地铁测量方案(洞里)

大连地铁204标段工程测量专项方案

一、施工测量

1工程测量

施工测量是标定和检查施工中线方向、测设坡度和放样建筑物,测量是施工的导向,是确保工程质量的前提和基础。地铁工程施工测量的施测环境和条件复杂,要求的施测精度又相当高,必须精心施测和进行成果整理,工程测量成果必须符合相关规范的要求。

1.1施工测量技术要求

(1)施工测量按招标文件和施工图纸、《城市测量规范》CJJ8、《地下铁道、轻轨交通工程测量规范》GB50308及《工程测量规范》GB50026的有关规定执行。

(2)对建设管理方提供的控制点进行检测,符合精度要求后再进行工程的施工测量。

(3)对整个工程场区按施工需要布设精密导线平面控制网(如采用原有控制网作为场区控制网时,要先复核检查,符合精度要求后方能取用)。

(4)场区内按施工需要布设高程控制网,并应采用城市二等水准测量的技术要求施测,其路线高程闭合差应在±8Lmm(L为线路长度,以km计)之内。

(5)隧道开挖的贯通中误差规定为:横向±50mm、竖向±25mm,极限误差为中误差的2倍,即纵向贯通误差限差为L/5000(L为贯通距离, 以km计)。

1.2施工测量特点

(1)车站包括主体结构、出入口和风道。采用明挖及盖挖顺作法施工方法,施工工艺复杂,工序转换快,地下施测条件差,测量工作量大。

要布设形成检测条件并经常复测控制点。

(3)对于车站主体结构,净宽尺寸在建筑限界之外,还应考虑如下的加宽

量:210mm综合施工误差+H/150钻孔灌注桩施工误差及水平位移。

(4)区间暗挖先通过吊出口,再通过横通道分别进入左、右线隧道,并且曲线半径较小,造成了后视距离短、转角多,给正洞内导线延伸带来一定难度。

1.3主要测量仪器设备及人员组织

(1)根据本标段工程的实际情况,配备以下测量仪器及工具

(2)现场设测量工程师2人,测量技术人员2人,测量工6人,以满足现场施工测量及施工的需要。

1.4平面控制测量

根据本标段的工程特点,利用建设管理方提供的测量控制点,在场区内按精密导线网布设。精密导线点应沿线路走向在本标段所经过的实际地形选定,以GPS网为基础布设成附合导线、闭合导线或结点网;为了保证本标段与相邻标段的贯通,导线测量用的控制点至少要贯通联测到相邻标段所用的控制点两个点以上。利用贯通平差后的控制点对建筑物的轴线进行测设。

精密导线技术精度要求:导线全长3~5km,平均边长为350m,测角中误差≤±2.5″,最弱点的点位中误差≤±15mm,相邻点的相对点位中误差≤±8mm,方位角闭合差≤±5n(n为导线的角度个数),导线全长相对闭合差≤1/35000;导线点位可充分利用城市已埋设的永久标志,或按城市导线标志埋设。位于车站地区的导线点必须选在基坑开挖影响范围之外,稳定可靠,而且应能与附近的GPS点通视。

本标段拟布设三条趋近导线,并附合在精密导线点上。地面趋近导线全长不宜超过350m,平均边长60m,最短边应大于30m,趋近导线测量应符合精密导线

的有关技术精度要求。

1.4.1车站平面控制测量

利用测设好的平面控制网,以车站的两个轴线方向为基线方向,直接把轴线控制点测设于车站基坑边,经检查复核无误后,设立护桩,利用轴线控制点通过经纬仪把车站轴线直接投测到基坑内,并对车站结构进一步进行施工放线。若受场地影响,为保证测量精度,也可按以下分步方法进行测设。

(1)车站结构施工测量

利用测设好的平面控制网,测设围护结构中心线车站、风道和出入口通道,并设置三个以上的护桩,且采用量尺分别复核结构总长和分部长度。

(2)基坑导线定向测量

向基坑内传递坐标点(不少于两个、可利用结构底板进行水平基点埋设),是从基坑边向基坑内采用导线测量的方法进行定向(详见图15-1)。定向测量拟利用有双轴补偿的全站仪,且全站仪配有弯管目镜,要求其垂直角小于30°,导线定向的距离必须进行对向观测,定向边中误差应在±8″之内。

地面已知导线边

导线定向测量示意图

坐标点传递后,即可进行主体结构放样测量。首先测设线路中线和法线作为结构放样的基准线,根据基线与结构(墙、柱)相对关系值,测量内结构净空及柱身中轴线,并用量尺检核墙与柱、柱与柱的距离是否与设计值相符。

1.4.2区间暗挖隧道平面控制测量

(1)吊出口联系测量

施工吊出口平面尺寸4.6m×6m,井深25.23m,拟采用吊出口联系三角形测量(详见图15-2)即通过吊出口悬挂两根钢丝,由近井点测定与钢丝的距离和角度,从而算得钢丝的坐标以及它们的方位角,然后在井下认为钢丝的坐标和方位角已知,通过测量和计算便可得出地下导线的坐标和方位角,这样就把地上和地下联系起来了。

支撑架

联系三角形定向测量示意图

(2)地下施工控制导线测量

地下导线测量按Ⅰ级导线精度要求施测。测角中误差≤±5″,导线全长闭合差≤1/15000。开挖至隧道全长的1/3和2/3处、贯通前50~100m,分别对地下导线进行复测,确认成果正确或采用新成果,保障贯通精度。

在隧道未贯通前,地下导线为一条支导线,建立时要形成检核条件,保证导线的精度。地下施工控制导线是隧道掘进的依据,每次延伸施工控制导线前,应对已有的施工控制导线的前三个导线点进行检测。地下导线点布设成导线锁的形式,形成较多的检核条件,以提高导线点的精度。导线点如有变动,应选择另外稳定的施工控制导线点进行施工导线延伸测量。施工控制导线在隧道贯通前应测

量三次,其测量时间与吊出口定向测量同步进行。重复测量的坐标值与原测量的坐标值较差小于±10mm时,应采取逐次的加权平均值作为施工控制导线延伸测量的起算值。

曲线隧道施工控制导线点宜埋设在曲线五大桩(或三大桩)点上,一般边长不应小于60m,导线测量采用全站仪施测,左、右角各测二测回,左、右角平均值之和与360°较差小于6″,边长往返观测各二测回,往返观测平均值较差应小于7mm。

除上述控制测量外,本工程区间隧道平面控制测量,还应通过设在地面上的测量孔(拟设在贯通区间全长的1/3和2/3处、贯通前50~100m)投点复核,测量孔采用钻机成孔。当隧道开挖至测量孔位置时,即利用通过测量孔投测下来的控制点复核洞内导线点,精确控制隧道中线。必要时可根据实际情况在地面多设测量孔点复核。

(3)施工放样测量

施工中的测量控制采用极坐标法进行施测。为了加强放样点的检核条件,可用另外两个已知导线点作起算数据,用同样方法来检测放样点正确与否,或利用全站仪的坐标实测功能,用另两个已知导线点来实测放样点的坐标,放样点理论坐标与检测后的实测坐标X、Y值相差均在±3mm以内,可用这些放样点指导隧道施工。也可用放线两个点,用尺子量测两点的距离进行复核,距离相差在±2mm以内,可用这些点指导隧道施工。

暗挖区间隧道施工放样主要是控制线路设计中线、里程、高程和同步线。隧道开挖时,在隧道中线上安置激光指向仪,调节后的激光代表线路中线或隧道中线的切线或弦线的方向及线路纵断面的坡度。每个洞的上部开挖可用激光指向仪控制标高,下部开挖采用放起拱线标高来控制。施工期间要经常检测激光指向仪的中线和坡度,采用往返或变动两次仪器高法进行水准测量。在隧道初支过程中,架设钢格栅时要严格的控制中线、垂直度和同步线,其中格栅中线和同步线的测量允许误差为±20mm,格栅垂直度允许误差为3°。

