匀速圆周运动2

学科: 学科:物理 教学内容: 教学内容:匀速圆周运动【学习目标】 学习目标】 识记 1.知道什么是匀速圆周运动. 2.知道线速度就是物体做匀速圆周运动的瞬时速度.方向沿圆周该点的切线方向. 理解应用 3.理解线速度的概念,理解角速度和周期的概念,会用它们的公式进行计算. 4.理解线速度、角速度、周期之间的关系:v=ω·r= 5.理解匀速圆周运动是变速运动. 【基础知识精讲】 基础知识精讲】 课文全解 课文全解 1.匀速圆周运动的线速度 (1)定义:匀速圆周运动的物体通过的弧长 s 跟通过这段弧长所用的时间 t 的比值, 叫匀速圆周运动的线速度. (2)公式:v=2πr . Ts t(3)单位:米/秒,符号 m/s (4)方向:运动轨迹上某点的切线方向.由圆的性质可知,各点的速度方向总与各点 所在半径垂直, 而各点的切线方向各不相同, 因此做匀速圆周运动的物体的速度方向时刻在 改变. 线速度是相对于角速度而言的, 其实它就是物体做圆周运动的瞬时速度, 匀速圆周运动 的线速度大小不变,而方向时刻改变,因此,匀速圆周运动是一种变速运动,所谓“匀速” 是指速率不变的意思. 2.匀速圆周运动的角速度 (1)定义:连接运动物体和圆心的半径转过的角度φ跟所用时间的比值叫角速度. (2)公式:ω=ϕt(3)单位:弧度/秒,符号 rad/s 注意:在角速度的计算中,φ角必须取弧度值,因为弧度是国际单位制,弧度跟度的换 算关系为 2π=360°. (4)方向:垂直于圆周运动的转动平面,方向始终不变. (高中阶段不要求) (5)矢量,匀速圆周运动的角速度大小和方向都不变,因此匀速圆周运动是角速度不 变的运动. (6)物理意义:描述圆周运动快慢的物理量. 3.匀速圆周运动的周期(1)定义:做匀速圆周运动的物体运动一周所用的时间叫做周期. (2)符号:T (3)单位:秒,符号:s (4)标量. (5)物理意义:描述匀速圆周运动快慢的物理量,周期长说明运动得慢,周期短说明 运动得快. 匀速圆周运动具有周期性,即物体经过一定时间后,重复地回到原来的位置,瞬时速度 也重复地回到原来的大小和方向. 4.匀速圆周运动的频率 (1)定义:做匀速圆周运动的物体每秒转过的圈数. (2)符号:f (3)单位:赫兹,符号 Hz (4)标量. (5)物理意义:描述匀速圆周运动的快慢的物理量,频率低说明运动慢. (6)频率和周期的关系:f=1 T5.转数 (1)定义:做匀速圆周运动的物体每分钟转过的圈数. (2)符号:n (3)单位:转/分,符号 r/min (4)标量. (5)物理意义:描述匀速圆周运动快慢的物理量,转数大说明运动快,转数小说明运 动慢. 转数在实际生产、生活中比较常用,例如电动机的标签上常标有转数.  问题全解 v、ω与 r 有什么样的关系? 线速度 v 和角速度ω都可用以描述圆周运动的快慢,公式 v=ωr 反映了它们之间以及 它们与半径的关系. 1.当 r 一定时,v∝ω,如转动飞轮边缘质点的运动就是如此,当转速增大时,角速度 随之增大, 线速度也相应增大. 又如某人骑自行车时, 当快速蹬车时, 角速度增大, 车速 (即 车轮边缘质点的线速度)也随之增大. 2.当ω一定时,v∝r,如时钟的分针转动时,各质点的角速度是相同的,但分针上离 圆心越远的质点,半径越大,线速度也越大.又如地球自转时,不同纬度的地面质点做圆周 运动的半径不同, 但地面各质点随地球自转做圆周运动的角速度是相等的, 因而不同纬度的 地面质点的线速度大小不等,赤道平面内地面各质点的线速度最大.不难发现,同一转动物 体上的各点的角速度是相等的,如同一轮上各点或共轴的几个轮的角速度相同,v∝r,又如 同一转动杆上各点角速度也相同,即 v∝r. 3.当 v 一定时,ω∝1 ,如皮带传动装置中,若不出现打滑现象,则两轮边缘各质点 r的线速度大小相等, 但大轮的角速度较小. 又如某同学骑着 18 型自行车与骑着 26 型自行车 的父亲并肩前进, 要使两车在同样的时间内通过同样多的路程, 则要两车轮边缘的线速度大 小相等,由于 26 型车轮半径较大,因此 26 型车轮速度较小,即角速度较小.不打滑时,皮 带传动装置中大轮小轮边缘各质点 v 大小相同,齿轮传动装置中,大轮小轮边缘各质点的 v大小也相同,但大轮小轮的角速度是不同的. 