜较高的面形精度。国外一些大口径反射镜的轻量化大部分采用这两种方法。由于国内技术水平有限,熔铸法和焊解法技术还不成熟,一般采用机械加工的方法进行反射镜结构的轻量化。机械钻削法是较早使用的反射镜轻量化方法,是通过机械钻削,将反射镜上不参与光学系统成像部分的材料去除,以实现反射镜的轻量化。目前常用方法有铣钻、超声钻等,采用计算机控制的铣钻法可以得到加工效率更高、轻量化程度更高、精度更好的反射镜。

反射镜轻量化孔的形状主要有三角形孔、四边形孔、六边形孔、蜂窝孔、扇形孔和圆形孔等,轻量化孔的疏密程度和布局需按照光学系统对主镜的面形要求来整体考虑。它们的形式如图3所示。其中圆形孔工艺性能好,易于加工,但是轻量化率比较低;扇形轻量化孔一般应用于带有中心孔的圆形反射镜的轻量化,根据其加强筋排布的不同又可分为连续加强筋式和断续加强筋式的轻量化孔。就可加工性能和结构刚度而言,蜂窝形孔的结构刚度最优,圆形孔的工艺性最好,三角形孔、四边形孔和扇形孔的工艺性相差不多,三角形孔和六边形孔结构刚度较好,其中三角形孔更佳,但在三角形孔节点处容易形成热结,所以,三角形孔的热性能不如六边形孔[7]。

研究轻量化孔形状对反射镜结构刚性品质的影响,吸引了许多的研究人员,Maser和Soosaar[8]利用有限元法研究了直径φ厚度305mm的圆形1620mm、轻量化反射镜,如图3(a)、(b)、(c)所示。3种轻量化方

1反射镜结构及其轻量化

1.1反射镜结构

反射镜结构按其形状可以分为平背形、单拱形、双拱形、双凹形[6],如图1所示。

(a)平背形(a)Planoconcave

(b)单拱形(b)Singlearch

(c)双拱形(c)Doublearch

(d)双凹形(d)Doubleconcave

图1主镜形状示意图

Fig.1Sketchmapofmirrorshapes

平背形反射镜结构简单,刚度好,加工、装调方便,早期的空间光学系统主反射镜多用此种结构。单、双拱形反射镜也称作“蝶形镜”,其背部形状随主镜结构的差异而有所不同,这种主镜结构建立在实心圆盘型主镜的基础上,可以看作是平背形结构的改进,是反射镜的一种简单的轻量化,质量分布较平背形结构更加合理。当反射镜直径较大时,可设计成径厚比较大的形式,其结构强度与口径相似,但径厚比较小的平背形反射镜结构强度相差不多。双凹形主镜结构对称,其应用较广泛。

根据反射镜轻量化孔是否封闭,可将反射镜分为开放型和封闭型结构,如图2所示。(a)是开放型结构,

(a)三角形孔(a)Triangularcells

(a)

图2轻量化反射镜

(b)四边形孔(b)Squarecells

(c)六边形孔(c)Hexagonalcells

(b)

Fig.2Lightweightmirrorstructures

在反射镜背部钻(或者是铸造)孔减重,其支撑点一般安排在肋板相交处;(b)是封闭型结构,反射镜分为镜面、三明治”中间蜂窝夹层结构和背板3个部分,也称作“结构。与封闭型结构相比,开放型结构相对简单,加工容易,但封闭型结构能达到更大的轻量化比。

(d)圆形孔(d)Circularcells

(e)扇形孔(e)Sectorcells图3典型轻量化孔结构

(f)蜂窝形孔(f)Sandwichcells

Fig.3Lightweightholeshapes

第1期

闫勇等:空间反射镜结构轻量化设计99

式下,反射镜轻量化孔的内切圆半径相等,镜体采用连续周边支撑方式时,反射镜在重力作用下的变形,相关研究结果如表1所示。可以看出:采用三角形孔和正六边形孔的轻量化形式明显优于正四边形孔的轻量化形式,而正六边形孔的轻量化效果最佳。

表1轻量化孔对反射镜结构刚性品质的影响

比和选择,在选定了某种轻量化形式后,反射镜体的具体结构参数仍采用传统的经验选定尺寸并进行强度、刚度等性能校核的模式,显然,这样的设计结果仍然有较大的优化空间[9-10]。

综合运用有限元分析和参数优化设计的手段,对影响反射镜性能的若干结构几何参数进行优化选择,得到比刚度高,面型精度完全符合要求的轻量化反射镜体成为现今反射镜结构轻量化一个重要的研究方向。目前,有限元法采用的优化设计方法主要有结构参数优化法和拓扑优化法。参数优化法有助于在确定反射镜基本结构的前提下,进一步轻量化反射镜体,其可操作性强;拓扑优化法从反射镜的基体结构设计开始便进行全局的轻量化设计,其轻量化程度更彻底,结构更合理,但由于拓扑优化考虑了很多实际加工参数及可操作性等因素,加深了反射镜轻量化设计的复杂度和可实现性,目前还处于研究阶段。

镜体结构的参数优化[11]设计需要首先对其建立参数化的有限元模型,即将待优化的各主要尺寸以可变化的参数即优化设计变量来表示,并对这些参数赋予较合理的初始值来生成可分析的有限元模型,所采用的初始值通常不会影响优化设计的结果。其优化的数学模型为:

Tab.1Influencefactorsoflightweightcells

aboutthemirrorrigidly

Lightweightcell

patternsTriangularcellsSquarecellsHexagonalcells

Deformationofselfweight/10#4mm

14.44615.24012.700

Mirrormass/kg

471.7442.3428.7

Factorofmirrorrigidy/10#4mm・kg

587167415444

1.3反射镜轻量化形式的优劣

从总体上讲,反射镜镜体形状的合理选择本身便是对反射镜简单的轻量化。对称型是背部结构,采用与镜面相同的形状,主要是为了使质心位于几何中心,便于支撑;背部封闭型是一种常用的结构形式;背部开放型轻量化率高,但支撑设计较难;单拱形背后周边轻量化,通常采用背部支撑辅以周边支撑的方式,双拱形背后、周边及中心均采用消减材料轻量化,其支撑形式通常以周边支撑为主。