1.5高程控制测量

地面高程控制网应是在城市二等水准点下布设的精密水准网。精密水准测量的主要技术要求应符合下表的规定。

精密水准测量观测的主要技术要求

附合或环线的水准路线长度(km)。

(1)车站高程控制测量

对于车站施工时的高程测量控制,利用复核或增设的水准基点,按精密水准测量要求把高程引测到基坑内,并在基坑内设置水准基点,且不能少于两个,通过基坑内和地面上的水准基点对车站施工进行高程测量控制。

(2)区间隧道高程控制测量

区间隧道高程测量控制,通过吊出口采用长钢卷尺导入法把高程传递至井下,向地下传递高程的次数,与坐标传递同步进行。先作趋近水准测量,再作吊出口高程传递

吊出口高程传递示意图

经吊出口传递高程采用悬吊钢尺(经检定后),井上和井下两台水准仪同时观测读数,每次错动钢尺3~5cm,施测三次,高差较差不大于3mm时,取平均值使用,当测深超过20m时三次误差控制在±5mm以内。

地下施工控制水准点,可与地下导线点合埋设于一点,亦可另设水准点。水准点密度与导线点数基本相同,在曲线段可适当增加一些。地下控制水准测量的方法和精度要求同地面精密水准测量。

地下施工水准测量可采用S3水准仪和5m塔尺进行往返观测,其闭合差应在±20Lmm(L以km计)之内。开挖至隧道全长的1/3和2/3处、贯通前50~100m,分别对地下水准按精密水准测量复核,确认成果正确或采用新成果,保障高程贯通精度。

1.6中线控制测量

施工前,以全站仪进行洞外精密导线网控制测量,定出吊出口的准确位置,放设护桩。在吊出口通道与正线相交处的隧道顶部从地面钻一测量孔(使用地质钻孔),并在孔内安设φ150钢管并固定,然后利用地面网点,从吊出口和测量孔向吊出口内和洞内投点,利用该点复核校正,以确保其精度,并使洞内左右线导线形成闭合环。

1.7洞内日常施工测量

按有关规则要求进行,用偏角法和坐标法实测施工控制线,及时向开挖面传递中线和高程。则测量组用TAPS断面测量仪测设隧道轮廓线及布置炮眼位置,爆破后及时测量出隧道断面,初期支护和二次衬砌前,必须进行复核,确认准确后方进行下道工序施工。

1.8与邻近标段或建筑物接口处的联系测量

对于车站及区间预留的接口,施工前要对这些位置轴线、高程与有关部门进行确认,并进行与对方控制网的复核测量,以保证接口的正确连接。

1.9施工控制测量成果的检查和检测

检测均应按照规定的同等级精度作业要求进行,及时地提出成果报告,一般检测互差应小于2倍中误差,可用原测成果,若大于该值或发现粗差,应由监理会同监理部采取专项检测来处理。

检测地上、地下导线的坐标互差≤±12mm,≤±20mm;检测地上、地下高程点的高程互差≤±3mm,≤±5mm;检测地下导线起始边(基线边)方位角的互差 ≤±10″;检测相邻高程点互差≤±3mm;检测导线边的边长互差≤±8mm;检测隧道中线点坐标的互差≤±16mm;检测经吊出口悬吊钢尺传递高程的互差≤±3mm;对影响隧道横向贯通的检测误差应严格控制。

1.10隧道贯通误差测量

平面贯通测量:在隧道贯通面处采用坐标法从两端测定贯通点坐标差,并分别投影到线路和线路的法线方向上,求得横向误差和纵向误差进行评定(标准见“地铁工程平面与高程贯通误差分配表15-1”)。

高程贯通测量:用水准仪从贯通面两端测定贯通点的高程,其误差即为竖向贯通误差,评定(标准见“地铁工程平面与高程贯通误差分配表15-1”)。

1.11地下控制网平差和中线调整

隧道贯通后,地下导线则由支导线经与另一端基线边联测变成了附合导线,支线水准也变成了附合水准,当闭合差不超过限差规定时,进行平差计算。

按导线点平差后的坐标值调整线路中线点,改点后再进行中线点的检测,直线夹角不符值≤±6″,曲线上折角互差≤±7″,高程亦要使用平差后的成果。

隧道贯通后导线平差的新成果将作为净空测量、调整中线、测设铺轨基标及进行变形监测的起始数据。

为了确保隧道正确贯通和满足设计的净空限界,必须有严格的检查和检测制度。施工控制测量成果,经自检和驻地监理审批,向施工监理部提出检测申请(申请单与成果表),由施工监理部通知测量监理进行检测。

1.12施工测量精度的保障措施

测量工作不允许出现测量误差超出限差的情况,在施工中,必须高度重视测量工作,必须加强施工测量检核。为达到中线和标高的测量误差均在限差内的目的,特制定以下技术措施:

(1)施工放样前将施工测量方案设计与意见报告监理审批。内容包括施测方法、操作规程、观测仪器设备的配置和测量专业人员的配备等。

(2)固定专用测量仪器和工具设备,建立专业测量组,专人观测和成果整理。

(3)建立测量复核制度,按“三级复核制”的原则进行施测。每次施测后,

须经测量工程师复核。

(4)加强对测量所有控制点的保护,防止移动和损坏;一旦发生移动和损坏,应立即报告监理,并与监理协商补救措施。

(5)用于本工程的测量仪器和设备,应按照规定的日期、方法送到具有检定资格的部门检定和校准,合格后方可投入使用。

(6)用于测量的图纸资料,测量技术人员必须认真核对,必要时应到现场核对,确认无误无疑后,方可使用。如发现疑问作好记录并及时上报,待得到答复后,才能按图进行测量放样。

(7)原始观测值和记事项目,应在现场用钢笔或铅笔记录在规定格式的外业手簿中。测量技术人员要认真整理内业资料,保证所有测量资料的完整。资料必须一人计算,另外一人复核。抄录资料,亦须认真核对。

(8)外业前,测量技术人员对内业资料进行检查,所采用的测量方法、测量所用桩点以及测量要达到的目的向测工进行交底,做到人人明白;外业中,中线和高程测量要形成检核条件,满足校核条件要求的测量才能成为合格成果,否则返工重测。

(9)经常复核洞内有变形地方附近的导线点、水准点,随时掌握控制点的变形情况,关注量测信息。在测量工作中,随时发现点位变化,随时进行测量改正。严格遵守各项测量工作制度和工作程序,确保测量结果的准确性。

(10)外业后,应检查外业记录的结果是否齐全、清晰、正确,由另一人复核结果无误后,向工区技术主管交底。

(11)工区所用的导线点、水准点、轴线点(或中线点)要设置在工程施工影响范围之外、坚固稳定、不易受破坏且通视良好的地方。定期对上述各桩点进行检测,测量标志旁要有明显持久的标之记或说明。

(12)外业前,列出所用的测量仪器和工具,检查是否完好。在运输和使用测量仪器和的过程中,应注意保护,如发现仪器有异常,应立即停止使用并送检,并对上次测量成果重新作出评定。

(13)测量过程中,必须消除干扰,需停工的要停工,以保证测量精度。各种建筑物放样时应和施工人员密切配合,避免出现不必要的偏差。

(14)积极和测量监理工程师进行联系、沟通和配合,满足测量监理工程师提出的测量技术要求及意见,并把测量结果和资料及时上报监理,测量监理工程

师经过内业资料复核和外业实测确定无误后,方可进行下步工序的施工。 2施工监测测量

2.1监测目的

(1)了解暗挖隧道支护结构和周围地层的变形情况,为施工日常管理提供信息,保证施工安全。

隧道支护结构和周围土体的变形及应力状态和其稳定情况密切相关,隧道支护结构和周围土体各种破坏形式产生之前通常有大的位移、变形、受力异常等,监测数据和成果是现场施工管理和技术人员判断工程是否安全的重要依据。因此,在施工过程中,通常依据观测结果来验证施工方案的正确性,调整施工参数,必要时采取辅助工程措施,以此达到信息化施工目的。