4.若 v、ω、r 三者均不定时,仍有 v=ωr,但已不是简单的正比、反比关系.有兴 趣的同学可在学习《万有引力定律》一章时分析卫星沿螺旋轨道下降或上升远离时的情况, 此时因其轨道半径逐渐变化,v 和ω的关系也变得特殊复杂了. [例 1]如图 5-4-1 所示的皮带传动装置中,右边的 B、C 两轮粘在一起且同轴,半 径 RA=RC=2RB,皮带不打滑, 试求 A、B、C 各轮边缘上的一点线速度大小之比,角速度之比.图 5-4-1 解析:由于不打滑的皮带传动,两轮边缘上的各点线速度大小相同,则有 vA=vB,在线 速度相同的情况下,角速度与半径成反比.其中 RA=2RB,可知ωB=2ωA.固定在一起共轴 转动的轮上各点的角速度相同,于是有ωB=ωC,在角速度相同的情况下,线速度与半径成 正比,其中 RC=2RB,由以上分析得: vA∶vB∶vC=1∶1∶2 ωA∶ωB∶ωC=1∶2∶2点评: 要记住不打滑的皮带传动和摩擦传动的两轮边缘上各点线速度大小相等; 同一物 体或固定在一起的物体转动时, 各点的角速度相同. 讨论问题时先搞清是线速度相同还是角 速度相同,再讨论与半径的关系. [例 2]如图 5-4-2 所示,半径为 R 的圆盘绕垂直于盘面的中心轴匀速转动,其正上 方 h 处沿 OB 方向水平抛出一个小球,要使球与盘只碰一次,且落点为 B,则小球的初速度 v =_________,圆盘转动的角速度ω=_________.图 5-4-2 解析:①小球做平抛运动,在竖直方向上:h=1 2 gt 2则运动时间t=2h g又因为水平位移为 R 所以球的速度v=g R = R· t 2h②在时间 t 内,盘转过的角度θ=n·2π,又因为θ=ωt 则转盘角速度:ω=g n ⋅ 2π =2nπ t 2h(n=1,2,3…) 点评: 上题中涉及圆周运动和平抛运动这两种不同的运动, 这两种不同运动规律在解决 同一问题时,常常用“时间”这一物理量把两种运动联系起来. [例 3]一把雨伞,伞面圆半径为 r,伞面边缘距地面的高度为 h,以角速度ω旋转这 把雨伞,问伞面边缘上甩出去的水滴落在水平地面上时形成的圆半径 R 多大? 解析:水滴从伞面边缘甩出去以后做平抛运动,水平速度不变.水滴在空中做平抛运动 的时间是:t=2h g 2h gs=v0t=ω·r·图 5-4-3 为俯视图, 表示水滴从 a 点甩离伞面落在地面上的 b 点, 是转动轴 O (伞柄) , 可见水滴落在地面上形成的圆半径为:图 5-4-3R= r 2 + s 2 = r 1 +2 hω 2 g[例 4]如图 5-4-4 所示,直径为 d 的纸筒,以角速度ω绕 O 轴逆时针转动,一颗子 弹沿直径水平穿过圆纸筒,先后留下 a、b 两个弹孔,且 Oa 与 Ob 间的夹角为θ,则子弹的 可能速度为_________.图 5-4-4 解析:子弹通过圆纸筒匀速直线运动的时间为:t=d v其间,纸筒转过的角度为: ϕ =(2n+1)π-θ 由公式ω=ϕt=ϕ = ωt (2n + 1)π − θ得所以d (2n + 1)π − θ = v ωω,v=ωd (n=0,1,2…) [(2n + 1)π − θ ]点评:对于这类问题,要特别注意其周期性,千万不要简单认为在 t s 内纸筒转过的角 度 ϕ =π-θ. 当然有些同学还会误认为纸筒所转过的角度就为θ, 这就是没有仔细审题的 结果,没有弄清子弹第一次打穿纸筒时 a 点在 O 点的正左方,若纸筒绕顺时针转动,则转过 角度应为 ϕ =(2n+1)π+θ. [例 5]为了测定子弹的飞行速度,在一根水平放置的轴杆上固定两薄圆盘 A、B,A、B 平行且相距 2 m,轴杆的转速为 3600 r/min,子弹穿过两盘留下两弹孔 a、b,测得两弹孔 半径夹角是 30°,如图 5-4-5 所示,则该子弹的速度是A.360 m/s C.1440 m/s图 5-4-5 B.720 m/s D.108 m/s解析:子弹从 A 盘至 B 盘,盘转过的角度θ=2nπ+π6(n 为整数)由于轴杆转速为 3600 r/min,所以盘转动的角速度为ω=2π × 3600 =120π rad/s 60子弹在 A、B 间运动的时间等于圆盘转过θ角所用的时间 tt=θ 6 = = ω 120π 1202 nπ +π2n +1 6 s所以,子弹的速度为 v=AB = t2 2n + 120 1 6=240 m/s 1 2n + 6当 n=0 时,v=1440 m/s 当 n=1 时,v=110.8 m/s . 