从局部上讲,主要是指轻量化孔性能的优劣,常见的轻量化孔有三角形孔、四边形孔、六边形孔、圆形孔、异形孔及各种孔的混合使用。三角形孔与六边形孔及四边形孔内接圆尺寸相同时,其面型精度优于后两者,尽管其质量较大,但与后两者相比,增加的重量也不超过10%。此外,对于前后封闭的对称及非对称结构,可以采用六边形轻量化孔;从筋的连续分布角度考虑,六边形孔刚度有所下降,四边形孔的稳定性不太好,而只有三角形孔的综合条件较为合理,且具有较好的各向同性。在边长相等的情况下,三角形孔支撑刚度好,但轻量化率低;六边形孔支撑刚度差,轻量化率高;四边形孔支撑刚度及轻量化率介于前两者之间;圆形孔支撑刚度优于三角形,但轻量化率更低;异形孔主要常见于圆周及形状复杂部位;目前各种轻量化孔的混合使用并不多。

Mmin=f(H,H1,T1,T2,R1,R2,R3,Dr)

RMS≤1! ,PV≤1!

" max≤[" ]

式中:M为镜体质量;" max为镜体在承受发射过载时的最大应力;" 为镜体材料的安全许用应力;H、H1、T1、T2、、R1、R2、R3、Dr为与镜体相关的参数;λn、m为与光学设计相关的指标。目前,哈尔滨工业大学的吴清彬等人,利用ANSYS软件对某光学遥感器的主反射建立了参数化结构模型,将对反射镜力学性能影响较大的某些结构参数如镜体厚度、扇形孔的位置、尺寸等指定为优化设计变量,根据反射镜的加工和装配工艺合理地确定这些结构设计变量的可行域,运用ANSYS优化设计模块提供的零阶优化方法,对镜体结构进行了优化设计。力学分析表明,经过优化后的反射镜结构比原设计方案轻量化程度更高,静力学性能更好。

随着有限元分析软件、优化理论方法及加工工艺的不断进步,非线性尺寸优化和拓扑优化在反射镜的质量轻、刚度结构设计中应用越来越广,更多精度高、

好的轻型反射镜随之诞生。尺寸优化以面板厚度、筋

2镜体结构轻量化研究进展

作为空间光学观测仪器的关键部件之一,反射镜体结构设计的焦点集中于如何在保持高的面形精度的前提下尽可能地降低其质量,即镜体的轻量化设计。目前,国内的研究主要针对各种轻量化形式的对

100

红外与激光工程第37卷

板厚度、镜子高度和有效轻量化体积为设计变量,以反射镜质量为目标函数,反射镜在1g重力作用下允许的镜面变形和最小自然频率为约束条件,其优化数学模型为

[13]

3结论

在反射镜体结构的轻量化设计工作中,通过对基本结构形式已确定的镜体进行参数化建模,合理地选择某些结构参数作为优化设计变量,利用目前较成熟的参数优化技术和有限元分析手段,对镜体轻量化结构的具体尺寸参数进行优化设计是可行的,它可以有效地对反射镜进行轻量化设计。拓扑优化方法是最为有效的方法,通过这种方式将进一步实现对反射镜结构的轻量化设计,但由于镜体结构的复杂性,需采用更为复杂的运算法则,进行拓扑优化迭代所要求的有限元分析方法也更加集成化、复杂化,这需要更高级的解算器和更多的求解时间,在以效率著称的工程领域是一个极大的挑战,只有不断地优化时间和结果,才能使拓扑优化方法从理论研究走向工程实践。

未来空间光学遥感器分辨率的不断提高,空间光学遥感器的主镜口径越来越大,对其结构的轻量化要求越来越高,进一步导致了从材料选择、加工方法、新的超薄反射镜技术的研究和镜体轻量化结构设计研究等诸多方面的革新,进而从整体上满足大口径空间光学遥感器对其主反射镜轻量化设计的要求。参考文献:

[1]

WUQing" wen.Lightweighttechnologyanditsapplicationofprimarymirrorinspacecamera[J].OpticsandPrecisionEngineering(吴清文.空间相机中主镜的轻量化技术及其应用.光学精密工程),1997,5(6):69-80.

DesignVariables:

Tp=faceplatethickness(front&backaresame)H=mirroroverallthicknessB=effectivecellspacingTc=corecellwallthickness

(uniformoverfullmirror)ObjectiveFunction:

MinWtminimizetotalweightonmirrorf<f*! 1stnaturalfrequencygreaterthanminlimitDesignConstraints:

d<d*! maxsagunder1glessthanallowable基于此Valente和Vukobratovich[14]研究了反射镜的结构与其面形间的关系,而Genberg和Cormany使用非线性分析的方法设计了一种非常规的轻量化主镜。

拓扑优化则是以反射镜镜体形状和尺寸为设计变量,以其质量为目标函数,反射镜在1g重力作用下允许的镜面变形为约束条件,其优化数学模型为:

ObjectiveFunction:

MinWt=minimizetotalweightonmirrorDesignConstraints:

dpv<1! ! maxpvunder1glessthanallowable

2005年,Kang" SooPark,JunHoLee和Sung" KieYoun基于拓扑优化的方法设计了第一块轻型反射镜,其反射镜轻量化率达到78%,达到了目前材料轻量化加工所能达到的极限值

[15]

[2]GUOShao" wen,WANGWu" yi,ZHANGGuang" yu,etal.Lightweightmirrortechnologyforspaceopticalsystems[J].OpticalInstruments(国绍文,王武义,张广玉,等.空间光学系统反射镜轻量化技术综述.光学仪器),2005,8(4):78-82.