(2)修改施工设计

将现场测量的数据、信息及时反馈,以修改调整爆破参数、支护参数等参数,完善施工方案。

(3)根据监测数据,分析施工引起的地表隆陷,以及地层应力重分布、地层变位对紧邻建(构)筑物和市政基础设施的影响;以采取相应的加固、防范措施,确保紧邻建(构)筑物和市政基础设施的安全。

(4)验证支护结构设计,为支护结构设计和施工方案的修订提供反馈信息。 我国当前地下工程支护结构设计基本处于半经验半理论状态,土压力多采用经典的理论公式,与现场情况有一定差异;地下结构周围土层软弱,复杂多变,结构设计的荷载常不确定,而且,荷载与支护结构变形、施工工艺有直接关系,因此,在施工中迫切需要知道现场实际的应力和变形情况,与设计值进行比较,必要时对设计方案和施工过程进行修改。施工监测是支护结构设计的重要组成部分。

(5)积累资料,以提高地下工程的设计和施工水平。

支护结构的土压力分布受支护方式、支护结构刚度、施工过程和被支护土类的影响,并直接与支护结构及土体的位移有关,常很复杂,现行设计分析理论尚未达到成熟的阶段,积累完整准确的地下工程开挖与支护监测结果,对于总结工程经验,完善设计分析理论是很有价值的。

与施工措施,以期达到安全与经济合理的目的。

2.2监测系统设计原则

(1)在地下工程中进行量测,绝不是单纯地为了获取信息,而是把它作为

施工管理的一个积极有效的手段,因此量测信息应能:

确切地预报破坏和变形等未来的动态,对设计参数和施工流程加以监控,以便及时掌握围岩动态而采取适当的措施(如预估最终位移值、根据监控基准调整、修改开挖和支护的顺序和时机等)。

满足作为设计变更的重要信息和各项要求,如提供设计、施工所需的重要参数(初始位移速度、作用荷载等)。

(2)施工监测是一项系统工程,监测工作的成败与监测方法的选取及测点的布置直接相关。根据我单位监测工作的经验,归纳以下5条原则。

①可靠性原则:可靠性原则是监测系统设计中所考虑的最重要的原则。为了确保其可靠性,必须做到:第一,系统需要采用可靠的仪器。第二,应在监测期间保护好测点。

②多层次监测原则:多层次监测原则的具体含义有四点:

a、在监测对象上以位移为主,兼顾其它监测项目。

b、在监测方法上以仪器监测为主,并辅以巡检的方法。

c、在监测仪器选择上以机测仪器为主,辅以电测仪器。

d、考虑分别在地表及临近建筑物与地下管线上布点以形成具有一定测点覆盖率的监测网。

③重点监测关键区的原则:观测仪器布置应合理,注意时空关系,控制关键部位。在具有不同地质条件和水文地质条件、周围建筑物及地下管线段,其稳定的标准是不同的。稳定性差的地段应重点进行监测,以保证建筑物及地下管线的安全。

④方便实用原则:为减少监测与施工之间的干扰,监测系统的安装和测量应尽量做到方便实用。

⑤经济合理原则:系统设计时考虑实用的仪器,不必过分追求仪器的先进性,以降低监测费用。

2.3监测项目

监控量测的项目主要根据工程的重要及难易程度、监测目的、工程地质和水文地质、围护结构形式、基坑深度、施工方法、经济情况、工程周边环境等综合而定,力求在满足需要的前提下,少而精。本工程的监测项目除考虑上述因素外,主要根据设计的要求而定,具体监测项目见表14-3,主要包括二部分:

(1)车站基坑围护结构及周边环境监测

(2)区间暗挖部分的隧道结构及周边环境监测

车站监测项目汇总表

区间暗挖部分的隧道结构及周边环境监测

工人员。

2.4监测网建立

2.4.1监测断面的选择

(1)监测断面应按工程的需求、地质条件以及施工条件选择具有代表性的断面。

(2)监测断面布置应合理,注意时空关系,采取表面与深部结合、重点与一般结合、局部与整体结合,使测网、测面、测点形成一个系统的、能控制整个工程的各关键部位。

根据前述明挖基坑工况动态分析,地表主要沉降发生在距基坑边0~4m区段,因而在测点主要沿平行于基坑边2m处布设。

(3)监测断面分为主要监测断面和辅助监测断面,主断面可埋设多种仪器,进行多项监测。

基坑监测主断面上主要进行地表沉降、桩体位移、土体位移、地下水位,暗挖区间监测主断面主要进行地表沉降、拱顶下沉、水平收敛、土压力、初支与二衬间接触压力、初支与二衬钢筋主筋轴力监测等。同时在各监测主断面附近设辅助监测断面,辅助监测断面埋设仪器少,用于监测个别有重大意义的参数,在基坑辅助监测断面上布置了地表沉降、桩体位移和支撑轴力测点,在暗挖隧道辅助监测断面上布置了地表沉降、拱顶下沉、水平收敛测点。

以上断面布置既保证了重点,又简化了工作面,降低了费用

2.4.2测点布设

测点布置见附图除按设计要求布置测点外,加强了对施工和降水影响范围内的管线上方地表沉降的观测。

车站监测布置图

南关岭站

姚家站

区间监测布置图

2.5监测方法

2.5.1沉降监测

采用精密水准仪和铟钢尺按二级水准测量进行,包括地表沉降、地下管线、周边建筑物沉降。在基坑和暗挖隧道开挖前,应在地面变形影响范围之外,便于长期保护的稳定位置,埋设水准点,进行水准网布设,首次观测时,适当增加测回数,一般取3~5次的数据作为测点的初始读数。

2.5.2拱顶下沉及净空收敛监测

监测点在支护结构施工时埋设,在支护结构完成后最短时间内取得的读数为初始值,之后按前述监测频率要求进行日常监测。

2.5.3初支与二衬钢筋应力监测

将钢筋计串联焊接在被测主筋上,安装时应注意尽可能使钢筋计处于不受力状态,特别不应处于受弯状态,将钢筋计的导线逐段捆在临近钢筋上,引到地面的测试匣中,喷砼或二衬砼施作后,检查钢筋计的电阻值和绝缘情况,做好引出线和测试匣的保护措施。

2.5.4接触压力监测

根据接触压力变化幅度确定压力盒量程。压力盒采用直接法埋设在初支与土体、初支与二衬间,采用初支喷砼或二衬灌注砼后12h的三次读数的平均值作为接触压力测试初始值。

2.5.5地下水位监测

采用电子水位计测量水位距孔口的距离,用水准测量方法测出孔口标高,从而确定水位标高,进一步计算水位变化情况,施工前,对所有观测孔统一联测静水位,统一编号,量测基准点,选择典型代表性的一排观测孔,从降水开始,观测时间分别采用30min、1h、4h、8h、12h以后24h观测1~2次,直到降水工程结束。

2.5.6基坑围护结构桩体与桩背土体位移监测

采用测斜管监测,利用钻孔埋设在桩后土体和直接埋设在桩身砼中,埋设方法见下图。

常,将测头放入测斜管,测试应从孔底开始,自下而上沿导管全长每一个测段固定位置测读一次,测段长度为0.5~1m,每个测段测试一次读数后,将测头提转180°,插入同一对导槽重复测试,两次读数应接近,符号相反,取数字平均值,作为该次监测值,在基坑开挖前,以连续三次测试无明显差异读数的平均值作为初始值。

2.5.7支撑轴力监测

采用轴力计进行监测。轴力计的量程需要满足设计轴力的要求。在需要埋设

轴力计的钢支撑架设前,将轴力计焊接在支撑的非加力端的中心,在轴力计与钢围囹、钢支撑之间要垫设钢板,以免轴力过大使围囹变形,导致支撑失去作用。支撑加力后,即可进行监测。

