数学余弦定理

一、正弦定理

1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a b c 。 ==sin A sin B sin C

2. 正弦定理的变形

R n i s A b ,2n R i =s B c 2n i s R ,=C 变形(1):a =2;

a b c 变形(2):; n i s A =,B n i =s ,C =2R 2R 2R

b n i s A n i c s A c sin B a sin B a sin C b sin C 变形(3):a =,b =,c =; ===n i s B n i s C sin C sin A sin A sin B

b c ∶=n i A s n i s n B ∶i s C ∶变形(4):a ∶;

变形(5):n i s a +b +c a b c ==-=2R 。 A +n i s B +n i s C n i s A n i s B n i s C

3. 正弦定理的应用

(1)已知两角和任一边,求其他两边和另一角;

(2)已知两边及其中一边的对角,求另一边及其他两角。

二、余弦定理

1. 余弦定理:三角形任意一边的平方等于其他两边平方的和减去这两边与它们的夹角的余弦的积的两倍。即

a 2=b 2+c 2-2bc cos A ①

b 2=c 2+a 2-2ca cos B ②

c 2=a 2+b 2-2ab cos C ③

2. 余弦定理的变形

(1)定理的特例:是指当某一内角取特殊值时的特殊形式。主要有:

①c 2=a 2+b 2⇔C =90 (勾股定理及其逆定理);

②c 2=a 2+b 2-ab ⇔C =60 ;

③c 2=a 2+b 2+ab ⇔C =120 ;

④c 2=a 2+b 2⇔C =30 ;

⑤c 2=a 2+b 2+⇔C =150 ;

⑥c 2=a 2+b 2⇔C =45 ;

⑦c 2=a 2+b 2+⇔C =135 。

b 2+c 2-a 2a 2+c 2-b 2

(2)定理的推论:cos A =,cos B =,2bc 2ac

a 2+b 2-c 2

cos C =。 2ab

3. 余弦定理的应用:(1)已知三边,求三角;(2)已知两边及其夹角,求第三边和其他两角。

知识点一:正弦定理

例1:在△ABC 中,

(1

)已知A =45 ,a =2,b B ;

(2

)已知A =30 ,a =b =2,求B ;

1(3

)已知A =30 ,a =,b B 。 2

思路分析:这三个小题看似相同,其实大相径庭,虽然都是已知两边及其中一边的对角,求另一边的对角,但结果却是一个一解,一个两解,第(3)小题无解,下面我们来逐个分析。

b sin A 1a b ==。 解答过程:(1)根据正弦定理,得sin B ==

a 2sin A sin B

∵a >b ,∴A >B ,而A =45 ,∴B =30 。

b sin A a b ==(2)根据正弦定理,得sin B =。 =

a sin A sin B ∵a

∴B 为锐角或钝角,∴B =45 或B =135 。

b sin A a b (3)根据正弦定理,得sin B == =

a sin A sin B

2

解题后的思考:已知两边及其中一边的对角解三角形用正弦定理,其结果可能有一解、两解或无解。

例2:在△ABC 中,已知b =14, A =30 , B =120 ,求a ,c 及△ABC 的面积S 。 思路分析:已知两角实际上第三个角也是已知的,故用正弦定理可以很方便的求出其他边的值。

解答过程:依正弦定理:a b b si n A =,∴a =,代入已知条件,得sin A sin B si n B

a =14sin 30︒3 =sin 120︒3

∵C =180︒-(A +B ) =180︒-(30︒+120︒) =30︒,又b c =, sin B sin C

∴c =b sin C 14sin 30︒C =A ,△ABC 为等腰三角形,所以a =c ==sin B sin 120︒3

11∴S ∆ABC =ab sin C =⨯。 ⨯14sin 30︒=2233

解题后的思考:三角形的面积公式

111(1)S △ABC =ah a =bh b =ch c (h a ,h b ,h c 分别表示a ,b ,c 上的高)。 222

111(2)S △ABC =ab sin C =bc sin A =ac sin B 。 222

(3)S △ABC =2R 2sin A sin B sin C 。(R 为外接圆半径)