。图4(a)为其进行拓扑优化前

[3]

常规轻量化反射镜结构,图4(b)为进行拓扑优化设计以后的反射镜结构,其质量较前者减少12%,在保证反射镜面型精度要求、加工条件和结构力学特性的前提下,极大的减轻了反射镜质量。

ZHANGHua,WANGWen,PANGYuan" Yuan.Ultra" precisionmachiningtechnologyofopticalsurface[J].OpticalInstruments(张华,王文,庞媛媛.光学表面超精密加工技术.光学仪器),2003,6(3):47-51.

[4]GAOMing" hui,YANGJin" song,HEBin,etal.Supporttechniqueofultrathinmirror[J].OpticalTechnology(高明辉,杨近松,何滨,等.超薄反射镜支撑技术.光学技术),2003,

29(5):611-613.[5]

WUQing" bin,CHENShi" jin,DONGShen.Parameteroptimumdesignofalightweightrectangularmirror[J].OpticalTechnology(吴清彬,陈时锦,董申.长条形反射镜体轻量化

(a)

图4轻量化模型

(b)

结构的参数优化设计.光学技术),2003,1(1):76-82.

[6]WUQing" wen,YANGHong" bo,YANGJin" song,etal.Designandanalysisforprimarymirroranditssupportofspace

Fig.4Lightweightmirrormodel

第1期

闫勇等:空间反射镜结构轻量化设计101

camera[J].OpticalTechnology(吴清文,杨洪波,杨近松,等.空间相机中主镜及其支撑方案设计与分析方法.光学技术),

动磨盘精磨技术.红外与激光工程),2007,36(6):873-876.

[11]HANYuan! Yuan,ZANGYu! min,HANJie! cai,etal.Optimum

designoflightweightsiliconcarbidemirror[J].Opt! ElectronicEngineering(韩媛媛,张宇民,韩杰才,等.碳化硅反射镜轻量化结构优化设计.光电工程),2006,33(8):123-135.

2004,30(2):153-156.[7][8]

BAMESWP.Hexagonalvs.triangularcorelightweightmirrorstructures[J].ApplOp,1972,11(12):2748-2751.

GUOXi! qing,WANGYue! yong.Analysisofstructuralformsoflightweightholeforheavy! calibermirror[J].OpticsandPrecisionEngineering(郭喜庆,王悦勇.大口径反射镜几种轻量化孔结构形式的分析.光学精密工程),2000,8(6):518-521.

[12]WUXiao! jing,MENGJun! he.Athermalizinginfraredoptical

systemsbyusingsimplemechanicalframework[J].InfraredandLaserEngineering(吴晓靖,孟军和.使用简单机械结构实现红外光学系统无热化.红外与激光工程),2005,34(4):391-393.

[9]ZHANGWei,YANGYi.Designoflightweightmirrorbasedongeneticalgorithm[C]//ProceedingsofSPIE,2ndInternationalSymposiumonAdvancedOpticalManufacturingandTestingTechnologies:Large6148T(1-6).

Mirrors

and

Telescopes,2006,6148:

[13]AHMADAnees.OptomechanicalEngineeringHandbook[M].

BocaRaton:CRCRressLLC,1999.

[14]CHOMK,RICHARDRM,VUKOBRATOVICHD.Optimum

MirrorShapesandSupportsforLightWeightMirrorsSubjectedtoSelf! weight[C]//ProceedingsofSPIE,1989,1167:2-19.[15]PARKKang! Soo,LEEJunHo,YOUNSung! Kie.Lightweight

mirrordesignmethodusingtopologyoptimization[J].OpticalEngineering,2005,44(5):053002.

[10]FANBin,ZENGZhi! ge,LIXiao! jin,etal.Finegrinding

technologyofactivelapforlargeaspherics[J].InfraredandLaserEngineering(范斌,曾志革,李晓今,等.大型非球面能

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

(上接第44页)

为未来更大面阵、多色量子阱焦平面探测器的研制提供技术基础。参考文献:

[1]

BROWNGJ,HOUSTONS,SZMULOWICZF,etal.Type! IIsuperlatticephotodiodes:analternativeforVLWIRdetection[C]//ProceedingsofSPIE,InfraredTechnologyandApplicationsXXIX,2003,5074:191-198.[2]

CABANSKIW.ThirdgenfocalplanearrayIRdetectionmodulesatAIM[J].InfraredPhysics&Technology,2002,43:257-263.[3]

BOISP,COSTARDE,MARCADETX,etal.DevelopmentofquantumwellinfrareddetectorsinFrance[J].InfraredPhysics&Technology,2001,42:291-300.[4]

LEVINEBF,BETHEACG,HASNAING,etal.High! detectivityD*=1.0×1010cm/Hz・W-1GaAs/AlGaAsmulti! quantumwellλ=8.3μminfrareddetector[J].ApplPhysLett,1988,53:296.

[5]GOLDBERGA,CHOIKK,JHABVALAM,etal.Large!

formatandmultispectralQWIPinfraredfocalplanearrays[C]//ProceedingsofSPIE,InfraredTechnologyandApplicationsXXIX,2003,5074:83.[6]

GUNAPALASD,BANDARASV,LIUKJ,etal.1024×1024pixelMWIRandLWIRQWIPfocalplanearraysand320×256MWIR:LWIRpixelcolocatedsimultaneousdualbandQWIPfocalplanearrays[C]//ProceedingsofSPIE,InfraredTechnologyandApplicationsXXXI,2005,5783:789.

[7]GUNAPALASD,BandaraSV,HillCJ,etal.Demonstrationof640×512pixelslong! wavelengthinfrared(LWIR)quantumdotinfraredphotodetector(QDIP)imagingfocalplanearray[C]//WorkshoponQuantumWellInfraredPhotodetectors,2006.