2.5.8基坑回弹

采用钢尺沉降仪,在设计位置首先用钻头钻孔、清孔、安装管子的同时安装

磁环并回填。安装过程中应准确定位磁环位置,拧紧螺丝,回填不能过快,安装好后加上保护措施。安装完毕后,取三次值的平均值作为初值。

2.5.9爆破监测

初期爆破监测5~10次,爆破后期正常施工后按需要选择决定。根据量测结果核算同段最大药量并确定分段段数。震动速度的安全值按2cm/s控制。

2.5.9.1布点

测点分别设在拱顶及拱脚以下1m处,暗挖区间监测时,测点距掌子面的距离以爆破后飞石不损坏测点为原则。车站监测时,所测均为车站附近建筑物上通过监测能真实反映其震动情况的地方。本站附近较重要和需保护的建筑物有居民楼,每处布置四个测点。

2.5.9.2测点埋设

在所埋预埋件的地方,用冲击钻钻孔,在孔中填塞水泥砂浆后插入预埋件,使预埋件轴线垂直于测量表面。

2.5.9.3测试

监测前,将传感器编号,固定在规定的测振仪中,并配合固定的振子,然后在标定振动台上进行标定,作出振子跳高和速度的标定曲线。传感器、放大器槽路和振子在监测中不得互换,以提高量测精度。每隔一段时间后,要重新对该系统进行标定,检查其是否发生变化,以便修正。抗震性能越强,防干扰性能越好,量测数据就越精确、稳定。量测时注意导线的接头防潮和屏蔽。

监测前传感器预埋件必须牢固地固定在测点处的围岩内,留出少量螺栓,以和传感器拧紧为原则,不要使传感器离测量面太远,以防产生相对运动,影响量测精度。

监测时,起爆与测量仪器的同步通过一同步电缆(一端连在掌子面起爆雷管上,另一段连在示波器上)实现。

2.5.9.4记录与计算

量取曲线中最大振幅,由标定曲线可得出最大振速,要求最大振速不得超过相应的设计值。

2.6控制标准

2.6.1基坑地表沉降及围护结构变形控制基准

根据招标、设计文件及参考北京基坑工程设计规程得出以下控制标准,见下表。

基坑监控量测基准表

基坑等级 一级

桩体最大水平位移(mm)

≤0.2H且≤30

地面最大沉降(mm)

≤0.2H

注:H为基坑开挖深度。 2.6.2建筑物下沉及倾斜控制基准

见下表。

各类建筑物允许倾斜值

2、倾斜是指基础倾斜方向两端点的沉降差与其距离的比值。 3、如有关部门对建筑物的沉降有特殊要求时,以其要求为准 4、以上控制标准采用<建筑地基基础设计规范>GBJ7-89基准值。

2.6.3爆破震速控制

振动速度控制1.5cm/s。

2.7监测资料的分析、预测和信息反馈

取得各种监测资料后,需及时进行处理,排除仪器、读数等操作过程中的失误,剔除和识别各种粗大、偶然和系统误差,避免漏测和错测,保证监测数据的可靠性和完整性,采用计算机进行监控量测资料的整理和初步定性分析工作。

(1)数据整理

把原始数据通过一定的方法,如按大小的排序用频率分布的形式把一组数据分布情况显示出来,进行数据的数字特征值计算,离群数据的取舍。

(2)插值法

在实测数据的基础上,采用函数近似的方法,求得符合测量规律而又未实测到的数据。

(3)采用统计分析方法对监测结果进行回归分析

寻找一种能够较好反映监测数据变化规律和趋势的函数关系式,对下一阶段的监测物理量进行预测,防患于未然。如预测最终位移值,预测结构物的安全性,并据此确定工程技术措施等。因此,对每一测点的监测结果要根据管理基准和位移变化速率(mm)/d等综合判断结构和建筑物的安全状况,并编写周、月汇总报表,及时反馈指导施工,调整施工参数,达到安全、快速、高效施工之目的。

根据我单位修建城市地铁时施工监测的成功经验,我们拟采用《铁路隧道喷锚构筑法技术规则》(TBJ108-92)的Ⅲ级监测管理并配合位移速率作为监测管理基准,即将允许值的三分之二作为警告值,允许值的三分之一作为基准值,将警告值和允许值之间称为警告范围,实测值落在此范围,应提出警告,说明需商讨和采取施工对策,预防最终位移值超限,警告值和基准值之间称为注意范围,实测值落在基准值以下,说明隧道和围岩是稳定的。

当施工中出现下列情况之一时,应立即停止施工,采取措施处理。 (1)基坑围护结构及其背后土体坍塌、滑移及开裂。 (2)监测数据有不断增大的趋势。

(3)基坑围护结构和暗挖隧道支护结构变形过大,超过控制基准或出现明显的受力裂缝并不断发展。

(4)时态曲线长时间没有变缓的趋势等。

具体监测资料的反馈程序见下图

监测资料反馈管理程序框图

监控信息反馈流程图

2.8监测管理体系和质量保证措施

(1)成立监测管理小组,由项目经理及专业监测人员组成

针对本工程监测项目的特点建立专业组织机构,由我单位派驻现场4-5人组成监控量测及信息反馈小组,成员由多年从事地下工程施工及监测经验的技术人员组成,组长由具有丰富施工经验,具有较高结构分析和计算能力的工程师担任。监测小组根据监测项目分为地面和地下两个监测小组,各设一名专项负责人,在组长的领导下负责地面和地下的日常监测工作及资料整理工作。

施工监测组织机构图

(2)制定监测实施性计划,使监测按计划、有步骤地进行 (3)建立质量责任制,确保施工监测质量

(4)设定控制值,采用三级监测管理,当发现监测物理量接近或超过警戒控制值时,立即报告监理,并向监理报送应急补救措施。

(5)观测前,对所有仪器设备必须按有关规定进行检验和校核,确保仪器的稳定可靠性和保证观测的精度。

(6)观测前,采用增加测回数的措施,保证初始值的准确性。

(7)制定各监测点位的保护措施,定期对使用的基准点或工作基点进行稳定性检测。

(8)各个项目的监测资料必须保持有完整、清晰的监测记录、图表、曲线及文字报告。

(9)建立监测复核制度,确保监控数据的真实可靠性。

(10)在监测过程中,必须遵守相应的测试细则及相应的规范要求。 (11)量测资料的储存、计算、管理均采用计算机系统进行。

204标段控制资料(2009)

坐标系:大连城建坐标系 高基准程:1985国家高程基准

2009年12月15日

大连地铁204标段工程测量专项方案

一、施工测量

1工程测量

施工测量是标定和检查施工中线方向、测设坡度和放样建筑物,测量是施工的导向,是确保工程质量的前提和基础。地铁工程施工测量的施测环境和条件复杂,要求的施测精度又相当高,必须精心施测和进行成果整理,工程测量成果必须符合相关规范的要求。

1.1施工测量技术要求

(1)施工测量按招标文件和施工图纸、《城市测量规范》CJJ8、《地下铁道、轻轨交通工程测量规范》GB50308及《工程测量规范》GB50026的有关规定执行。

(2)对建设管理方提供的控制点进行检测,符合精度要求后再进行工程的施工测量。

(3)对整个工程场区按施工需要布设精密导线平面控制网(如采用原有控制网作为场区控制网时,要先复核检查,符合精度要求后方能取用)。

(4)场区内按施工需要布设高程控制网,并应采用城市二等水准测量的技术要求施测,其路线高程闭合差应在±8Lmm(L为线路长度,以km计)之内。

(5)隧道开挖的贯通中误差规定为:横向±50mm、竖向±25mm,极限误差为中误差的2倍,即纵向贯通误差限差为L/5000(L为贯通距离, 以km计)。

1.2施工测量特点

(1)车站包括主体结构、出入口和风道。采用明挖及盖挖顺作法施工方法,施工工艺复杂,工序转换快,地下施测条件差,测量工作量大。

要布设形成检测条件并经常复测控制点。

(3)对于车站主体结构,净宽尺寸在建筑限界之外,还应考虑如下的加宽

量:210mm综合施工误差+H/150钻孔灌注桩施工误差及水平位移。

(4)区间暗挖先通过吊出口,再通过横通道分别进入左、右线隧道,并且曲线半径较小,造成了后视距离短、转角多,给正洞内导线延伸带来一定难度。

1.3主要测量仪器设备及人员组织

(1)根据本标段工程的实际情况,配备以下测量仪器及工具

(2)现场设测量工程师2人,测量技术人员2人,测量工6人,以满足现场施工测量及施工的需要。

1.4平面控制测量

根据本标段的工程特点,利用建设管理方提供的测量控制点,在场区内按精密导线网布设。精密导线点应沿线路走向在本标段所经过的实际地形选定,以GPS网为基础布设成附合导线、闭合导线或结点网;为了保证本标段与相邻标段的贯通,导线测量用的控制点至少要贯通联测到相邻标段所用的控制点两个点以上。利用贯通平差后的控制点对建筑物的轴线进行测设。

