沥青混合料的疲劳试验及其影响因素

沥青混合料的疲劳试验及其影响因素

摘 要:疲劳特性的研究方法概括起来包括两种即现象学法和力学近似法。应用现象学法主要是进行疲劳试验,得出疲劳寿命与施加应力或应变的关系。力学近似法是将应力状态的改变作为开裂、几何尺寸及边界条件、材料特性及其统计变异性的结果来考虑,并对裂缝的扩展和材料中疲劳的重分布所起的作用进行分析,从而它有助于人们认识破坏的形成和发展的机理。

关键词:沥青混合料 疲劳特性 现象学法 力学近似法

1 概述

路面使用期间,在气侯环境因素和车轮荷载的重复作用下,损伤逐渐累积,路面结构强度逐渐下降,当荷载作用次数超过一定次数之后,在荷载作用下路面内产生的应力就会超过性能下降后的结构抗力,使路面出现裂纹,产生疲劳断裂破坏。这是由于材料内部存在缺陷或非均匀性,引起应力集中而出现微裂隙,应力的反复作用使微裂隙逐渐扩展、汇合,从而不断减少有效的承受应力的面积,造成材料的刚度和强度逐步下降,最终在反复作用一定次数后导致破坏。材料抵抗疲劳破坏的能力,可用达到疲劳破坏时所能经受的重复应力大小(或称疲劳强度)和作用次数(称为疲劳寿命)来表示。疲劳破坏是当前沥青路面破坏的主要形式之一。沥青路面的耐久性是指沥青路面在使用过程中承受各种外界因素的作用,其性质能保持稳定或较小发生变化的特性。沥青混合料的抗疲劳性能是评价沥青路面耐久性的一个重要指标。

2沥青混合料的疲劳试验

疲劳破坏作为沥青路面的三大破坏形式之一,人们对其试验研究方法给予了很大的关注,归纳起来可以分为四类:一是实际路面在真实行车荷载作用下的疲劳破坏试验,如美国的AASHO试验路,历时三年才完成;二是足尺路面结构在模拟行车荷载作用下的疲劳试验,包括环道试验和加速加载试验,如南非的重

型车辆模拟车(HVS)、澳大利亚和新西兰的加速加载设备(ALF)、美国华盛顿州立大学的室外大型环道、长沙理工大学的亚洲最大的路面直道实验中心和重庆公路研究所的室内大型环道疲劳试验等;三是试板试验法;四是室内小型试件的疲劳试验。由于前三类试验研究方法耗资大、周期长,开展得并不普遍,多采用的是周期短、费用少的室内小型试件的疲劳试验。

但是,沥青混合料的室内小型疲劳试验方法繁多,北美大多数国家采用梁式试件进行反复疲劳试验;欧洲的研究者多采用悬臂梯形梁试件,在其端部施加正弦波荷载;而采用圆柱试件进行间接拉伸疲劳试验近年来在日本开展得比较多。总之,各研究者所采用的实验方法不尽相同,呈现出一种百家争鸣的现象。迄今为止,各国均没有将疲劳试验作为标准试验方法纳入规范。

沥青路面的温度疲劳开裂是由于沥青混合料因温度的日周期性变化引起的低频疲劳应力达到材料的疲劳极限所致。因此,在进行沥青混合料收缩开裂有关力学特性试验时以采用拉伸试验较为适宜。进行沥青混合料拉伸试验通常有直接拉伸试验、弯曲试验和劈裂试验三种方法,然而后两种方法属于间接拉伸,虽然导致材料破坏的主要原因是拉应力的作用,但其应力状态和温度收缩时的路面受力情况不完全一致,因此,本次试验采用小梁直接拉伸的疲劳试验方法。

综合目前已有研究成果,沥青路面疲劳特性的研究方法基本上分为两类:一类为现象学法,即传统的疲劳理论方法,它采用疲劳曲线表征材料的疲劳特性;另一类为力学近似法,即应用断裂力学、损伤力学原理分析疲劳裂缝扩展规律,以确定材料疲劳寿命。