[8]BANDARASV,GUNAPALASD,LIUJK,etal.Four! bandquantumwellinfraredphotodetectorarray[J].InfraredPhysics&Technology,2003,44:369-375.

[9]LINing,GUOFang! min,XIONGDa! yuan,etal.256×1verylongwavelengthQWIPFPAs[J].InfraredandLaserEngineering(李宁,郭方敏,熊大元,等.256×1甚长波量子阱红外焦平面研究.红外与激光工程),2006,35(6):756-758.

[10]SUYan! mei,CHONGMing,ZHANGYan! bing,etal.A128×160

pixelGaAs/AlGaAsmulti! quantumwelllong! wavelengthinfraredphotodetectorfocalplanearray[J].ChineseJournalofSemicon! ductors(苏艳梅,种明,张艳冰,等.128×160元GaAs/AlGaAs多量子阱长波红外焦平面阵列.半导体学报),2005,26(10):2044-2047.

[11]LIXian! jie,LIUYing! bin,FENGZhen,etal.9$mcutoff

128×128AlGaAs/GaAsquantumwellinfraredphotodetectorfocalplanearrays[J].ChineseJournalofSemiconductor(李献杰,刘英斌,冯震,等.9$m截止波长128×128AlGaAs/GaAs量子阱红外焦平面探测器.半导体学报),2006,27(8):

1355-1359.

[12]LIXian! jie,LIUYing! bin,FENGZhen,etal.AlGaAs/GaAs

quantumwellinfraredphotodetectorfocalplanearraybasedonMOCVDtechnology[J].InfraredandLaserEngineering(李献杰,刘英斌,冯震,等.基于MOCVD技术的长波AlGaAs/

GaAs量子阱红外焦平面探测器.红外与激光工程),2007,36(4):435-438.

第37卷第1期

Vol.37No.1

红外与激光工程

InfraredandLaserEngineering

2008年2月Feb.2008

空间反射镜结构轻量化设计

闫勇

1,2

,金光1,杨洪波

(1.中国科学院长春光学精密机械与物理研究所,吉林长春130033;

2.中国科学院研究生院,北京100039)

要:随着空间光学遥感器分辨率的提高,反射式光学遥感器主镜口径不断增大,反射镜受微

重力和温度的影响更加突出,对反射镜的结构进行轻量化设计已经成为空间大口径反射镜工程的关键技术。从反射镜结构轻量化的角度出发,对国内外空间光学遥感器反射镜的镜体结构和轻量化孔技术进行了系统的总结和评述,分析了轻型空间反射镜技术的现状和发展趋势,为反射镜的镜体轻量化设计提供了一定的参考依据和新思路。

关键词:轻量化;

反射镜;

空间光学遥感器文献标识码:A

文章编号:1007-2276(2008)01-0097-05

中图分类号:TH703;TH801

Lightweightstructuraldesignofspacemirror

YANYong1,2,JINGuang1,YANGHong! bo1

(1.ChangchunInstituteofOptics,FineMechanicsandPhysics,ChineseAcademyofSciences,Changchun130033,China;

2.GraduateSchoolofChineseAcademyofSciences,Beijing100039,China)

Abstract:Withthedevelopmentoftheresolutionofspaceboreremotesensor,thediameterofprimarymirrorisbecominglargerandlarger,andtheinfluenceofmirrormicrogravityandtemperatureisevenmoreevident.Nowthemirrorlightweightdesignisbecomingthekeytechnologyinthelargemirrorengineeringapplication.Thespacialmirrorlightweightstructuretechnologyintheworldissummarizedroundly,anditsactualityandtrendareanalyzed.Somefundamentalsandnewideasduringthelightweightdesignareprovided.

Keywords:Lightweight;

Mirror;

Spaceboreremotesensor

构,尽量减少主镜自重和温度变化对镜面变形的影响,是实现光学遥感器研制成功的关键技术之一。

随着空间光学遥感器地面分辨率的不断提高,导致其视场角、焦距、主镜口径不断增大,对其结构轻量化和稳定性要求也变得越来越苛刻,使光学系统在设计、加工制造、总装调试和检测方面的难度越来越大。同时,口径的增大也使反射镜受重力和温度的影响更加突出,因此,针对大口径光学遥感器地面和在轨工作条件的差异,设计出合理的轻量化主镜及其支撑结

收稿日期:2007-04-18;

修订日期:2007-06-14

0引言

主镜作为反射式光学系统的关键部件,随着其口径的增大,必须对其进行轻量化设计,以减轻自重变形的影响。主镜在轻量化后,随着轻量化率的增加,虽然比刚度在提高,但其结构绝对刚度却在下降,因此镜面对支撑应力的敏感度也在迅速增大。目前,反射镜轻量化实现途径[1-2]一是选用新型性能优良的材料和工艺[3];二是选择新型的超薄反射镜技术[4];三是

基金项目:国家863计划资助项目(2006AA701410)

作者简介:闫勇(1981-),男,山西离石人,博士生,主要研究方向为空间光学遥感器光机结构一体化设计及CAD/CAE工程分析。

Email:cclyy911@163.com

导师简介:金光(1958-),男,吉林长春人,研究员,博士生导师,博士,主要从事空间遥感器总体研究工作。Email:jing@ciomp.ac.cn

杨洪波(1968-),男,黑龙江嫩江人,研究员,博士生导师,博士,主要研究方向为光机电集成计算机辅助工程技术。

Email:yanghb@ciomp.ac.cn

98

红外与激光工程第37卷

选择有效的轻量化结构并确定最优的结构参数[5]。

此文就是在充分考虑反射镜使用环境的复杂性和恶劣性的基础之上,设计最优的反射镜轻量化结构,以保证光学系统的像质满足设计和使用要求。

1.2反射镜的轻量化

目前,国内外镜体轻量化技术研究主要有3种途径:浇铸成型法、高温熔接法或熔接物封接法和机械钻削减重法。3种方法各有优势。前两种方法加工出来的结构刚度比较大,质量轻,轻量化率达到70%以上,可以保证反射镜较高的面形精度。国外一些大口径反射镜的轻量化大部分采用这两种方法。由于国内技术水平有限,熔铸法和焊解法技术还不成熟,一般采用机械加工的方法进行反射镜结构的轻量化。机械钻削法是较早使用的反射镜轻量化方法,是通过机械钻削,将反射镜上不参与光学系统成像部分的材料去除,以实现反射镜的轻量化。目前常用方法有铣钻、超声钻等,采用计算机控制的铣钻法可以得到加工效率更高、轻量化程度更高、精度更好的反射镜。