精密导线技术精度要求:导线全长3~5km,平均边长为350m,测角中误差≤±2.5″,最弱点的点位中误差≤±15mm,相邻点的相对点位中误差≤±8mm,方位角闭合差≤±5n(n为导线的角度个数),导线全长相对闭合差≤1/35000;导线点位可充分利用城市已埋设的永久标志,或按城市导线标志埋设。位于车站地区的导线点必须选在基坑开挖影响范围之外,稳定可靠,而且应能与附近的GPS点通视。

本标段拟布设三条趋近导线,并附合在精密导线点上。地面趋近导线全长不宜超过350m,平均边长60m,最短边应大于30m,趋近导线测量应符合精密导线

的有关技术精度要求。

1.4.1车站平面控制测量

利用测设好的平面控制网,以车站的两个轴线方向为基线方向,直接把轴线控制点测设于车站基坑边,经检查复核无误后,设立护桩,利用轴线控制点通过经纬仪把车站轴线直接投测到基坑内,并对车站结构进一步进行施工放线。若受场地影响,为保证测量精度,也可按以下分步方法进行测设。

(1)车站结构施工测量

利用测设好的平面控制网,测设围护结构中心线车站、风道和出入口通道,并设置三个以上的护桩,且采用量尺分别复核结构总长和分部长度。

(2)基坑导线定向测量

向基坑内传递坐标点(不少于两个、可利用结构底板进行水平基点埋设),是从基坑边向基坑内采用导线测量的方法进行定向(详见图15-1)。定向测量拟利用有双轴补偿的全站仪,且全站仪配有弯管目镜,要求其垂直角小于30°,导线定向的距离必须进行对向观测,定向边中误差应在±8″之内。

地面已知导线边

导线定向测量示意图

坐标点传递后,即可进行主体结构放样测量。首先测设线路中线和法线作为结构放样的基准线,根据基线与结构(墙、柱)相对关系值,测量内结构净空及柱身中轴线,并用量尺检核墙与柱、柱与柱的距离是否与设计值相符。

1.4.2区间暗挖隧道平面控制测量

(1)吊出口联系测量

施工吊出口平面尺寸4.6m×6m,井深25.23m,拟采用吊出口联系三角形测量(详见图15-2)即通过吊出口悬挂两根钢丝,由近井点测定与钢丝的距离和角度,从而算得钢丝的坐标以及它们的方位角,然后在井下认为钢丝的坐标和方位角已知,通过测量和计算便可得出地下导线的坐标和方位角,这样就把地上和地下联系起来了。

支撑架

联系三角形定向测量示意图

(2)地下施工控制导线测量

地下导线测量按Ⅰ级导线精度要求施测。测角中误差≤±5″,导线全长闭合差≤1/15000。开挖至隧道全长的1/3和2/3处、贯通前50~100m,分别对地下导线进行复测,确认成果正确或采用新成果,保障贯通精度。

在隧道未贯通前,地下导线为一条支导线,建立时要形成检核条件,保证导线的精度。地下施工控制导线是隧道掘进的依据,每次延伸施工控制导线前,应对已有的施工控制导线的前三个导线点进行检测。地下导线点布设成导线锁的形式,形成较多的检核条件,以提高导线点的精度。导线点如有变动,应选择另外稳定的施工控制导线点进行施工导线延伸测量。施工控制导线在隧道贯通前应测

量三次,其测量时间与吊出口定向测量同步进行。重复测量的坐标值与原测量的坐标值较差小于±10mm时,应采取逐次的加权平均值作为施工控制导线延伸测量的起算值。

曲线隧道施工控制导线点宜埋设在曲线五大桩(或三大桩)点上,一般边长不应小于60m,导线测量采用全站仪施测,左、右角各测二测回,左、右角平均值之和与360°较差小于6″,边长往返观测各二测回,往返观测平均值较差应小于7mm。

除上述控制测量外,本工程区间隧道平面控制测量,还应通过设在地面上的测量孔(拟设在贯通区间全长的1/3和2/3处、贯通前50~100m)投点复核,测量孔采用钻机成孔。当隧道开挖至测量孔位置时,即利用通过测量孔投测下来的控制点复核洞内导线点,精确控制隧道中线。必要时可根据实际情况在地面多设测量孔点复核。

(3)施工放样测量

施工中的测量控制采用极坐标法进行施测。为了加强放样点的检核条件,可用另外两个已知导线点作起算数据,用同样方法来检测放样点正确与否,或利用全站仪的坐标实测功能,用另两个已知导线点来实测放样点的坐标,放样点理论坐标与检测后的实测坐标X、Y值相差均在±3mm以内,可用这些放样点指导隧道施工。也可用放线两个点,用尺子量测两点的距离进行复核,距离相差在±2mm以内,可用这些点指导隧道施工。

暗挖区间隧道施工放样主要是控制线路设计中线、里程、高程和同步线。隧道开挖时,在隧道中线上安置激光指向仪,调节后的激光代表线路中线或隧道中线的切线或弦线的方向及线路纵断面的坡度。每个洞的上部开挖可用激光指向仪控制标高,下部开挖采用放起拱线标高来控制。施工期间要经常检测激光指向仪的中线和坡度,采用往返或变动两次仪器高法进行水准测量。在隧道初支过程中,架设钢格栅时要严格的控制中线、垂直度和同步线,其中格栅中线和同步线的测量允许误差为±20mm,格栅垂直度允许误差为3°。

1.5高程控制测量

地面高程控制网应是在城市二等水准点下布设的精密水准网。精密水准测量的主要技术要求应符合下表的规定。

精密水准测量观测的主要技术要求

附合或环线的水准路线长度(km)。

(1)车站高程控制测量

对于车站施工时的高程测量控制,利用复核或增设的水准基点,按精密水准测量要求把高程引测到基坑内,并在基坑内设置水准基点,且不能少于两个,通过基坑内和地面上的水准基点对车站施工进行高程测量控制。

(2)区间隧道高程控制测量

区间隧道高程测量控制,通过吊出口采用长钢卷尺导入法把高程传递至井下,向地下传递高程的次数,与坐标传递同步进行。先作趋近水准测量,再作吊出口高程传递

吊出口高程传递示意图

经吊出口传递高程采用悬吊钢尺(经检定后),井上和井下两台水准仪同时观测读数,每次错动钢尺3~5cm,施测三次,高差较差不大于3mm时,取平均值使用,当测深超过20m时三次误差控制在±5mm以内。

地下施工控制水准点,可与地下导线点合埋设于一点,亦可另设水准点。水准点密度与导线点数基本相同,在曲线段可适当增加一些。地下控制水准测量的方法和精度要求同地面精密水准测量。

地下施工水准测量可采用S3水准仪和5m塔尺进行往返观测,其闭合差应在±20Lmm(L以km计)之内。开挖至隧道全长的1/3和2/3处、贯通前50~100m,分别对地下水准按精密水准测量复核,确认成果正确或采用新成果,保障高程贯通精度。

1.6中线控制测量

施工前,以全站仪进行洞外精密导线网控制测量,定出吊出口的准确位置,放设护桩。在吊出口通道与正线相交处的隧道顶部从地面钻一测量孔(使用地质钻孔),并在孔内安设φ150钢管并固定,然后利用地面网点,从吊出口和测量孔向吊出口内和洞内投点,利用该点复核校正,以确保其精度,并使洞内左右线导线形成闭合环。