(4)S =11ah a =ab sin C =r ⋅p =22p (p -a )(p -b )(p -c ) 。其中r 为三角形的内切圆半径,p 为三角形周长的一半。

cos A =a ·cos B 成立,试判断这个三角形的形状。 例3:在△ABC 中,若b ·

思路分析:条件中既有边又有角,统一条件是首要任务。

cos A =2R sin A ·cos B ,sin B ·cos A =解答过程:由正弦定理,得:2R sin B ·

sin A ·cos B ,∴sin A sin B =,即ta n A =ta n B ,根据三角形内角和定理,可知A 、B c os A c os B

必都为锐角。所以A =B ,即△ABC 是等腰三角形。

解题后的思考:由已知条件确定三角形的形状,主要通过两个途径:①化角为边,通过代数式变形求出边与边之间的关系。②化边为角,利用三角恒等变形找出角与角之间的关系。一般情况下,利用三角恒等变形计算量会小一些。

a 2-b 2sin(A -B ) =例4:在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,证明:。 2c sin C

思路分析:条件中既有边又有角,条件需统一,另外△ABC 中,内角和为180︒。

a b c ===2R 得: sin A sin B sin C

a =2R sin A , b =2R sin B , c =2R sin C 。

1-cos 2A 1-cos 2B -2222a -b sin A -sin B cos 2B -cos 2A ∴= ==c 2sin 2C sin 2C 2sin 2C

cos ⎡⎣(B +A )+(B -A ) ⎤⎦-cos ⎡⎣(B +A )-(B -A ) ⎤⎦解答过程:由正弦定理=2sin 2C

-2sin(B +A )sin(B -A ) -sin C sin(B -A ) sin(A -B ) ===。 222sin C sin C sin C

a 2-b 2sin(A -B ) =所以,。 c 2sin C

解题后的思考:由于不等式两边一边是代数式,一边是三角式,故通过正弦定理来把边全化为角,把证明转化为三角恒等变形的问题。

知识点二:余弦定理

例5:已知△

ABC 中,a =b =B =45 ,试求角A 、C 和边c 。

思路分析:已知两边及其中一边的对角解三角形可用正弦定理或余弦定理,现用余弦定理来解。

解答过程:设边c =x ,由余弦定理b 2=a 2+c 2-2ac cos B ,

得22=) (+x 3-) 22 。3

c o s 45

整理得x 2+1=

0,∴x =。 b 2+c 2-a 21(1

)当x =时,cos A ==,∴A =60 ,C =75 。 2bc 2

b 2+c 2-a 21(2

)当x =时,cos A ==-,∴A =120 ,C =15 。

2

综合上两种情况:A =60 ,C =75 ,

c =A =120

,C =15 ,c =。 解题后的思考:用余弦定理解决此类问题,是设量解方程的思想,也是经常用的方法。

例6:已知△

ABC 中,a ∶b ∶c =21) ,求△ABC 中各角的度数。

思路分析:虽然此题三边都不确定,但它们的比例一定,所以可设a =2k ,b =,

c =1) k ,用余弦定理解决。

解答过程:令a =

2k ,b

,c =1) k ,

b 2+c 2-a 2利用余弦定理cos A =,A =45 。 ==2bc 用同样的方法可得,B =60 。

因此,C =180 -45 -60 =75 。

解题后的思考:已知三角形三边的比,或已知三边的长度,都可用余弦定理解决,只是已知三边的比时,可引用参数k ,但在解题时可将分子分母中的参数k 约掉。

,A C =,b ,a 是b 方

程x 2-+2=0的两个根,且例7:在△ABC 中,B C =a

2c o s A (+B =) ,试求边1AB 的长。

思路分析:本题已知的是两边和它们所对的两角的关系,在这种情况下往往可能不需要求出它们各自的值,通常可以考虑整体代入的方法。

⎧⎪a +b =解答过程:

由题意,得⎨ ⎪⎩ab =2.

AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos C

⎛1⎫=b 2+a 2-2ab ⨯ -⎪=(a +b ) 2-ab =2-2=10。

⎝2⎭

∴AB =

⎧⎪a +b =解题后的思考:因为解方程组分别求出a 和b

的值比较麻烦,所以将⎨⎪⎩ab =2

直接代入,巧妙而简洁,通常称为整体代入法,要注意这种解题技巧的运用。

解三角形的几种基本类型

(1)已知一边和两角(设为A ,B ,b ),求另一角及两边,求解步骤:①C =180 -(A +B ) ; b sin A b sin C ②由正弦定理得:a =;③由正弦定理得:c =。 sin B sin B

(2)已知两边及其夹角(设为a ,b ,C )

,解三角形的步骤:①由余弦定理得:c a ,b 中较小边所对的锐角;③利用内角和定理求第三个角。

(3)已知两边及一边的对角(设为a ,b ,A ),解三角形的步骤:①先判定解的情况;b sin A ②由正弦定理sin B =,求B ;③由内角和定理C =180 -(A +B ) ,求C ; a

④由正弦定理或余弦定理求边c 。

注:已知a ,b 和A ,用正弦定理求B 时解的各种情况:

(4)已知三边a ,b ,c ,解三角形的步骤:①由余弦定理求最大边所对的角;②由正弦定理求其余两个锐角。

一、正弦定理

1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a b c 。 ==sin A sin B sin C

2. 正弦定理的变形

R n i s A b ,2n R i =s B c 2n i s R ,=C 变形(1):a =2;

a b c 变形(2):; n i s A =,B n i =s ,C =2R 2R 2R

b n i s A n i c s A c sin B a sin B a sin C b sin C 变形(3):a =,b =,c =; ===n i s B n i s C sin C sin A sin A sin B

b c ∶=n i A s n i s n B ∶i s C ∶变形(4):a ∶;

变形(5):n i s a +b +c a b c ==-=2R 。 A +n i s B +n i s C n i s A n i s B n i s C

3. 正弦定理的应用

(1)已知两角和任一边,求其他两边和另一角;

(2)已知两边及其中一边的对角,求另一边及其他两角。

二、余弦定理

1. 余弦定理:三角形任意一边的平方等于其他两边平方的和减去这两边与它们的夹角的余弦的积的两倍。即

a 2=b 2+c 2-2bc cos A ①

b 2=c 2+a 2-2ca cos B ②

c 2=a 2+b 2-2ab cos C ③

2. 余弦定理的变形

(1)定理的特例:是指当某一内角取特殊值时的特殊形式。主要有:

①c 2=a 2+b 2⇔C =90 (勾股定理及其逆定理);

②c 2=a 2+b 2-ab ⇔C =60 ;

③c 2=a 2+b 2+ab ⇔C =120 ;

④c 2=a 2+b 2⇔C =30 ;

⑤c 2=a 2+b 2+⇔C =150 ;

⑥c 2=a 2+b 2⇔C =45 ;

⑦c 2=a 2+b 2+⇔C =135 。

b 2+c 2-a 2a 2+c 2-b 2

(2)定理的推论:cos A =,cos B =,2bc 2ac

a 2+b 2-c 2

cos C =。 2ab

3. 余弦定理的应用:(1)已知三边,求三角;(2)已知两边及其夹角,求第三边和其他两角。

知识点一:正弦定理

例1:在△ABC 中,

(1

)已知A =45 ,a =2,b B ;

(2

)已知A =30 ,a =b =2,求B ;

1(3

)已知A =30 ,a =,b B 。 2

思路分析:这三个小题看似相同,其实大相径庭,虽然都是已知两边及其中一边的对角,求另一边的对角,但结果却是一个一解,一个两解,第(3)小题无解,下面我们来逐个分析。

b sin A 1a b ==。 解答过程:(1)根据正弦定理,得sin B ==

a 2sin A sin B

∵a >b ,∴A >B ,而A =45 ,∴B =30 。

b sin A a b ==(2)根据正弦定理,得sin B =。 =

a sin A sin B ∵a

∴B 为锐角或钝角,∴B =45 或B =135 。

b sin A a b (3)根据正弦定理,得sin B == =

a sin A sin B

2

解题后的思考:已知两边及其中一边的对角解三角形用正弦定理,其结果可能有一解、两解或无解。

例2:在△ABC 中,已知b =14, A =30 , B =120 ,求a ,c 及△ABC 的面积S 。 思路分析:已知两角实际上第三个角也是已知的,故用正弦定理可以很方便的求出其他边的值。

解答过程:依正弦定理:a b b si n A =,∴a =,代入已知条件,得sin A sin B si n B

a =14sin 30︒3 =sin 120︒3

∵C =180︒-(A +B ) =180︒-(30︒+120︒) =30︒,又b c =, sin B sin C

∴c =b sin C 14sin 30︒C =A ,△ABC 为等腰三角形,所以a =c ==sin B sin 120︒3

11∴S ∆ABC =ab sin C =⨯。 ⨯14sin 30︒=2233

解题后的思考:三角形的面积公式

111(1)S △ABC =ah a =bh b =ch c (h a ,h b ,h c 分别表示a ,b ,c 上的高)。 222

111(2)S △ABC =ab sin C =bc sin A =ac sin B 。 222

(3)S △ABC =2R 2sin A sin B sin C 。(R 为外接圆半径)