所以,符合题意的选项是 C. 【学习方法指导】 学习方法指导】 极限法:怎样理解线速度是物体做匀速圆周运动的瞬时速度? 从本质上说,线速度是做匀速圆周运动的质点在某一时刻(或某一位置)的瞬时速度, 其方向沿轨迹的切线方向,其大小是包括该时刻在内的一小段时间内的平均速度的极限值, 下面仍从“无限分割,逐渐逼近”的方法来分析. 如图 5-4-6 所示,设质点做匀速圆周运动,在某段时间 t1 内从 P 点运动到 P1 点,那 么线速度大小为 v1= ,平均速度大小 v1 =PP1 (PP1 为位移大小),方向沿位移 PP1 方 t, 平均速度 v 2 =向. 现取更短时间 t2, 质点就由 P 点运动到 P2 点, 线速度大小 v2=PP2 , t2方向沿位移 PP2 方向.若时间再短,P3 越接近 P,越接近 PP3 的长度.当时间无限短,Pn就与 P 趋于重合,即线速度大小 vP= v ,方向在该点 P 的切线方向上.图 5-4-6 应该指出:匀速圆周运动中线速度大小不变,方向时刻变化,匀速圆周运动实质是匀速 率圆周运动,是一种变速曲线运动. 【知识拓展】 知识拓展】 迁移 物体做匀速圆周运动的条件:第一:必须具有初速度.第二:必须受到大小不变且方向始终与速度方向垂直并沿半径 指向圆心的力的作用.换句话说,物体受到的合外力全部不用来改变速度的大小.这样,物 体所受的合外力就必须时刻垂直速度方向,且大小不变.图 5-4-7 如果物体所受的合外力不能总垂直速度方向, 那么物体是不可能做匀速圆周运动的. 如 水平抛出的物体,虽然具有初速度,并且初速度与合外力(重力)也垂直,但后来物体的速 度与合外力不垂直.如图 5-4-7 所示,物体也就不可能做圆周运动,当然不做圆周运动的 根本原因在于合外力恒定不变,总是竖直向下,而圆周运动中向心力的方向却是时刻改变 的. 又如用绳子牵着物体在竖直面内做圆周运动时, 只有在最高点和最低点两个位置所受的 合外力全力以赴提供向心力,其他位置时物体所受外力的合力并不指向圆心,如图 5-4-8mv A 所示,物体经过 A 位置时,F 向=F 合=FA-mg= .物体经过 B 位置时,F 向=F 合=FA+ R v mg=m B ,但当物体经过其他位置,如 C、D 位置时,F 合不指向圆心,F 合的一部分用来改 R变 v 的大小,另一部分用来改变 v 的方向,因此此时物体所做的是变速圆周运动.22图 5-4-8  发散 常识性知识: 1.时钟: ①秒针转动的周期:T=60 s,秒针转动的角速度:ω=2π rad/s 60 2π rad/s 3600②分针转动的周期:T=3600 s,分针转动的角速度:ω=③时针转动的周期:T=12×3600 s,时针转动的角速度:ω=2π rad/s 12 × 3600 2π rad/s 24 × 3600 2π rad/s 365 × 24 × 3600 2π rad/s 28.5 × 3600 × 242.地球: ①自转周期:T=24×3600 s,自转的角速度:ω=②公转周期:T=365×24×3600 s,公转的角速度:ω=3.月球周期:T=28.5×3600×24 s . 角速度:ω=【同步达纲训练】 同步达纲训练】 1.地球半径 R=6400 km,站在赤道上的人和站在北纬 60°上的人随地球转动的角速度 多大?他们的线速度各是多少? 2.如图 5-4-9 是测定气体分子速率的实验装置,全部装置放在高真空容器中,A 和 B 是两个同轴圆盘,转动的角速度相同,两盘相距为 L=20 cm,盘上各开一条很窄的细缝, 两盘的细缝相对错开θ=6°的夹角,当气体分子直射圆盘时,若仅能使速率 v=300 m/s 的分子通过两盘的细缝,求圆盘的转速 n.图 5-4-9 3.钟表的秒针、分针、时针的角速度各是多少?若秒针长 0.2 m,则它的针尖的线速 . 度是多大? 4.