反射镜轻量化孔的形状主要有三角形孔、四边形孔、六边形孔、蜂窝孔、扇形孔和圆形孔等,轻量化孔的疏密程度和布局需按照光学系统对主镜的面形要求来整体考虑。它们的形式如图3所示。其中圆形孔工艺性能好,易于加工,但是轻量化率比较低;扇形轻量化孔一般应用于带有中心孔的圆形反射镜的轻量化,根据其加强筋排布的不同又可分为连续加强筋式和断续加强筋式的轻量化孔。就可加工性能和结构刚度而言,蜂窝形孔的结构刚度最优,圆形孔的工艺性最好,三角形孔、四边形孔和扇形孔的工艺性相差不多,三角形孔和六边形孔结构刚度较好,其中三角形孔更佳,但在三角形孔节点处容易形成热结,所以,三角形孔的热性能不如六边形孔[7]。

研究轻量化孔形状对反射镜结构刚性品质的影响,吸引了许多的研究人员,Maser和Soosaar[8]利用有限元法研究了直径φ厚度305mm的圆形1620mm、轻量化反射镜,如图3(a)、(b)、(c)所示。3种轻量化方

1反射镜结构及其轻量化

1.1反射镜结构

反射镜结构按其形状可以分为平背形、单拱形、双拱形、双凹形[6],如图1所示。

(a)平背形(a)Planoconcave

(b)单拱形(b)Singlearch

(c)双拱形(c)Doublearch

(d)双凹形(d)Doubleconcave

图1主镜形状示意图

Fig.1Sketchmapofmirrorshapes

平背形反射镜结构简单,刚度好,加工、装调方便,早期的空间光学系统主反射镜多用此种结构。单、双拱形反射镜也称作“蝶形镜”,其背部形状随主镜结构的差异而有所不同,这种主镜结构建立在实心圆盘型主镜的基础上,可以看作是平背形结构的改进,是反射镜的一种简单的轻量化,质量分布较平背形结构更加合理。当反射镜直径较大时,可设计成径厚比较大的形式,其结构强度与口径相似,但径厚比较小的平背形反射镜结构强度相差不多。双凹形主镜结构对称,其应用较广泛。

根据反射镜轻量化孔是否封闭,可将反射镜分为开放型和封闭型结构,如图2所示。(a)是开放型结构,

(a)三角形孔(a)Triangularcells

(a)

图2轻量化反射镜

(b)四边形孔(b)Squarecells

(c)六边形孔(c)Hexagonalcells

(b)

Fig.2Lightweightmirrorstructures

在反射镜背部钻(或者是铸造)孔减重,其支撑点一般安排在肋板相交处;(b)是封闭型结构,反射镜分为镜面、三明治”中间蜂窝夹层结构和背板3个部分,也称作“结构。与封闭型结构相比,开放型结构相对简单,加工容易,但封闭型结构能达到更大的轻量化比。

(d)圆形孔(d)Circularcells

(e)扇形孔(e)Sectorcells图3典型轻量化孔结构

(f)蜂窝形孔(f)Sandwichcells

Fig.3Lightweightholeshapes

第1期

闫勇等:空间反射镜结构轻量化设计99

式下,反射镜轻量化孔的内切圆半径相等,镜体采用连续周边支撑方式时,反射镜在重力作用下的变形,相关研究结果如表1所示。可以看出:采用三角形孔和正六边形孔的轻量化形式明显优于正四边形孔的轻量化形式,而正六边形孔的轻量化效果最佳。

表1轻量化孔对反射镜结构刚性品质的影响

比和选择,在选定了某种轻量化形式后,反射镜体的具体结构参数仍采用传统的经验选定尺寸并进行强度、刚度等性能校核的模式,显然,这样的设计结果仍然有较大的优化空间[9-10]。

综合运用有限元分析和参数优化设计的手段,对影响反射镜性能的若干结构几何参数进行优化选择,得到比刚度高,面型精度完全符合要求的轻量化反射镜体成为现今反射镜结构轻量化一个重要的研究方向。目前,有限元法采用的优化设计方法主要有结构参数优化法和拓扑优化法。参数优化法有助于在确定反射镜基本结构的前提下,进一步轻量化反射镜体,其可操作性强;拓扑优化法从反射镜的基体结构设计开始便进行全局的轻量化设计,其轻量化程度更彻底,结构更合理,但由于拓扑优化考虑了很多实际加工参数及可操作性等因素,加深了反射镜轻量化设计的复杂度和可实现性,目前还处于研究阶段。

镜体结构的参数优化[11]设计需要首先对其建立参数化的有限元模型,即将待优化的各主要尺寸以可变化的参数即优化设计变量来表示,并对这些参数赋予较合理的初始值来生成可分析的有限元模型,所采用的初始值通常不会影响优化设计的结果。其优化的数学模型为:

Tab.1Influencefactorsoflightweightcells

aboutthemirrorrigidly

Lightweightcell

patternsTriangularcellsSquarecellsHexagonalcells

Deformationofselfweight/10#4mm

14.44615.24012.700

Mirrormass/kg

471.7442.3428.7

Factorofmirrorrigidy/10#4mm・kg

587167415444

1.3反射镜轻量化形式的优劣

从总体上讲,反射镜镜体形状的合理选择本身便是对反射镜简单的轻量化。对称型是背部结构,采用与镜面相同的形状,主要是为了使质心位于几何中心,便于支撑;背部封闭型是一种常用的结构形式;背部开放型轻量化率高,但支撑设计较难;单拱形背后周边轻量化,通常采用背部支撑辅以周边支撑的方式,双拱形背后、周边及中心均采用消减材料轻量化,其支撑形式通常以周边支撑为主。

从局部上讲,主要是指轻量化孔性能的优劣,常见的轻量化孔有三角形孔、四边形孔、六边形孔、圆形孔、异形孔及各种孔的混合使用。三角形孔与六边形孔及四边形孔内接圆尺寸相同时,其面型精度优于后两者,尽管其质量较大,但与后两者相比,增加的重量也不超过10%。此外,对于前后封闭的对称及非对称结构,可以采用六边形轻量化孔;从筋的连续分布角度考虑,六边形孔刚度有所下降,四边形孔的稳定性不太好,而只有三角形孔的综合条件较为合理,且具有较好的各向同性。在边长相等的情况下,三角形孔支撑刚度好,但轻量化率低;六边形孔支撑刚度差,轻量化率高;四边形孔支撑刚度及轻量化率介于前两者之间;圆形孔支撑刚度优于三角形,但轻量化率更低;异形孔主要常见于圆周及形状复杂部位;目前各种轻量化孔的混合使用并不多。

Mmin=f(H,H1,T1,T2,R1,R2,R3,Dr)

RMS≤1! ,PV≤1!

" max≤[" ]

式中:M为镜体质量;" max为镜体在承受发射过载时的最大应力;" 为镜体材料的安全许用应力;H、H1、T1、T2、、R1、R2、R3、Dr为与镜体相关的参数;λn、m为与光学设计相关的指标。目前,哈尔滨工业大学的吴清彬等人,利用ANSYS软件对某光学遥感器的主反射建立了参数化结构模型,将对反射镜力学性能影响较大的某些结构参数如镜体厚度、扇形孔的位置、尺寸等指定为优化设计变量,根据反射镜的加工和装配工艺合理地确定这些结构设计变量的可行域,运用ANSYS优化设计模块提供的零阶优化方法,对镜体结构进行了优化设计。力学分析表明,经过优化后的反射镜结构比原设计方案轻量化程度更高,静力学性能更好。

随着有限元分析软件、优化理论方法及加工工艺的不断进步,非线性尺寸优化和拓扑优化在反射镜的质量轻、刚度结构设计中应用越来越广,更多精度高、

好的轻型反射镜随之诞生。尺寸优化以面板厚度、筋

2镜体结构轻量化研究进展

作为空间光学观测仪器的关键部件之一,反射镜体结构设计的焦点集中于如何在保持高的面形精度的前提下尽可能地降低其质量,即镜体的轻量化设计。目前,国内的研究主要针对各种轻量化形式的对

100

红外与激光工程第37卷

板厚度、镜子高度和有效轻量化体积为设计变量,以反射镜质量为目标函数,反射镜在1g重力作用下允许的镜面变形和最小自然频率为约束条件,其优化数学模型为

[13]

3结论

在反射镜体结构的轻量化设计工作中,通过对基本结构形式已确定的镜体进行参数化建模,合理地选择某些结构参数作为优化设计变量,利用目前较成熟的参数优化技术和有限元分析手段,对镜体轻量化结构的具体尺寸参数进行优化设计是可行的,它可以有效地对反射镜进行轻量化设计。拓扑优化方法是最为有效的方法,通过这种方式将进一步实现对反射镜结构的轻量化设计,但由于镜体结构的复杂性,需采用更为复杂的运算法则,进行拓扑优化迭代所要求的有限元分析方法也更加集成化、复杂化,这需要更高级的解算器和更多的求解时间,在以效率著称的工程领域是一个极大的挑战,只有不断地优化时间和结果,才能使拓扑优化方法从理论研究走向工程实践。

未来空间光学遥感器分辨率的不断提高,空间光学遥感器的主镜口径越来越大,对其结构的轻量化要求越来越高,进一步导致了从材料选择、加工方法、新的超薄反射镜技术的研究和镜体轻量化结构设计研究等诸多方面的革新,进而从整体上满足大口径空间光学遥感器对其主反射镜轻量化设计的要求。参考文献:

[1]

WUQing" wen.Lightweighttechnologyanditsapplicationofprimarymirrorinspacecamera[J].OpticsandPrecisionEngineering(吴清文.空间相机中主镜的轻量化技术及其应用.光学精密工程),1997,5(6):69-80.

DesignVariables:

Tp=faceplatethickness(front&backaresame)H=mirroroverallthicknessB=effectivecellspacingTc=corecellwallthickness

(uniformoverfullmirror)ObjectiveFunction:

MinWtminimizetotalweightonmirrorf<f*! 1stnaturalfrequencygreaterthanminlimitDesignConstraints:

d<d*! maxsagunder1glessthanallowable基于此Valente和Vukobratovich[14]研究了反射镜的结构与其面形间的关系,而Genberg和Cormany使用非线性分析的方法设计了一种非常规的轻量化主镜。

拓扑优化则是以反射镜镜体形状和尺寸为设计变量,以其质量为目标函数,反射镜在1g重力作用下允许的镜面变形为约束条件,其优化数学模型为:

ObjectiveFunction:

MinWt=minimizetotalweightonmirrorDesignConstraints:

dpv<1! ! maxpvunder1glessthanallowable

2005年,Kang" SooPark,JunHoLee和Sung" KieYoun基于拓扑优化的方法设计了第一块轻型反射镜,其反射镜轻量化率达到78%,达到了目前材料轻量化加工所能达到的极限值

[15]

[2]GUOShao" wen,WANGWu" yi,ZHANGGuang" yu,etal.Lightweightmirrortechnologyforspaceopticalsystems[J].OpticalInstruments(国绍文,王武义,张广玉,等.空间光学系统反射镜轻量化技术综述.光学仪器),2005,8(4):78-82.