(4)S =11ah a =ab sin C =r ⋅p =22p (p -a )(p -b )(p -c ) 。其中r 为三角形的内切圆半径,p 为三角形周长的一半。

cos A =a ·cos B 成立,试判断这个三角形的形状。 例3:在△ABC 中,若b ·

思路分析:条件中既有边又有角,统一条件是首要任务。

cos A =2R sin A ·cos B ,sin B ·cos A =解答过程:由正弦定理,得:2R sin B ·

sin A ·cos B ,∴sin A sin B =,即ta n A =ta n B ,根据三角形内角和定理,可知A 、B c os A c os B

必都为锐角。所以A =B ,即△ABC 是等腰三角形。

解题后的思考:由已知条件确定三角形的形状,主要通过两个途径:①化角为边,通过代数式变形求出边与边之间的关系。②化边为角,利用三角恒等变形找出角与角之间的关系。一般情况下,利用三角恒等变形计算量会小一些。

a 2-b 2sin(A -B ) =例4:在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,证明:。 2c sin C

思路分析:条件中既有边又有角,条件需统一,另外△ABC 中,内角和为180︒。

a b c ===2R 得: sin A sin B sin C

a =2R sin A , b =2R sin B , c =2R sin C 。

1-cos 2A 1-cos 2B -2222a -b sin A -sin B cos 2B -cos 2A ∴= ==c 2sin 2C sin 2C 2sin 2C

cos ⎡⎣(B +A )+(B -A ) ⎤⎦-cos ⎡⎣(B +A )-(B -A ) ⎤⎦解答过程:由正弦定理=2sin 2C

-2sin(B +A )sin(B -A ) -sin C sin(B -A ) sin(A -B ) ===。 222sin C sin C sin C

a 2-b 2sin(A -B ) =所以,。 c 2sin C

解题后的思考:由于不等式两边一边是代数式,一边是三角式,故通过正弦定理来把边全化为角,把证明转化为三角恒等变形的问题。

知识点二:余弦定理

例5:已知△

ABC 中,a =b =B =45 ,试求角A 、C 和边c 。

思路分析:已知两边及其中一边的对角解三角形可用正弦定理或余弦定理,现用余弦定理来解。

解答过程:设边c =x ,由余弦定理b 2=a 2+c 2-2ac cos B ,

得22=) (+x 3-) 22 。3

c o s 45

整理得x 2+1=

0,∴x =。 b 2+c 2-a 21(1

)当x =时,cos A ==,∴A =60 ,C =75 。 2bc 2

b 2+c 2-a 21(2

)当x =时,cos A ==-,∴A =120 ,C =15 。

2

综合上两种情况:A =60 ,C =75 ,

c =A =120

,C =15 ,c =。 解题后的思考:用余弦定理解决此类问题,是设量解方程的思想,也是经常用的方法。

例6:已知△

ABC 中,a ∶b ∶c =21) ,求△ABC 中各角的度数。

思路分析:虽然此题三边都不确定,但它们的比例一定,所以可设a =2k ,b =,

c =1) k ,用余弦定理解决。

解答过程:令a =

2k ,b

,c =1) k ,

b 2+c 2-a 2利用余弦定理cos A =,A =45 。 ==2bc 用同样的方法可得,B =60 。

因此,C =180 -45 -60 =75 。

解题后的思考:已知三角形三边的比,或已知三边的长度,都可用余弦定理解决,只是已知三边的比时,可引用参数k ,但在解题时可将分子分母中的参数k 约掉。

,A C =,b ,a 是b 方

程x 2-+2=0的两个根,且例7:在△ABC 中,B C =a

2c o s A (+B =) ,试求边1AB 的长。

思路分析:本题已知的是两边和它们所对的两角的关系,在这种情况下往往可能不需要求出它们各自的值,通常可以考虑整体代入的方法。

⎧⎪a +b =解答过程:

由题意,得⎨ ⎪⎩ab =2.

AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos C

⎛1⎫=b 2+a 2-2ab ⨯ -⎪=(a +b ) 2-ab =2-2=10。

⎝2⎭

∴AB =

⎧⎪a +b =解题后的思考:因为解方程组分别求出a 和b

的值比较麻烦,所以将⎨⎪⎩ab =2

直接代入,巧妙而简洁,通常称为整体代入法,要注意这种解题技巧的运用。

解三角形的几种基本类型

(1)已知一边和两角(设为A ,B ,b ),求另一角及两边,求解步骤:①C =180 -(A +B ) ; b sin A b sin C ②由正弦定理得:a =;③由正弦定理得:c =。 sin B sin B

(2)已知两边及其夹角(设为a ,b ,C )

,解三角形的步骤:①由余弦定理得:c a ,b 中较小边所对的锐角;③利用内角和定理求第三个角。

(3)已知两边及一边的对角(设为a ,b ,A ),解三角形的步骤:①先判定解的情况;b sin A ②由正弦定理sin B =,求B ;③由内角和定理C =180 -(A +B ) ,求C ; a