(2002 年上海)如图 5-4-10 所示为一试验小车中利用光电脉冲测量车速和行程的 装置的示意图.A 为光源,B 为光电接收器,A、B 均固定在车身上,C 为小车的车轮,D 为 与 C 同轴相连的齿轮.车轮转动时,A 发出的光束通过旋转齿轮上齿的间隙后变成脉冲光信 号,被 B 接收并转换成电信号,由电子电路记录和显示,若实验显示单位时间内的脉冲数为 n,累计脉冲数为 N,则要测出小车的速度和行程还必须测量的物理量或数据是_________; 小车速度的表达式为 v=_________;行程的表达式为 s=_________.图 5-4-10 5. 如图 5-4-11 所示是生产流水线上的皮带传输装置, 传输带上等间距地放着很多半 成品产品,A 轮处装有光电计数器,它可以记录通过 A 处的产品数目,已知测得轮 A、B 的 半径分别为 rA=20 cm,rB=10 cm.相邻两产品距离为 30 cm,1 min 内有 41 个产品通过 A 处,求:图 5-4-11 (1)产品随传输带移动的速度大小; (2)A、B 轮轮缘上的两点 P、Q 及 A 轮半径中点 M 的线速度和角速度大小,并在图中 画出线速度方向; (3)如果 A 轮是通过摩擦带动 C 轮转动,且 rC=5 cm,在图中画出 C 轮的转动方向, 求出 C 轮的角速度(假设轮不打滑) .参考答案 1.解:地球不停地由西向东绕南北轴自转,自转周期 T=24 h,设赤道上的人在 A 点, 北纬 60°上的人在 B 点,如图所示.地球自转角速度固定不变,A、B 两点的角速度相同,有:ωA=ωB=2π 2 × 3.14 -5 = =7.3×10 rad/s . T 24 × 3600由 v=ωr 知,A、B 两点的线速度不同, -5 3 故 vA=ωAR=7.3×10 ×6400×10 =467.2 m/s  . .vB=ωBRcos60°=1 vA=233.6 m/s . 22.解:气体分子由 A 盘细缝到 B 盘细缝的运动是与盘的转动相独立的,即气体分子做 匀速直线运动,因此所用时间为t=L 20 × 10−2 2 -3 = s= ×10 s v 300 3在此期间圆盘转过的角度:θ=2kπ+π30,由ω=2π·n=θt,得:n=(1500k+25) s (k=0,1,2…)-1解本题时需要注意运动的周期性,在时间 t 内,圆盘可能是转过θ角,也可能是转过 2π+θ或是 4π+θ… 3.解:由ω= 2π 知,要求秒针、分针、时针的角速度,关键是确定它们各自的周期: TT 秒=60 s、T 分=60 min、T 时=12 h ω 秒=2π 2 × 3.14 = =0.105 rad/s  . T秒 60ω分=2π/T 分=1.74×10-3 rad/s . ω时=2π/T 时=1.45×10-4 rad/s  . v 秒=ω秒·R=0.105×0.2=2.1×10-2 m/s . . . 4.解:设车轮半径为 R、齿轮的齿数为 P,车的速度应为单位时间行驶的距离 2πRn v= , P 2πR N s= P5.解:在本题中,产品均与传输带保持相对静止,故产品的速度大小就等于传输带上 每点的速度大小,如果传输带不打滑,则 A、B 轮缘上每一点的线速度大小均与传输带运动 速度大小相等,1 min 内有 41 个产品通过 A 处,说明 1 min 内传输带上每点运动的路程为 两产品间距的 40 倍,设传输带运动速度大小为 v,则 (1)v=s 40 × 0.30 = m/s=0.2 m/s . t 60(2)vP=vQ=0.2 m/s . A 轮半径上的 M 点与 P 点角速度相等,故:v M=1 1 vP= ×0.2 m/s=0.1 m/s  . . 2 2ωP=ωM=v P 0 .2 = rad/s=1 rad/s rA 0.2ωQ=2ωP=2 rad/s  (3)C 轮的转动方向应如图所示,如果两轮间不打滑,则它们的接触处是相对静止的,即它们的轮缘的线速度是相等的,故ωCrC=ωArA, ω C=rA 0 .2 ·ωA= ×1 rad/s=4 rad/s  rC 0.05