2.1现象学法

应用现象学法进行疲劳试验,通常采用控制应力和控制应变两种不同的加载模式。控制应力方式是指反复加载过程中所施加荷载(或应力)的峰谷值始终保持不变,随着加载次数的增加最终导致试件断裂破坏。试验结果可用下式表示:

1Nf=k()n σ

式中:Nf—试件破坏时的加载次数;

k,n—取决与沥青混合料的成分和特性的常数;

σ—对试件每次施加常量应力的最大幅值。

由上式可知,当对应力σ和疲劳寿命Nf进行双对数回归时,函数关系为直线型。疲劳方程的两个参数k,n即为直线的截距和斜率。沥青混合料的疲劳性能通过疲劳方程的两个参数k,n来反映:n值越大,疲劳曲线越陡,疲劳寿命对应力水平变化越敏感;k值表示疲劳曲线线位的高低,k值越大,疲劳曲线线位越高,疲劳耐久性越好。

控制应变方式是指在反复加载过程中始终保持挠度或试件应变峰谷值不变。由于在这种控制下试件通常不会出现明显的断裂破坏,一般以沥青混合料劲度下降到初始劲度的50%或更低为疲劳破坏标准。试验结果常用下式表示:

1Nf=c()m ε

式中 Nf—沥青混合料劲度下降到初始劲度的50%或更低时的次数;

c,m—取决与沥青混合料的成分和特性的常数;

ε—对试件每次施加常量应变的最大幅值。

选用何种加载模式的疲劳试验能较好的反映路面疲劳特性,或者说选用控制应力还是控制应变进行路面疲劳强度设计,主要考虑以下两个因素:

(1)何种加载模式能更好地反映沥青混合料在路面中受行车荷载作用的疲劳特性。

(2)路面结构中,沥青混合料的应力、应变状态更接近于哪种加载模式。 两种加载方式与疲劳相应的关系见表1;SHRP试验表明:控制应变加载所得疲劳寿命≈2.4倍控制应力加载试验的疲劳寿命。

表1 应力控制和应变控制方式的比较

对路面弹性层状体系的分析表明,面层厚度大于12.6cm时,由于基层刚度相对比较小,荷载重复作用使面层应变增长较快,以致最后迅速增大而出现路面破裂,这一过程比较符合应力控制模式。我国近年来已建成和正在建设的高等级公路路面厚度大都超过此值,因此采用应力控制方式研究沥青混合料的疲劳特性比较接近于实际路面结构的疲劳特性,是合适且可行的。

本次试验采用应力控制方式加载。

事实上,对于沥青混合料来说,由于在疲劳试验中有一个显著的裂缝扩展过程,裂缝的产生和发展会改变应力的大小和分布,这时候控制的实际上不再是恒应力,而是应力逐渐增加(裂缝逐渐扩展使试件有效承载面积减小)的恒荷载控制。之所以仍称为控制应力是为了与惯用的定义和称呼相一致。

2.2力学近似法 断裂力学方法是将应力状态的改变作为开裂、几何尺寸及边界条件、材料特性及其统计变异性的结果来考虑,并对裂缝的扩展和材料中应力的重分布所起的作用进行分析。因此,它有助于人们认识破坏的形成和发展的机理。

试验常采用预切口的小梁试件,单边槽口呈“V”形或“U”形进行弯曲或拉伸试验。

应用这一方法的疲劳寿命被定义为在一定的应力状态下,材料的损坏按照裂缝扩展规律,从初始状态增长到危险和临界状态的时间。

根据目前已有的疲劳裂缝扩展规律进行比较,普遍认为P.C.Paris的裂缝扩展公式最适合沥青混合料的情况。

根据P.C.Paris的理论,裂缝扩展规律公式为:

dC AKn dN

式中 C—裂缝长度;