④由正弦定理或余弦定理求边c 。

注:已知a ,b 和A ,用正弦定理求B 时解的各种情况:

(4)已知三边a ,b ,c ,解三角形的步骤:①由余弦定理求最大边所对的角;②由正弦定理求其余两个锐角。


相关内容

  • 余弦定理的说课稿
  • 余弦定理说课稿 A- 各位评委,各位同学,大家好!今天我说课的题目是余弦定理,余弦定理选自高中数学必修五解斜三角形的第二节.我以新课标的理念为指导,将教什么.怎样教,为什么这样教,分为教材与学情分析.教学目标.重难点分析.教法与学法.教学过程设计.板书设计六个方面进行说明: 一.教材与学情分析 1. ...

  • 余弦定理2
  • 5.6 正弦定理.余弦定理和解斜三角形──余弦定理 上海市古美高级中学 徐新远 [课题]5.6 正弦定理.余弦定理和解斜三角形──余弦定理 [授课日期]2007.3.29 [授课班级]青浦高级中学高一2班 [课型]新授课 [授课方式]启发.探究.讲解.练习 [课时]1课时(40分钟) [教学目标] ...

  • 高三正余弦定理综合大题
  • 17(.本小题满分12分)在△ABC 中,a .b .c 分别是角A .B .C 的对边, (1)求角B 的大小:(2 ABC 的面积. ∴2sin A cos B +sin (B +C )= B ∈(0, π) b 2=a 2+c 2-2ac cos B ∴ac =3 [解析]略 18.在△ABC ...

  • 余弦定理教案
  • 教案设计: 余弦定理 [ 教材 ] 湘教版必修4第9页至12页. [教学对象] 高二(上)学生 [学情分析] 学生已经会用正弦定理解决三角形相关问题,了解三角形边角之间存在着一定的数量关系,这为本节课的学习奠定了基础.对于正弦定理解决已知两边及夹角问题学生有一定的求知欲,这就促使学生去探索如何求解该 ...

  • 15.3余弦定理说课稿
  • 余弦定理说课稿 一.说课流程: 教材分析.学情分析.教法学法.教学过程.板书设计.教学反思 二.教材分析: 1.教学内容: 本节课内容节选自江苏省职业学校文化课教材第四册第十五章三角计算及其 应用,第四节正弦定理.余弦定理中的第二课时. 2.教材地位: "正弦定理.余弦定理"是解 ...

  • 赛说课稿--余弦定理的应用
  • 参加比赛说课稿--余弦定理的应用 (2010-06-10 17:48:22) 转载▼ 标签: 教育 各位老师同学们,大家好!今天我要说课的题目是余弦定理的应用.(换PPT)在说课的过程中我会从教材分析,教学目标分析,教法分析以及教学过程设计这四个方面来进行说课. (换ppt)首先我们通过PPT来看一 ...

  • 高中数学 正弦定理和余弦定理
  • 正弦定理和余弦定理 (一) 复习指导 1.掌握正弦定理.余弦定理,并能解决一些简单的三角形度量问题. 2.能够运用正弦定理.余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题. (二) 基础知识 1. 三角形中的有关公式 (1)内角和定理:三角形三角和为π,这是三角形中三角函数问题的特殊性, ...

  • 余弦定理的证明
  • 在△ABC中,AB=c、BC=a、CA=b 则c^2=a^2+b^2-2ab*cosC a^2=b^2+c^2-2bc*cosA b^2=a^2+c^2-2ac*cosB 下面在锐角△中证明第一个等式,在钝角△中证明以此类推。 过A作AD⊥BC于D,则BD+CD=a 由勾股定理得: c^2=(AD) ...

  • 用余弦定理证明
  • 由正弦定理得cSinB=bSinC 带入给定的式子得 SinC=SinB(1+2CosA)① C+A+B=π② 将②带入①得 Sin(π-A-B)=SinB+2SinBcosA SinAcosB+SinBcosA=SinB+2SinBcosA SinAcosB=SinB+SinBcosA Sin(A ...

  • 正.余弦定理的变式解题
  • 浅谈正.余弦定理的变式教学 山东省寿光市现代中学 孙建平(262700) 在新课程标准的指引下,教学方法也在不断改进.提升.数学的教学不应局限于一个狭窄的课本知识领域里,应该让学生思维能力的培养及个性品质的形成能力.这就需要调动学生学习的主动性,发挥学生的主体作用,为学生创设一个的宽松环境,使不同的 ...