学科: 学科:物理 教学内容: 教学内容:匀速圆周运动【学习目标】 学习目标】 识记 1.知道什么是匀速圆周运动. 2.知道线速度就是物体做匀速圆周运动的瞬时速度.方向沿圆周该点的切线方向. 理解应用 3.理解线速度的概念,理解角速度和周期的概念,会用它们的公式进行计算. 4.理解线速度、角速度、周期之间的关系:v=ω·r= 5.理解匀速圆周运动是变速运动. 【基础知识精讲】 基础知识精讲】 课文全解 课文全解 1.匀速圆周运动的线速度 (1)定义:匀速圆周运动的物体通过的弧长 s 跟通过这段弧长所用的时间 t 的比值, 叫匀速圆周运动的线速度. (2)公式:v=2πr . Ts t(3)单位:米/秒,符号 m/s (4)方向:运动轨迹上某点的切线方向.由圆的性质可知,各点的速度方向总与各点 所在半径垂直, 而各点的切线方向各不相同, 因此做匀速圆周运动的物体的速度方向时刻在 改变. 线速度是相对于角速度而言的, 其实它就是物体做圆周运动的瞬时速度, 匀速圆周运动 的线速度大小不变,而方向时刻改变,因此,匀速圆周运动是一种变速运动,所谓“匀速” 是指速率不变的意思. 2.匀速圆周运动的角速度 (1)定义:连接运动物体和圆心的半径转过的角度φ跟所用时间的比值叫角速度. (2)公式:ω=ϕt(3)单位:弧度/秒,符号 rad/s 注意:在角速度的计算中,φ角必须取弧度值,因为弧度是国际单位制,弧度跟度的换 算关系为 2π=360°. (4)方向:垂直于圆周运动的转动平面,方向始终不变. (高中阶段不要求) (5)矢量,匀速圆周运动的角速度大小和方向都不变,因此匀速圆周运动是角速度不 变的运动. (6)物理意义:描述圆周运动快慢的物理量. 3.匀速圆周运动的周期(1)定义:做匀速圆周运动的物体运动一周所用的时间叫做周期. (2)符号:T (3)单位:秒,符号:s (4)标量. (5)物理意义:描述匀速圆周运动快慢的物理量,周期长说明运动得慢,周期短说明 运动得快. 匀速圆周运动具有周期性,即物体经过一定时间后,重复地回到原来的位置,瞬时速度 也重复地回到原来的大小和方向. 4.匀速圆周运动的频率 (1)定义:做匀速圆周运动的物体每秒转过的圈数. (2)符号:f (3)单位:赫兹,符号 Hz (4)标量. (5)物理意义:描述匀速圆周运动的快慢的物理量,频率低说明运动慢. (6)频率和周期的关系:f=1 T5.转数 (1)定义:做匀速圆周运动的物体每分钟转过的圈数. (2)符号:n (3)单位:转/分,符号 r/min (4)标量. (5)物理意义:描述匀速圆周运动快慢的物理量,转数大说明运动快,转数小说明运 动慢. 转数在实际生产、生活中比较常用,例如电动机的标签上常标有转数.  问题全解 v、ω与 r 有什么样的关系? 线速度 v 和角速度ω都可用以描述圆周运动的快慢,公式 v=ωr 反映了它们之间以及 它们与半径的关系. 1.当 r 一定时,v∝ω,如转动飞轮边缘质点的运动就是如此,当转速增大时,角速度 随之增大, 线速度也相应增大. 又如某人骑自行车时, 当快速蹬车时, 角速度增大, 车速 (即 车轮边缘质点的线速度)也随之增大. 2.当ω一定时,v∝r,如时钟的分针转动时,各质点的角速度是相同的,但分针上离 圆心越远的质点,半径越大,线速度也越大.又如地球自转时,不同纬度的地面质点做圆周 运动的半径不同, 但地面各质点随地球自转做圆周运动的角速度是相等的, 因而不同纬度的 地面质点的线速度大小不等,赤道平面内地面各质点的线速度最大.不难发现,同一转动物 体上的各点的角速度是相等的,如同一轮上各点或共轴的几个轮的角速度相同,v∝r,又如 同一转动杆上各点角速度也相同,即 v∝r. 3.当 v 一定时,ω∝1 ,如皮带传动装置中,若不出现打滑现象,则两轮边缘各质点 r的线速度大小相等, 但大轮的角速度较小. 又如某同学骑着 18 型自行车与骑着 26 型自行车 的父亲并肩前进, 要使两车在同样的时间内通过同样多的路程, 则要两车轮边缘的线速度大 小相等,由于 26 型车轮半径较大,因此 26 型车轮速度较小,即角速度较小.不打滑时,皮 带传动装置中大轮小轮边缘各质点 v 大小相同,齿轮传动装置中,大轮小轮边缘各质点的 v大小也相同,但大轮小轮的角速度是不同的. 4.若 v、ω、r 三者均不定时,仍有 v=ωr,但已不是简单的正比、反比关系.