。图4(a)为其进行拓扑优化前

[3]

常规轻量化反射镜结构,图4(b)为进行拓扑优化设计以后的反射镜结构,其质量较前者减少12%,在保证反射镜面型精度要求、加工条件和结构力学特性的前提下,极大的减轻了反射镜质量。

ZHANGHua,WANGWen,PANGYuan" Yuan.Ultra" precisionmachiningtechnologyofopticalsurface[J].OpticalInstruments(张华,王文,庞媛媛.光学表面超精密加工技术.光学仪器),2003,6(3):47-51.

[4]GAOMing" hui,YANGJin" song,HEBin,etal.Supporttechniqueofultrathinmirror[J].OpticalTechnology(高明辉,杨近松,何滨,等.超薄反射镜支撑技术.光学技术),2003,

29(5):611-613.[5]

WUQing" bin,CHENShi" jin,DONGShen.Parameteroptimumdesignofalightweightrectangularmirror[J].OpticalTechnology(吴清彬,陈时锦,董申.长条形反射镜体轻量化

(a)

图4轻量化模型

(b)

结构的参数优化设计.光学技术),2003,1(1):76-82.

[6]WUQing" wen,YANGHong" bo,YANGJin" song,etal.Designandanalysisforprimarymirroranditssupportofspace

Fig.4Lightweightmirrormodel

第1期

闫勇等:空间反射镜结构轻量化设计101

camera[J].OpticalTechnology(吴清文,杨洪波,杨近松,等.空间相机中主镜及其支撑方案设计与分析方法.光学技术),

动磨盘精磨技术.红外与激光工程),2007,36(6):873-876.

[11]HANYuan! Yuan,ZANGYu! min,HANJie! cai,etal.Optimum

designoflightweightsiliconcarbidemirror[J].Opt! ElectronicEngineering(韩媛媛,张宇民,韩杰才,等.碳化硅反射镜轻量化结构优化设计.光电工程),2006,33(8):123-135.

2004,30(2):153-156.[7][8]

BAMESWP.Hexagonalvs.triangularcorelightweightmirrorstructures[J].ApplOp,1972,11(12):2748-2751.

GUOXi! qing,WANGYue! yong.Analysisofstructuralformsoflightweightholeforheavy! calibermirror[J].OpticsandPrecisionEngineering(郭喜庆,王悦勇.大口径反射镜几种轻量化孔结构形式的分析.光学精密工程),2000,8(6):518-521.

[12]WUXiao! jing,MENGJun! he.Athermalizinginfraredoptical

systemsbyusingsimplemechanicalframework[J].InfraredandLaserEngineering(吴晓靖,孟军和.使用简单机械结构实现红外光学系统无热化.红外与激光工程),2005,34(4):391-393.

[9]ZHANGWei,YANGYi.Designoflightweightmirrorbasedongeneticalgorithm[C]//ProceedingsofSPIE,2ndInternationalSymposiumonAdvancedOpticalManufacturingandTestingTechnologies:Large6148T(1-6).

Mirrors

and

Telescopes,2006,6148:

[13]AHMADAnees.OptomechanicalEngineeringHandbook[M].

BocaRaton:CRCRressLLC,1999.

[14]CHOMK,RICHARDRM,VUKOBRATOVICHD.Optimum

MirrorShapesandSupportsforLightWeightMirrorsSubjectedtoSelf! weight[C]//ProceedingsofSPIE,1989,1167:2-19.[15]PARKKang! Soo,LEEJunHo,YOUNSung! Kie.Lightweight

mirrordesignmethodusingtopologyoptimization[J].OpticalEngineering,2005,44(5):053002.

[10]FANBin,ZENGZhi! ge,LIXiao! jin,etal.Finegrinding

technologyofactivelapforlargeaspherics[J].InfraredandLaserEngineering(范斌,曾志革,李晓今,等.大型非球面能

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

(上接第44页)

为未来更大面阵、多色量子阱焦平面探测器的研制提供技术基础。参考文献:

[1]

BROWNGJ,HOUSTONS,SZMULOWICZF,etal.Type! IIsuperlatticephotodiodes:analternativeforVLWIRdetection[C]//ProceedingsofSPIE,InfraredTechnologyandApplicationsXXIX,2003,5074:191-198.[2]

CABANSKIW.ThirdgenfocalplanearrayIRdetectionmodulesatAIM[J].InfraredPhysics&Technology,2002,43:257-263.[3]

BOISP,COSTARDE,MARCADETX,etal.DevelopmentofquantumwellinfrareddetectorsinFrance[J].InfraredPhysics&Technology,2001,42:291-300.[4]

LEVINEBF,BETHEACG,HASNAING,etal.High! detectivityD*=1.0×1010cm/Hz・W-1GaAs/AlGaAsmulti! quantumwellλ=8.3μminfrareddetector[J].ApplPhysLett,1988,53:296.

[5]GOLDBERGA,CHOIKK,JHABVALAM,etal.Large!

formatandmultispectralQWIPinfraredfocalplanearrays[C]//ProceedingsofSPIE,InfraredTechnologyandApplicationsXXIX,2003,5074:83.[6]

GUNAPALASD,BANDARASV,LIUKJ,etal.1024×1024pixelMWIRandLWIRQWIPfocalplanearraysand320×256MWIR:LWIRpixelcolocatedsimultaneousdualbandQWIPfocalplanearrays[C]//ProceedingsofSPIE,InfraredTechnologyandApplicationsXXXI,2005,5783:789.

[7]GUNAPALASD,BandaraSV,HillCJ,etal.Demonstrationof640×512pixelslong! wavelengthinfrared(LWIR)quantumdotinfraredphotodetector(QDIP)imagingfocalplanearray[C]//WorkshoponQuantumWellInfraredPhotodetectors,2006.