N—荷载作用次数;

A、n—材料常数;

K—应力强度因子,与荷载、试件几何尺寸和边界条件有关的参数。

损伤力学是近30年发展起来的一门新的科学,它是材料与结构的变形与破坏理论的重要组成部分,它将固体力学、材料强度理论和连续介质力学统一起来

研究受损材料的本构关系,解释材料的破坏机理,建立损伤的演变方程和计算材料的损伤程度,从而达到预估其寿命的目的。

在外载和环境的的作用下,由于细观结构的缺陷(如微裂纹、微空洞等)引起的材料或结构的劣化过程,称为损伤。损伤力学是研究含损伤介质的材料性质,以及在变形过程中损伤的演化发展直至破坏的力学过程的学科。用损伤力学得到的结果,既反映了材料微观结构的变化,又说明了材料宏观力学性能的实际变化状况,这在一定程度上弥补了断裂力学研究的不足。

3 影响沥青混合料疲劳性能的因素

影响沥青混合料疲劳性能的有多种因素,概括起来主要有以下几种:

1、试验条件;2、材料性质;3、环境条件。

上述因素的变化会对疲劳寿命产生影响是因为这些因素的变化会对沥青混合料的劲度产生影响,因此,可以从沥青混合料劲度的变化出发来分析疲劳寿命的变化。

参 考 文 献

[1] 田小革,郑健龙,许志鸿.沥青混合料的低频疲劳效应研究.力学与实践,2002,24

[2] 唐雪松,蒋持平,郑健龙.沥青混合料疲劳过程的损伤力学分析.应用力学学报,2000,17

[3] 张婧娜,谭忆秋,张肖宁.应用能量原理预测沥青混合料的疲劳破坏. 中国公路学报,

1998,11

[4] 孙德栋,彭波. 沥青路面设计与施工技术. 郑州:黄河水利出版社,2003,5

[5] 葛折圣,黄晓明.运用损伤力学理论预测沥青混合料的疲劳性能. 交通运输工程学报,

2003,3

沥青混合料的疲劳试验及其影响因素

摘 要:疲劳特性的研究方法概括起来包括两种即现象学法和力学近似法。应用现象学法主要是进行疲劳试验,得出疲劳寿命与施加应力或应变的关系。力学近似法是将应力状态的改变作为开裂、几何尺寸及边界条件、材料特性及其统计变异性的结果来考虑,并对裂缝的扩展和材料中疲劳的重分布所起的作用进行分析,从而它有助于人们认识破坏的形成和发展的机理。

关键词:沥青混合料 疲劳特性 现象学法 力学近似法

1 概述

路面使用期间,在气侯环境因素和车轮荷载的重复作用下,损伤逐渐累积,路面结构强度逐渐下降,当荷载作用次数超过一定次数之后,在荷载作用下路面内产生的应力就会超过性能下降后的结构抗力,使路面出现裂纹,产生疲劳断裂破坏。这是由于材料内部存在缺陷或非均匀性,引起应力集中而出现微裂隙,应力的反复作用使微裂隙逐渐扩展、汇合,从而不断减少有效的承受应力的面积,造成材料的刚度和强度逐步下降,最终在反复作用一定次数后导致破坏。材料抵抗疲劳破坏的能力,可用达到疲劳破坏时所能经受的重复应力大小(或称疲劳强度)和作用次数(称为疲劳寿命)来表示。疲劳破坏是当前沥青路面破坏的主要形式之一。沥青路面的耐久性是指沥青路面在使用过程中承受各种外界因素的作用,其性质能保持稳定或较小发生变化的特性。沥青混合料的抗疲劳性能是评价沥青路面耐久性的一个重要指标。

2沥青混合料的疲劳试验

疲劳破坏作为沥青路面的三大破坏形式之一,人们对其试验研究方法给予了很大的关注,归纳起来可以分为四类:一是实际路面在真实行车荷载作用下的疲劳破坏试验,如美国的AASHO试验路,历时三年才完成;二是足尺路面结构在模拟行车荷载作用下的疲劳试验,包括环道试验和加速加载试验,如南非的重