1.7洞内日常施工测量

按有关规则要求进行,用偏角法和坐标法实测施工控制线,及时向开挖面传递中线和高程。则测量组用TAPS断面测量仪测设隧道轮廓线及布置炮眼位置,爆破后及时测量出隧道断面,初期支护和二次衬砌前,必须进行复核,确认准确后方进行下道工序施工。

1.8与邻近标段或建筑物接口处的联系测量

对于车站及区间预留的接口,施工前要对这些位置轴线、高程与有关部门进行确认,并进行与对方控制网的复核测量,以保证接口的正确连接。

1.9施工控制测量成果的检查和检测

检测均应按照规定的同等级精度作业要求进行,及时地提出成果报告,一般检测互差应小于2倍中误差,可用原测成果,若大于该值或发现粗差,应由监理会同监理部采取专项检测来处理。

检测地上、地下导线的坐标互差≤±12mm,≤±20mm;检测地上、地下高程点的高程互差≤±3mm,≤±5mm;检测地下导线起始边(基线边)方位角的互差 ≤±10″;检测相邻高程点互差≤±3mm;检测导线边的边长互差≤±8mm;检测隧道中线点坐标的互差≤±16mm;检测经吊出口悬吊钢尺传递高程的互差≤±3mm;对影响隧道横向贯通的检测误差应严格控制。

1.10隧道贯通误差测量

平面贯通测量:在隧道贯通面处采用坐标法从两端测定贯通点坐标差,并分别投影到线路和线路的法线方向上,求得横向误差和纵向误差进行评定(标准见“地铁工程平面与高程贯通误差分配表15-1”)。

高程贯通测量:用水准仪从贯通面两端测定贯通点的高程,其误差即为竖向贯通误差,评定(标准见“地铁工程平面与高程贯通误差分配表15-1”)。

1.11地下控制网平差和中线调整

隧道贯通后,地下导线则由支导线经与另一端基线边联测变成了附合导线,支线水准也变成了附合水准,当闭合差不超过限差规定时,进行平差计算。

按导线点平差后的坐标值调整线路中线点,改点后再进行中线点的检测,直线夹角不符值≤±6″,曲线上折角互差≤±7″,高程亦要使用平差后的成果。

隧道贯通后导线平差的新成果将作为净空测量、调整中线、测设铺轨基标及进行变形监测的起始数据。

为了确保隧道正确贯通和满足设计的净空限界,必须有严格的检查和检测制度。施工控制测量成果,经自检和驻地监理审批,向施工监理部提出检测申请(申请单与成果表),由施工监理部通知测量监理进行检测。

1.12施工测量精度的保障措施

测量工作不允许出现测量误差超出限差的情况,在施工中,必须高度重视测量工作,必须加强施工测量检核。为达到中线和标高的测量误差均在限差内的目的,特制定以下技术措施:

(1)施工放样前将施工测量方案设计与意见报告监理审批。内容包括施测方法、操作规程、观测仪器设备的配置和测量专业人员的配备等。

(2)固定专用测量仪器和工具设备,建立专业测量组,专人观测和成果整理。

(3)建立测量复核制度,按“三级复核制”的原则进行施测。每次施测后,

须经测量工程师复核。

(4)加强对测量所有控制点的保护,防止移动和损坏;一旦发生移动和损坏,应立即报告监理,并与监理协商补救措施。

(5)用于本工程的测量仪器和设备,应按照规定的日期、方法送到具有检定资格的部门检定和校准,合格后方可投入使用。

(6)用于测量的图纸资料,测量技术人员必须认真核对,必要时应到现场核对,确认无误无疑后,方可使用。如发现疑问作好记录并及时上报,待得到答复后,才能按图进行测量放样。

(7)原始观测值和记事项目,应在现场用钢笔或铅笔记录在规定格式的外业手簿中。测量技术人员要认真整理内业资料,保证所有测量资料的完整。资料必须一人计算,另外一人复核。抄录资料,亦须认真核对。

(8)外业前,测量技术人员对内业资料进行检查,所采用的测量方法、测量所用桩点以及测量要达到的目的向测工进行交底,做到人人明白;外业中,中线和高程测量要形成检核条件,满足校核条件要求的测量才能成为合格成果,否则返工重测。

(9)经常复核洞内有变形地方附近的导线点、水准点,随时掌握控制点的变形情况,关注量测信息。在测量工作中,随时发现点位变化,随时进行测量改正。严格遵守各项测量工作制度和工作程序,确保测量结果的准确性。

(10)外业后,应检查外业记录的结果是否齐全、清晰、正确,由另一人复核结果无误后,向工区技术主管交底。

(11)工区所用的导线点、水准点、轴线点(或中线点)要设置在工程施工影响范围之外、坚固稳定、不易受破坏且通视良好的地方。定期对上述各桩点进行检测,测量标志旁要有明显持久的标之记或说明。

(12)外业前,列出所用的测量仪器和工具,检查是否完好。在运输和使用测量仪器和的过程中,应注意保护,如发现仪器有异常,应立即停止使用并送检,并对上次测量成果重新作出评定。

(13)测量过程中,必须消除干扰,需停工的要停工,以保证测量精度。各种建筑物放样时应和施工人员密切配合,避免出现不必要的偏差。

(14)积极和测量监理工程师进行联系、沟通和配合,满足测量监理工程师提出的测量技术要求及意见,并把测量结果和资料及时上报监理,测量监理工程

师经过内业资料复核和外业实测确定无误后,方可进行下步工序的施工。 2施工监测测量

2.1监测目的

(1)了解暗挖隧道支护结构和周围地层的变形情况,为施工日常管理提供信息,保证施工安全。

隧道支护结构和周围土体的变形及应力状态和其稳定情况密切相关,隧道支护结构和周围土体各种破坏形式产生之前通常有大的位移、变形、受力异常等,监测数据和成果是现场施工管理和技术人员判断工程是否安全的重要依据。因此,在施工过程中,通常依据观测结果来验证施工方案的正确性,调整施工参数,必要时采取辅助工程措施,以此达到信息化施工目的。

(2)修改施工设计

将现场测量的数据、信息及时反馈,以修改调整爆破参数、支护参数等参数,完善施工方案。

(3)根据监测数据,分析施工引起的地表隆陷,以及地层应力重分布、地层变位对紧邻建(构)筑物和市政基础设施的影响;以采取相应的加固、防范措施,确保紧邻建(构)筑物和市政基础设施的安全。

(4)验证支护结构设计,为支护结构设计和施工方案的修订提供反馈信息。 我国当前地下工程支护结构设计基本处于半经验半理论状态,土压力多采用经典的理论公式,与现场情况有一定差异;地下结构周围土层软弱,复杂多变,结构设计的荷载常不确定,而且,荷载与支护结构变形、施工工艺有直接关系,因此,在施工中迫切需要知道现场实际的应力和变形情况,与设计值进行比较,必要时对设计方案和施工过程进行修改。施工监测是支护结构设计的重要组成部分。

(5)积累资料,以提高地下工程的设计和施工水平。

支护结构的土压力分布受支护方式、支护结构刚度、施工过程和被支护土类的影响,并直接与支护结构及土体的位移有关,常很复杂,现行设计分析理论尚未达到成熟的阶段,积累完整准确的地下工程开挖与支护监测结果,对于总结工程经验,完善设计分析理论是很有价值的。

与施工措施,以期达到安全与经济合理的目的。

2.2监测系统设计原则

(1)在地下工程中进行量测,绝不是单纯地为了获取信息,而是把它作为

施工管理的一个积极有效的手段,因此量测信息应能:

确切地预报破坏和变形等未来的动态,对设计参数和施工流程加以监控,以便及时掌握围岩动态而采取适当的措施(如预估最终位移值、根据监控基准调整、修改开挖和支护的顺序和时机等)。