[8]BANDARASV,GUNAPALASD,LIUJK,etal.Four! bandquantumwellinfraredphotodetectorarray[J].InfraredPhysics&Technology,2003,44:369-375.

[9]LINing,GUOFang! min,XIONGDa! yuan,etal.256×1verylongwavelengthQWIPFPAs[J].InfraredandLaserEngineering(李宁,郭方敏,熊大元,等.256×1甚长波量子阱红外焦平面研究.红外与激光工程),2006,35(6):756-758.

[10]SUYan! mei,CHONGMing,ZHANGYan! bing,etal.A128×160

pixelGaAs/AlGaAsmulti! quantumwelllong! wavelengthinfraredphotodetectorfocalplanearray[J].ChineseJournalofSemicon! ductors(苏艳梅,种明,张艳冰,等.128×160元GaAs/AlGaAs多量子阱长波红外焦平面阵列.半导体学报),2005,26(10):2044-2047.

[11]LIXian! jie,LIUYing! bin,FENGZhen,etal.9$mcutoff

128×128AlGaAs/GaAsquantumwellinfraredphotodetectorfocalplanearrays[J].ChineseJournalofSemiconductor(李献杰,刘英斌,冯震,等.9$m截止波长128×128AlGaAs/GaAs量子阱红外焦平面探测器.半导体学报),2006,27(8):

1355-1359.

[12]LIXian! jie,LIUYing! bin,FENGZhen,etal.AlGaAs/GaAs

quantumwellinfraredphotodetectorfocalplanearraybasedonMOCVDtechnology[J].InfraredandLaserEngineering(李献杰,刘英斌,冯震,等.基于MOCVD技术的长波AlGaAs/

GaAs量子阱红外焦平面探测器.红外与激光工程),2007,36(4):435-438.


相关内容

  • 遥感100个概念
  • 1. 数字图像:用计算机存储和处理的图像,是一种空间坐标和灰度均不连续 的.用离散数学表示的图像. 2. 遥感数字图像的像素:是将地面信息离散化而形成的方格,是计算机图像 处理的最小单元:具有特定的空间位置和属性特征. 3. 遥感数字图像:是数字形式的遥感图像,是地物反射或辐射的不同波长的 电磁波能 ...

  • 声音的数字化相关内容
  • 1. 声音的数字化相关内容 (1)采样:曲线代表声波曲线,是连续变化的模拟量,时间轴以一种离散分段的方式来表示,并且波形以固定的时间间隔来测量其值. 采样分辨率:即采样位数,常见的有8位.16位.24位.32位.采样位数越大, 分辨率越高,失真度越小. 采样速率:常用的采样频率有11.025khz ...

  • 农业信息技术
  • 信息技术发展概述 1.信息(information)是信息源所发生的各种信号和消息经过传递被人们所感知.接收.认识和理解的内容统称. 2.信息技术(information technology,IT)是指获取.处理.传递.存储.使用信息的技术,是能够扩展信息功能的技术. 3.现代信息技术:是指20世 ...

  • 建筑中的物理学
  • 一. 建筑中的声学 1. 概况 建筑声学是研究建筑环境中声音的传播,声音的评价和控制的学科,是建筑物理的组成部分. 2. 历史起源 有关建筑声学的记载最早见于公元前一世纪,罗马建筑师维特鲁威所写的<建筑十书>.书中记述了古希建筑声学腊剧场中的音响调节方法,如利用共鸣缸和反射面以增加演出的 ...

  • 成像原理论文
  • 三 维 形 貌 成 像 摘要 本文研究了一种还原物体表面三维形貌的技术---傅里叶变换轮廓术.傅里叶变换轮廓术只需要一幅干涉图即可对整个范围进行分析,其测量系统简约,分辨率高,计算机处理数据快,计算精度高,且具有很强的非接触测量优势,使其得到广泛的应用. 在实际傅里叶变换轮廓术测量中,获取的条纹图扩 ...

  • pieters-基于光谱反射法定量分析行星表面矿物
  • 基于光谱反射法定量分析行星表面矿物 摘要:应用反射光谱可以对矿物成分进行多种远程分析,如:测得岩石单位的岩性,辨别矿物表面成分,定量分析且定性分析大量矿物的表面成分.目前,有三种截然不同的方法用于辨别并定量分析,其简要实例:(1)实证方法.这主要包括与波谱库的波谱比较或是匹配.波谱库里的矿物波谱是已 ...

  • 土木工程检测新技术
  • 土木工程监测新技术 [摘 要]土木工程监测是土木工程结构研究.设计.施工,以及工程安全鉴定.评估中的重要环节.随着土木.材料.测量.计算机网络等技术的发展,传统监测方法的局限性变得日益明显,难以满足土木工程技术进一步发展的需要.在计算机网络技术和新型材料科学的发展的促进下,由此产生了一些新的结构健康 ...

  • [建筑基桩检测技术规范]学习体会
  • <建筑基桩检测技术规范>(JGJ106-2014)学习体会 --桩身缺陷与桩身完整性 一.从混凝土桩的结构看桩的缺陷与完整性 2.1.2条:桩身完整性:反映桩身截面尺寸相对变化.桩身材料密实性和连续性的综合定性指标 桩身完整性是一个综合定性指标,而非严格的定量指标.其类别是按缺陷对桩身结 ...

  • 2013年北京邮电大学公共管理专业考试复试考生名单
  • 育 明 教 育 专注于北京邮电大学考研专业课辅导 始于2006,八年辅导经验 育明教育徐老师赠言:你若盛开,清风自来 2014年硕士研究生入学考试自命题科目考试大纲(一) 211 翻译硕士英语 一.考试目的 <翻译硕士英语>作为全日制翻译硕士专业学位(MTI)入学考试的外国语考试,其目的 ...