型车辆模拟车(HVS)、澳大利亚和新西兰的加速加载设备(ALF)、美国华盛顿州立大学的室外大型环道、长沙理工大学的亚洲最大的路面直道实验中心和重庆公路研究所的室内大型环道疲劳试验等;三是试板试验法;四是室内小型试件的疲劳试验。由于前三类试验研究方法耗资大、周期长,开展得并不普遍,多采用的是周期短、费用少的室内小型试件的疲劳试验。

但是,沥青混合料的室内小型疲劳试验方法繁多,北美大多数国家采用梁式试件进行反复疲劳试验;欧洲的研究者多采用悬臂梯形梁试件,在其端部施加正弦波荷载;而采用圆柱试件进行间接拉伸疲劳试验近年来在日本开展得比较多。总之,各研究者所采用的实验方法不尽相同,呈现出一种百家争鸣的现象。迄今为止,各国均没有将疲劳试验作为标准试验方法纳入规范。

沥青路面的温度疲劳开裂是由于沥青混合料因温度的日周期性变化引起的低频疲劳应力达到材料的疲劳极限所致。因此,在进行沥青混合料收缩开裂有关力学特性试验时以采用拉伸试验较为适宜。进行沥青混合料拉伸试验通常有直接拉伸试验、弯曲试验和劈裂试验三种方法,然而后两种方法属于间接拉伸,虽然导致材料破坏的主要原因是拉应力的作用,但其应力状态和温度收缩时的路面受力情况不完全一致,因此,本次试验采用小梁直接拉伸的疲劳试验方法。

综合目前已有研究成果,沥青路面疲劳特性的研究方法基本上分为两类:一类为现象学法,即传统的疲劳理论方法,它采用疲劳曲线表征材料的疲劳特性;另一类为力学近似法,即应用断裂力学、损伤力学原理分析疲劳裂缝扩展规律,以确定材料疲劳寿命。

2.1现象学法

应用现象学法进行疲劳试验,通常采用控制应力和控制应变两种不同的加载模式。控制应力方式是指反复加载过程中所施加荷载(或应力)的峰谷值始终保持不变,随着加载次数的增加最终导致试件断裂破坏。试验结果可用下式表示:

1Nf=k()n σ

式中:Nf—试件破坏时的加载次数;

k,n—取决与沥青混合料的成分和特性的常数;

σ—对试件每次施加常量应力的最大幅值。

由上式可知,当对应力σ和疲劳寿命Nf进行双对数回归时,函数关系为直线型。疲劳方程的两个参数k,n即为直线的截距和斜率。沥青混合料的疲劳性能通过疲劳方程的两个参数k,n来反映:n值越大,疲劳曲线越陡,疲劳寿命对应力水平变化越敏感;k值表示疲劳曲线线位的高低,k值越大,疲劳曲线线位越高,疲劳耐久性越好。

控制应变方式是指在反复加载过程中始终保持挠度或试件应变峰谷值不变。由于在这种控制下试件通常不会出现明显的断裂破坏,一般以沥青混合料劲度下降到初始劲度的50%或更低为疲劳破坏标准。试验结果常用下式表示:

1Nf=c()m ε

式中 Nf—沥青混合料劲度下降到初始劲度的50%或更低时的次数;

c,m—取决与沥青混合料的成分和特性的常数;

ε—对试件每次施加常量应变的最大幅值。

选用何种加载模式的疲劳试验能较好的反映路面疲劳特性,或者说选用控制应力还是控制应变进行路面疲劳强度设计,主要考虑以下两个因素:

(1)何种加载模式能更好地反映沥青混合料在路面中受行车荷载作用的疲劳特性。

(2)路面结构中,沥青混合料的应力、应变状态更接近于哪种加载模式。 两种加载方式与疲劳相应的关系见表1;SHRP试验表明:控制应变加载所得疲劳寿命≈2.4倍控制应力加载试验的疲劳寿命。