满足作为设计变更的重要信息和各项要求,如提供设计、施工所需的重要参数(初始位移速度、作用荷载等)。

(2)施工监测是一项系统工程,监测工作的成败与监测方法的选取及测点的布置直接相关。根据我单位监测工作的经验,归纳以下5条原则。

①可靠性原则:可靠性原则是监测系统设计中所考虑的最重要的原则。为了确保其可靠性,必须做到:第一,系统需要采用可靠的仪器。第二,应在监测期间保护好测点。

②多层次监测原则:多层次监测原则的具体含义有四点:

a、在监测对象上以位移为主,兼顾其它监测项目。

b、在监测方法上以仪器监测为主,并辅以巡检的方法。

c、在监测仪器选择上以机测仪器为主,辅以电测仪器。

d、考虑分别在地表及临近建筑物与地下管线上布点以形成具有一定测点覆盖率的监测网。

③重点监测关键区的原则:观测仪器布置应合理,注意时空关系,控制关键部位。在具有不同地质条件和水文地质条件、周围建筑物及地下管线段,其稳定的标准是不同的。稳定性差的地段应重点进行监测,以保证建筑物及地下管线的安全。

④方便实用原则:为减少监测与施工之间的干扰,监测系统的安装和测量应尽量做到方便实用。

⑤经济合理原则:系统设计时考虑实用的仪器,不必过分追求仪器的先进性,以降低监测费用。

2.3监测项目

监控量测的项目主要根据工程的重要及难易程度、监测目的、工程地质和水文地质、围护结构形式、基坑深度、施工方法、经济情况、工程周边环境等综合而定,力求在满足需要的前提下,少而精。本工程的监测项目除考虑上述因素外,主要根据设计的要求而定,具体监测项目见表14-3,主要包括二部分:

(1)车站基坑围护结构及周边环境监测

(2)区间暗挖部分的隧道结构及周边环境监测

车站监测项目汇总表

区间暗挖部分的隧道结构及周边环境监测

工人员。

2.4监测网建立

2.4.1监测断面的选择

(1)监测断面应按工程的需求、地质条件以及施工条件选择具有代表性的断面。

(2)监测断面布置应合理,注意时空关系,采取表面与深部结合、重点与一般结合、局部与整体结合,使测网、测面、测点形成一个系统的、能控制整个工程的各关键部位。

根据前述明挖基坑工况动态分析,地表主要沉降发生在距基坑边0~4m区段,因而在测点主要沿平行于基坑边2m处布设。

(3)监测断面分为主要监测断面和辅助监测断面,主断面可埋设多种仪器,进行多项监测。

基坑监测主断面上主要进行地表沉降、桩体位移、土体位移、地下水位,暗挖区间监测主断面主要进行地表沉降、拱顶下沉、水平收敛、土压力、初支与二衬间接触压力、初支与二衬钢筋主筋轴力监测等。同时在各监测主断面附近设辅助监测断面,辅助监测断面埋设仪器少,用于监测个别有重大意义的参数,在基坑辅助监测断面上布置了地表沉降、桩体位移和支撑轴力测点,在暗挖隧道辅助监测断面上布置了地表沉降、拱顶下沉、水平收敛测点。

以上断面布置既保证了重点,又简化了工作面,降低了费用

2.4.2测点布设

测点布置见附图除按设计要求布置测点外,加强了对施工和降水影响范围内的管线上方地表沉降的观测。

车站监测布置图

南关岭站

姚家站

区间监测布置图

2.5监测方法

2.5.1沉降监测

采用精密水准仪和铟钢尺按二级水准测量进行,包括地表沉降、地下管线、周边建筑物沉降。在基坑和暗挖隧道开挖前,应在地面变形影响范围之外,便于长期保护的稳定位置,埋设水准点,进行水准网布设,首次观测时,适当增加测回数,一般取3~5次的数据作为测点的初始读数。

2.5.2拱顶下沉及净空收敛监测

监测点在支护结构施工时埋设,在支护结构完成后最短时间内取得的读数为初始值,之后按前述监测频率要求进行日常监测。

2.5.3初支与二衬钢筋应力监测

将钢筋计串联焊接在被测主筋上,安装时应注意尽可能使钢筋计处于不受力状态,特别不应处于受弯状态,将钢筋计的导线逐段捆在临近钢筋上,引到地面的测试匣中,喷砼或二衬砼施作后,检查钢筋计的电阻值和绝缘情况,做好引出线和测试匣的保护措施。

2.5.4接触压力监测

根据接触压力变化幅度确定压力盒量程。压力盒采用直接法埋设在初支与土体、初支与二衬间,采用初支喷砼或二衬灌注砼后12h的三次读数的平均值作为接触压力测试初始值。

2.5.5地下水位监测

采用电子水位计测量水位距孔口的距离,用水准测量方法测出孔口标高,从而确定水位标高,进一步计算水位变化情况,施工前,对所有观测孔统一联测静水位,统一编号,量测基准点,选择典型代表性的一排观测孔,从降水开始,观测时间分别采用30min、1h、4h、8h、12h以后24h观测1~2次,直到降水工程结束。

2.5.6基坑围护结构桩体与桩背土体位移监测

采用测斜管监测,利用钻孔埋设在桩后土体和直接埋设在桩身砼中,埋设方法见下图。

常,将测头放入测斜管,测试应从孔底开始,自下而上沿导管全长每一个测段固定位置测读一次,测段长度为0.5~1m,每个测段测试一次读数后,将测头提转180°,插入同一对导槽重复测试,两次读数应接近,符号相反,取数字平均值,作为该次监测值,在基坑开挖前,以连续三次测试无明显差异读数的平均值作为初始值。

2.5.7支撑轴力监测

采用轴力计进行监测。轴力计的量程需要满足设计轴力的要求。在需要埋设

轴力计的钢支撑架设前,将轴力计焊接在支撑的非加力端的中心,在轴力计与钢围囹、钢支撑之间要垫设钢板,以免轴力过大使围囹变形,导致支撑失去作用。支撑加力后,即可进行监测。

2.5.8基坑回弹

采用钢尺沉降仪,在设计位置首先用钻头钻孔、清孔、安装管子的同时安装

磁环并回填。安装过程中应准确定位磁环位置,拧紧螺丝,回填不能过快,安装好后加上保护措施。安装完毕后,取三次值的平均值作为初值。

2.5.9爆破监测

初期爆破监测5~10次,爆破后期正常施工后按需要选择决定。根据量测结果核算同段最大药量并确定分段段数。震动速度的安全值按2cm/s控制。

2.5.9.1布点

测点分别设在拱顶及拱脚以下1m处,暗挖区间监测时,测点距掌子面的距离以爆破后飞石不损坏测点为原则。车站监测时,所测均为车站附近建筑物上通过监测能真实反映其震动情况的地方。本站附近较重要和需保护的建筑物有居民楼,每处布置四个测点。

2.5.9.2测点埋设

在所埋预埋件的地方,用冲击钻钻孔,在孔中填塞水泥砂浆后插入预埋件,使预埋件轴线垂直于测量表面。

2.5.9.3测试

监测前,将传感器编号,固定在规定的测振仪中,并配合固定的振子,然后在标定振动台上进行标定,作出振子跳高和速度的标定曲线。传感器、放大器槽路和振子在监测中不得互换,以提高量测精度。每隔一段时间后,要重新对该系统进行标定,检查其是否发生变化,以便修正。抗震性能越强,防干扰性能越好,量测数据就越精确、稳定。量测时注意导线的接头防潮和屏蔽。

监测前传感器预埋件必须牢固地固定在测点处的围岩内,留出少量螺栓,以和传感器拧紧为原则,不要使传感器离测量面太远,以防产生相对运动,影响量测精度。

监测时,起爆与测量仪器的同步通过一同步电缆(一端连在掌子面起爆雷管上,另一段连在示波器上)实现。

2.5.9.4记录与计算

量取曲线中最大振幅,由标定曲线可得出最大振速,要求最大振速不得超过相应的设计值。

2.6控制标准

2.6.1基坑地表沉降及围护结构变形控制基准

根据招标、设计文件及参考北京基坑工程设计规程得出以下控制标准,见下表。

基坑监控量测基准表

基坑等级 一级

桩体最大水平位移(mm)

≤0.2H且≤30

地面最大沉降(mm)