有兴 趣的同学可在学习《万有引力定律》一章时分析卫星沿螺旋轨道下降或上升远离时的情况, 此时因其轨道半径逐渐变化,v 和ω的关系也变得特殊复杂了. [例 1]如图 5-4-1 所示的皮带传动装置中,右边的 B、C 两轮粘在一起且同轴,半 径 RA=RC=2RB,皮带不打滑, 试求 A、B、C 各轮边缘上的一点线速度大小之比,角速度之比.图 5-4-1 解析:由于不打滑的皮带传动,两轮边缘上的各点线速度大小相同,则有 vA=vB,在线 速度相同的情况下,角速度与半径成反比.其中 RA=2RB,可知ωB=2ωA.固定在一起共轴 转动的轮上各点的角速度相同,于是有ωB=ωC,在角速度相同的情况下,线速度与半径成 正比,其中 RC=2RB,由以上分析得: vA∶vB∶vC=1∶1∶2 ωA∶ωB∶ωC=1∶2∶2点评: 要记住不打滑的皮带传动和摩擦传动的两轮边缘上各点线速度大小相等; 同一物 体或固定在一起的物体转动时, 各点的角速度相同. 讨论问题时先搞清是线速度相同还是角 速度相同,再讨论与半径的关系. [例 2]如图 5-4-2 所示,半径为 R 的圆盘绕垂直于盘面的中心轴匀速转动,其正上 方 h 处沿 OB 方向水平抛出一个小球,要使球与盘只碰一次,且落点为 B,则小球的初速度 v =_________,圆盘转动的角速度ω=_________.图 5-4-2 解析:①小球做平抛运动,在竖直方向上:h=1 2 gt 2则运动时间t=2h g又因为水平位移为 R 所以球的速度v=g R = R· t 2h②在时间 t 内,盘转过的角度θ=n·2π,又因为θ=ωt 则转盘角速度:ω=g n ⋅ 2π =2nπ t 2h(n=1,2,3…) 点评: 上题中涉及圆周运动和平抛运动这两种不同的运动, 这两种不同运动规律在解决 同一问题时,常常用“时间”这一物理量把两种运动联系起来. [例 3]一把雨伞,伞面圆半径为 r,伞面边缘距地面的高度为 h,以角速度ω旋转这 把雨伞,问伞面边缘上甩出去的水滴落在水平地面上时形成的圆半径 R 多大? 解析:水滴从伞面边缘甩出去以后做平抛运动,水平速度不变.水滴在空中做平抛运动 的时间是:t=2h g 2h gs=v0t=ω·r·图 5-4-3 为俯视图, 表示水滴从 a 点甩离伞面落在地面上的 b 点, 是转动轴 O (伞柄) , 可见水滴落在地面上形成的圆半径为:图 5-4-3R= r 2 + s 2 = r 1 +2 hω 2 g[例 4]如图 5-4-4 所示,直径为 d 的纸筒,以角速度ω绕 O 轴逆时针转动,一颗子 弹沿直径水平穿过圆纸筒,先后留下 a、b 两个弹孔,且 Oa 与 Ob 间的夹角为θ,则子弹的 可能速度为_________.图 5-4-4 解析:子弹通过圆纸筒匀速直线运动的时间为:t=d v其间,纸筒转过的角度为: ϕ =(2n+1)π-θ 由公式ω=ϕt=ϕ = ωt (2n + 1)π − θ得所以d (2n + 1)π − θ = v ωω,v=ωd (n=0,1,2…) [(2n + 1)π − θ ]点评:对于这类问题,要特别注意其周期性,千万不要简单认为在 t s 内纸筒转过的角 度 ϕ =π-θ. 当然有些同学还会误认为纸筒所转过的角度就为θ, 这就是没有仔细审题的 结果,没有弄清子弹第一次打穿纸筒时 a 点在 O 点的正左方,若纸筒绕顺时针转动,则转过 角度应为 ϕ =(2n+1)π+θ. [例 5]为了测定子弹的飞行速度,在一根水平放置的轴杆上固定两薄圆盘 A、B,A、B 平行且相距 2 m,轴杆的转速为 3600 r/min,子弹穿过两盘留下两弹孔 a、b,测得两弹孔 半径夹角是 30°,如图 5-4-5 所示,则该子弹的速度是A.360 m/s C.1440 m/s图 5-4-5 B.720 m/s D.108 m/s解析:子弹从 A 盘至 B 盘,盘转过的角度θ=2nπ+π6(n 为整数)由于轴杆转速为 3600 r/min,所以盘转动的角速度为ω=2π × 3600 =120π rad/s 60子弹在 A、B 间运动的时间等于圆盘转过θ角所用的时间 tt=θ 6 = = ω 120π 1202 nπ +π2n +1 6 s所以,子弹的速度为 v=AB = t2 2n + 120 1 6=240 m/s 1 2n + 6当 n=0 时,v=1440 m/s 当 n=1 时,v=110.8 m/s . 