表1 应力控制和应变控制方式的比较

对路面弹性层状体系的分析表明,面层厚度大于12.6cm时,由于基层刚度相对比较小,荷载重复作用使面层应变增长较快,以致最后迅速增大而出现路面破裂,这一过程比较符合应力控制模式。我国近年来已建成和正在建设的高等级公路路面厚度大都超过此值,因此采用应力控制方式研究沥青混合料的疲劳特性比较接近于实际路面结构的疲劳特性,是合适且可行的。

本次试验采用应力控制方式加载。

事实上,对于沥青混合料来说,由于在疲劳试验中有一个显著的裂缝扩展过程,裂缝的产生和发展会改变应力的大小和分布,这时候控制的实际上不再是恒应力,而是应力逐渐增加(裂缝逐渐扩展使试件有效承载面积减小)的恒荷载控制。之所以仍称为控制应力是为了与惯用的定义和称呼相一致。

2.2力学近似法 断裂力学方法是将应力状态的改变作为开裂、几何尺寸及边界条件、材料特性及其统计变异性的结果来考虑,并对裂缝的扩展和材料中应力的重分布所起的作用进行分析。因此,它有助于人们认识破坏的形成和发展的机理。

试验常采用预切口的小梁试件,单边槽口呈“V”形或“U”形进行弯曲或拉伸试验。

应用这一方法的疲劳寿命被定义为在一定的应力状态下,材料的损坏按照裂缝扩展规律,从初始状态增长到危险和临界状态的时间。

根据目前已有的疲劳裂缝扩展规律进行比较,普遍认为P.C.Paris的裂缝扩展公式最适合沥青混合料的情况。

根据P.C.Paris的理论,裂缝扩展规律公式为:

dC AKn dN

式中 C—裂缝长度;

N—荷载作用次数;

A、n—材料常数;

K—应力强度因子,与荷载、试件几何尺寸和边界条件有关的参数。

损伤力学是近30年发展起来的一门新的科学,它是材料与结构的变形与破坏理论的重要组成部分,它将固体力学、材料强度理论和连续介质力学统一起来

研究受损材料的本构关系,解释材料的破坏机理,建立损伤的演变方程和计算材料的损伤程度,从而达到预估其寿命的目的。

在外载和环境的的作用下,由于细观结构的缺陷(如微裂纹、微空洞等)引起的材料或结构的劣化过程,称为损伤。损伤力学是研究含损伤介质的材料性质,以及在变形过程中损伤的演化发展直至破坏的力学过程的学科。用损伤力学得到的结果,既反映了材料微观结构的变化,又说明了材料宏观力学性能的实际变化状况,这在一定程度上弥补了断裂力学研究的不足。

3 影响沥青混合料疲劳性能的因素

影响沥青混合料疲劳性能的有多种因素,概括起来主要有以下几种:

1、试验条件;2、材料性质;3、环境条件。

上述因素的变化会对疲劳寿命产生影响是因为这些因素的变化会对沥青混合料的劲度产生影响,因此,可以从沥青混合料劲度的变化出发来分析疲劳寿命的变化。

参 考 文 献

[1] 田小革,郑健龙,许志鸿.沥青混合料的低频疲劳效应研究.力学与实践,2002,24

[2] 唐雪松,蒋持平,郑健龙.沥青混合料疲劳过程的损伤力学分析.应用力学学报,2000,17

[3] 张婧娜,谭忆秋,张肖宁.应用能量原理预测沥青混合料的疲劳破坏. 中国公路学报,

1998,11

[4] 孙德栋,彭波. 沥青路面设计与施工技术. 郑州:黄河水利出版社,2003,5

[5] 葛折圣,黄晓明.运用损伤力学理论预测沥青混合料的疲劳性能. 交通运输工程学报,

2003,3


相关内容

  • 路基路面论文
  • 路 基 路 面 工 程 论 文 学院:土木与交通学院姓名:9999 学号:2009099999 沥青路面 关键词:沥青路面.沥青路面的原材料.沥青路面结构设计.沥青路面的施工.沥青路面常见病害及其预防控制 Keywords: asphalt pavement\asphalt pavement mat ...