≤0.2H

注:H为基坑开挖深度。 2.6.2建筑物下沉及倾斜控制基准

见下表。

各类建筑物允许倾斜值

2、倾斜是指基础倾斜方向两端点的沉降差与其距离的比值。 3、如有关部门对建筑物的沉降有特殊要求时,以其要求为准 4、以上控制标准采用<建筑地基基础设计规范>GBJ7-89基准值。

2.6.3爆破震速控制

振动速度控制1.5cm/s。

2.7监测资料的分析、预测和信息反馈

取得各种监测资料后,需及时进行处理,排除仪器、读数等操作过程中的失误,剔除和识别各种粗大、偶然和系统误差,避免漏测和错测,保证监测数据的可靠性和完整性,采用计算机进行监控量测资料的整理和初步定性分析工作。

(1)数据整理

把原始数据通过一定的方法,如按大小的排序用频率分布的形式把一组数据分布情况显示出来,进行数据的数字特征值计算,离群数据的取舍。

(2)插值法

在实测数据的基础上,采用函数近似的方法,求得符合测量规律而又未实测到的数据。

(3)采用统计分析方法对监测结果进行回归分析

寻找一种能够较好反映监测数据变化规律和趋势的函数关系式,对下一阶段的监测物理量进行预测,防患于未然。如预测最终位移值,预测结构物的安全性,并据此确定工程技术措施等。因此,对每一测点的监测结果要根据管理基准和位移变化速率(mm)/d等综合判断结构和建筑物的安全状况,并编写周、月汇总报表,及时反馈指导施工,调整施工参数,达到安全、快速、高效施工之目的。

根据我单位修建城市地铁时施工监测的成功经验,我们拟采用《铁路隧道喷锚构筑法技术规则》(TBJ108-92)的Ⅲ级监测管理并配合位移速率作为监测管理基准,即将允许值的三分之二作为警告值,允许值的三分之一作为基准值,将警告值和允许值之间称为警告范围,实测值落在此范围,应提出警告,说明需商讨和采取施工对策,预防最终位移值超限,警告值和基准值之间称为注意范围,实测值落在基准值以下,说明隧道和围岩是稳定的。

当施工中出现下列情况之一时,应立即停止施工,采取措施处理。 (1)基坑围护结构及其背后土体坍塌、滑移及开裂。 (2)监测数据有不断增大的趋势。

(3)基坑围护结构和暗挖隧道支护结构变形过大,超过控制基准或出现明显的受力裂缝并不断发展。

(4)时态曲线长时间没有变缓的趋势等。

具体监测资料的反馈程序见下图

监测资料反馈管理程序框图

监控信息反馈流程图

2.8监测管理体系和质量保证措施

(1)成立监测管理小组,由项目经理及专业监测人员组成

针对本工程监测项目的特点建立专业组织机构,由我单位派驻现场4-5人组成监控量测及信息反馈小组,成员由多年从事地下工程施工及监测经验的技术人员组成,组长由具有丰富施工经验,具有较高结构分析和计算能力的工程师担任。监测小组根据监测项目分为地面和地下两个监测小组,各设一名专项负责人,在组长的领导下负责地面和地下的日常监测工作及资料整理工作。

施工监测组织机构图

(2)制定监测实施性计划,使监测按计划、有步骤地进行 (3)建立质量责任制,确保施工监测质量

(4)设定控制值,采用三级监测管理,当发现监测物理量接近或超过警戒控制值时,立即报告监理,并向监理报送应急补救措施。

(5)观测前,对所有仪器设备必须按有关规定进行检验和校核,确保仪器的稳定可靠性和保证观测的精度。

(6)观测前,采用增加测回数的措施,保证初始值的准确性。

(7)制定各监测点位的保护措施,定期对使用的基准点或工作基点进行稳定性检测。

(8)各个项目的监测资料必须保持有完整、清晰的监测记录、图表、曲线及文字报告。

(9)建立监测复核制度,确保监控数据的真实可靠性。

(10)在监测过程中,必须遵守相应的测试细则及相应的规范要求。 (11)量测资料的储存、计算、管理均采用计算机系统进行。

204标段控制资料(2009)

坐标系:大连城建坐标系 高基准程:1985国家高程基准

2009年12月15日


相关内容

  • 150年前,"老鼠洞"催生了地铁
  • 至2012年12月30日,北京新开通了4条地铁线后,地铁总里程跃居世界第一.排名随后的城市分别是首尔和上海,而地铁的诞生地伦敦则排名第四. 目前,世界上已有43个国家的118座城市建有地铁,为缓解城市交通作出了不可磨灭的贡献. "火车入地"灵感源自老鼠洞 首条地铁年运载950万乘 ...

  • 徕卡隧道净空测量解决方案之净空点标定
  • 徕卡地铁隧道净空测量解决方案 ---- 净空点标定 邵国防 2015年9月22日 ⏹ 适用范围: 地铁铺轨前隧道净空点标定 ⏹ 方案介绍: 地铁隧道的净空直接关系到地铁的安全运行,在地铁铺轨前,隧道净空测量是一项十分重要的测量任务.目前很多地铁项目都要求施工方把所测的净空点在实际位置进行标记出来,以 ...

  • 长盾构区间的贯通测量误差预计
  • 北京地铁10号线二期工程长盾构区间 的贯通测量误差预计 申报专业:测绘(大地与工程测量) 申报职称:工程师 工作单位:北京城建勘测设计研究院有限责任公司姓 名:宋 超 北京地铁10号线二期工程长盾构区间 的贯通测量误差预计 宋 超 (北京城建勘测设计研究院有限责任公司) 摘要:目前在地铁建设中盾构施 ...

  • 地铁测量监理细则
  • 南 京 地 铁 工 程 南京至高淳城际轨道禄口机场至溧水段TJ04标工程 监理实施细则 (工程测量) 内容提要: 专业工程特点 监理工作流程 监理工作控制目标及控制要点 监理工作方法及措施 项目监理部(章): 专业监理工程师: 总监理工程师: 日期: B1.8 目录 第一节 专业工程特点 ..... ...

  • 北京地铁电能质量管理系统方案V2
  • 北京地铁 电能质量监测系统方案 2008-8-7 2008-8-20 1. 概述 在每个国家的城市中,地铁都被认为是中.大型规模城市快速发展的标志符号.作为城市公共交通大动脉,地铁运营严重依赖电力供配电系统.地铁供配电系统不断面临着安全.可靠性压力,管理压力,成本压力.地铁供配电系统日益庞大,用电设 ...

  • 地铁工程施工测量方案
  • 第六篇 工程施工测量 第一章 施工测量的组织和管理 1.1 本标段施工测量的技术要求 ⑴施工测量的方法及精度要求严格遵守<地下铁道.轻轨交通工程测量规范>(GB50308-). 根据<地下铁道.轻轨交通工程测量规范>(GB50308-)规定,地铁车站和区间施工测量中线和高程的 ...

  • 分析地铁车站电气设备安装单机调试方案
  • 分析地铁车站电气设备安装单机调试方案 摘要:地铁工程是一种全地下式的大型公共建筑,其中人流众多,设施繁杂,如何保证地下的电气.空调系统正常工作就显得尤为重要,本文主要对电气.空调等调试进行分析. 关键词:空调系统:电气工程:调试方案 Abstract: the subway engineering ...

  • 盾构穿越地铁施工方案
  • 1.工程概况 1.1 工程简介 浦西北京西路-浦东华夏西路电力电缆隧道工程是世博站配套工程,连接市中心的世博500KV变电站和中环的三林500KV变电站,两站直线距离约11.5KM. 工程起点:北京西路(大田路口)世博变电站世博站内工作井内壁(即世博4#工作井内壁与隧道接口).工程终点:锦绣路(华夏 ...

  • 地铁工程 第三方监测
  • 地铁工程引入第三方监测,是为了判定地铁结构工程在施工期间的安全性及施工对周边环境的影响,验证基坑开挖方案和环境保护方案的正确性,对可能发生的危险及环境安全的隐患或事故提供及时.准确的预报,以便及时采取有效措施,避免事故的发生:在基坑开挖过程中根据监测数据实现信息化施工,将监测结果用于优化设计,为设计 ...