所以,符合题意的选项是 C. 【学习方法指导】 学习方法指导】 极限法:怎样理解线速度是物体做匀速圆周运动的瞬时速度? 从本质上说,线速度是做匀速圆周运动的质点在某一时刻(或某一位置)的瞬时速度, 其方向沿轨迹的切线方向,其大小是包括该时刻在内的一小段时间内的平均速度的极限值, 下面仍从“无限分割,逐渐逼近”的方法来分析. 如图 5-4-6 所示,设质点做匀速圆周运动,在某段时间 t1 内从 P 点运动到 P1 点,那 么线速度大小为 v1= ,平均速度大小 v1 =PP1 (PP1 为位移大小),方向沿位移 PP1 方 t, 平均速度 v 2 =向. 现取更短时间 t2, 质点就由 P 点运动到 P2 点, 线速度大小 v2=PP2 , t2方向沿位移 PP2 方向.若时间再短,P3 越接近 P,越接近 PP3 的长度.当时间无限短,Pn就与 P 趋于重合,即线速度大小 vP= v ,方向在该点 P 的切线方向上.图 5-4-6 应该指出:匀速圆周运动中线速度大小不变,方向时刻变化,匀速圆周运动实质是匀速 率圆周运动,是一种变速曲线运动. 【知识拓展】 知识拓展】 迁移 物体做匀速圆周运动的条件:第一:必须具有初速度.第二:必须受到大小不变且方向始终与速度方向垂直并沿半径 指向圆心的力的作用.换句话说,物体受到的合外力全部不用来改变速度的大小.这样,物 体所受的合外力就必须时刻垂直速度方向,且大小不变.图 5-4-7 如果物体所受的合外力不能总垂直速度方向, 那么物体是不可能做匀速圆周运动的. 如 水平抛出的物体,虽然具有初速度,并且初速度与合外力(重力)也垂直,但后来物体的速 度与合外力不垂直.如图 5-4-7 所示,物体也就不可能做圆周运动,当然不做圆周运动的 根本原因在于合外力恒定不变,总是竖直向下,而圆周运动中向心力的方向却是时刻改变 的. 又如用绳子牵着物体在竖直面内做圆周运动时, 只有在最高点和最低点两个位置所受的 合外力全力以赴提供向心力,其他位置时物体所受外力的合力并不指向圆心,如图 5-4-8mv A 所示,物体经过 A 位置时,F 向=F 合=FA-mg= .物体经过 B 位置时,F 向=F 合=FA+ R v mg=m B ,但当物体经过其他位置,如 C、D 位置时,F 合不指向圆心,F 合的一部分用来改 R变 v 的大小,另一部分用来改变 v 的方向,因此此时物体所做的是变速圆周运动.22图 5-4-8  发散 常识性知识: 1.时钟: ①秒针转动的周期:T=60 s,秒针转动的角速度:ω=2π rad/s 60 2π rad/s 3600②分针转动的周期:T=3600 s,分针转动的角速度:ω=③时针转动的周期:T=12×3600 s,时针转动的角速度:ω=2π rad/s 12 × 3600 2π rad/s 24 × 3600 2π rad/s 365 × 24 × 3600 2π rad/s 28.5 × 3600 × 242.地球: ①自转周期:T=24×3600 s,自转的角速度:ω=②公转周期:T=365×24×3600 s,公转的角速度:ω=3.月球周期:T=28.5×3600×24 s . 角速度:ω=【同步达纲训练】 同步达纲训练】 1.地球半径 R=6400 km,站在赤道上的人和站在北纬 60°上的人随地球转动的角速度 多大?他们的线速度各是多少? 2.如图 5-4-9 是测定气体分子速率的实验装置,全部装置放在高真空容器中,A 和 B 是两个同轴圆盘,转动的角速度相同,两盘相距为 L=20 cm,盘上各开一条很窄的细缝, 两盘的细缝相对错开θ=6°的夹角,当气体分子直射圆盘时,若仅能使速率 v=300 m/s 的分子通过两盘的细缝,求圆盘的转速 n.图 5-4-9 3.钟表的秒针、分针、时针的角速度各是多少?若秒针长 0.2 m,则它的针尖的线速 . 度是多大? 4.(2002 年上海)如图 5-4-10 所示为一试验小车中利用光电脉冲测量车速和行程的 装置的示意图.A 为光源,B 为光电接收器,A、B 均固定在车身上,C 为小车的车轮,D 为 与 C 同轴相连的齿轮.