  • 路面设计原理资料
  • Uuu 一.Shell 设计法 把路面当作一种三层线形弹性体系,其中各层材料用弹性模量E 和泊松比μ表征. 在基本设计方法中,路面结构假定为层间接触连续的三层体系,下层为路基,中间层为粒料或水泥稳定类基层和垫层,上层为沥青层,包括表面层.结合层和下面层. 设计参数:荷载与交通.温度与湿度.材料特性 ...

  • 路基路面工程
  • 路基路面工程 一.名词解释 1. 路基临界高度:不利季节路基处于某种临界状态时(干燥.中温.潮湿)上部土层(路床顶面以下80cm)距地下水位或地面积水水位的最小高度. 2. 轮迹横向分布系数:刚性路面设计中,在设计车道上,50cm宽度范围内所受到的轮迹作用次数与通过该车道横断面的轮迹总作用次数之比. ...

  • 路基路面工程试题及答案
  • (1) 路基路面工程 2.简述边坡防护与加固的区别,并说明边坡防护有哪些类型及适应条件? 防护主要是保护表面免受雨水冲刷,防止和延缓软弱岩层表面碎裂剥蚀,从而提高整体稳定性作用,不承受外力作用,而加固主要承受外力作用,保持结构物的稳定性. 边坡防护:1)植物防护,以土质边坡为主:2)工程防护,以石质 ...

  • 硕士研究生文献综述
  • 长沙理工大学 硕士研究生论文文献综述 论文名称 沥青混合料车辙实验与粘弹性分析 姓 名:学 号: 学 位 级 别: 工学硕士 学 科 专 业: 道路与铁道工程 研 究 方 向: 路基路面工程 指 导 教 师: 邵腊庚(教授) 所 属 单 位: 长沙理工大学 一.前言 为了提高沥青混合料的高温稳定性, ...

  • 工程质量监理题目及名词解释
  • 工程质量监理 填空题 2.多年的施工技术经验表明,要保证公路施工处于较高的工作质量水平,必须从 人.材料.设备.方法.环境 五大因素入手 7.质量体系文件主要分为 质量手册.质量计划.工作程序总的来说,抽样检验分为 随机抽样与非随机抽样两大类 29.随机抽样的方法有多种,适合于公路工程质量检验的随机 ...

  • 土木工程材料课程总结
  • 土木工程材料课程总结 1.1天然石材 1.岩石的组成与分类 2石料的物理性质 (1) 物理常数 密度:真实密度.表观密度.毛体积密度 孔隙率 (2)吸水性 吸水率 饱水率 含水率 3.石料的力学性质 (1)石料的抗压强度 饱水抗压强度,影响因素. (2)磨耗率 4.石料的耐久性 (1)直接冻融法 ( ...

  • 路基路面工程试题与答案
  • 课程名称:路基路面工程 试卷编号:01 一.填空题(每题2分,共计20分) 1.我国沥青及沥青混合料气候分区采用的指标有:_______._______和_______. 2.影响路基压实的因素有_______._______._______._______:施工中控制__________是首要关键 ...

  • 沥青混合料复习资料
  • 一.名词解释: 1.蠕变:黏弹性物体在应力保持不变的情况下,应变随时间的增加而增加的现象. 2.松弛:黏弹性物体在保持应变不变的条件下,应力随时间的增加而逐渐减小的现象. 3.有效密度:沥青混合料的总质量与有效体积的比值.有效体积包括集料实体体积.闭口孔隙体积以及部分开口孔隙体积.(P96~97) ...