车轮转动时,A 发出的光束通过旋转齿轮上齿的间隙后变成脉冲光信 号,被 B 接收并转换成电信号,由电子电路记录和显示,若实验显示单位时间内的脉冲数为 n,累计脉冲数为 N,则要测出小车的速度和行程还必须测量的物理量或数据是_________; 小车速度的表达式为 v=_________;行程的表达式为 s=_________.图 5-4-10 5. 如图 5-4-11 所示是生产流水线上的皮带传输装置, 传输带上等间距地放着很多半 成品产品,A 轮处装有光电计数器,它可以记录通过 A 处的产品数目,已知测得轮 A、B 的 半径分别为 rA=20 cm,rB=10 cm.相邻两产品距离为 30 cm,1 min 内有 41 个产品通过 A 处,求:图 5-4-11 (1)产品随传输带移动的速度大小; (2)A、B 轮轮缘上的两点 P、Q 及 A 轮半径中点 M 的线速度和角速度大小,并在图中 画出线速度方向; (3)如果 A 轮是通过摩擦带动 C 轮转动,且 rC=5 cm,在图中画出 C 轮的转动方向, 求出 C 轮的角速度(假设轮不打滑) .参考答案 1.解:地球不停地由西向东绕南北轴自转,自转周期 T=24 h,设赤道上的人在 A 点, 北纬 60°上的人在 B 点,如图所示.地球自转角速度固定不变,A、B 两点的角速度相同,有:ωA=ωB=2π 2 × 3.14 -5 = =7.3×10 rad/s . T 24 × 3600由 v=ωr 知,A、B 两点的线速度不同, -5 3 故 vA=ωAR=7.3×10 ×6400×10 =467.2 m/s  . .vB=ωBRcos60°=1 vA=233.6 m/s . 22.解:气体分子由 A 盘细缝到 B 盘细缝的运动是与盘的转动相独立的,即气体分子做 匀速直线运动,因此所用时间为t=L 20 × 10−2 2 -3 = s= ×10 s v 300 3在此期间圆盘转过的角度:θ=2kπ+π30,由ω=2π·n=θt,得:n=(1500k+25) s (k=0,1,2…)-1解本题时需要注意运动的周期性,在时间 t 内,圆盘可能是转过θ角,也可能是转过 2π+θ或是 4π+θ… 3.解:由ω= 2π 知,要求秒针、分针、时针的角速度,关键是确定它们各自的周期: TT 秒=60 s、T 分=60 min、T 时=12 h ω 秒=2π 2 × 3.14 = =0.105 rad/s  . T秒 60ω分=2π/T 分=1.74×10-3 rad/s . ω时=2π/T 时=1.45×10-4 rad/s  . v 秒=ω秒·R=0.105×0.2=2.1×10-2 m/s . . . 4.解:设车轮半径为 R、齿轮的齿数为 P,车的速度应为单位时间行驶的距离 2πRn v= , P 2πR N s= P5.解:在本题中,产品均与传输带保持相对静止,故产品的速度大小就等于传输带上 每点的速度大小,如果传输带不打滑,则 A、B 轮缘上每一点的线速度大小均与传输带运动 速度大小相等,1 min 内有 41 个产品通过 A 处,说明 1 min 内传输带上每点运动的路程为 两产品间距的 40 倍,设传输带运动速度大小为 v,则 (1)v=s 40 × 0.30 = m/s=0.2 m/s . t 60(2)vP=vQ=0.2 m/s . A 轮半径上的 M 点与 P 点角速度相等,故:v M=1 1 vP= ×0.2 m/s=0.1 m/s  . . 2 2ωP=ωM=v P 0 .2 = rad/s=1 rad/s rA 0.2ωQ=2ωP=2 rad/s  (3)C 轮的转动方向应如图所示,如果两轮间不打滑,则它们的接触处是相对静止的,即它们的轮缘的线速度是相等的,故ωCrC=ωArA, ω C=rA 0 .2 ·ωA= ×1 rad/s=4 rad/s  rC 0.05


相关内容

  • 高一物理匀速圆周运动快慢的描述
  • 第1节 匀速圆周运动快慢的描述 从容说课 教材首先明确要研究圆周运动中的最简单的情况--匀速圆周运动,接着从描述匀速圆周运动的快慢的角度引入线速度.角速度的概念及周期.频率.转速等概念,最后推导出线速度.角速度.周期间的关系,中间有一个思考与讨论作为铺垫. 关于线速度.角速度.周期等概念的教学建议是 ...

  • p013匀速直线运动的s-t图像
  • [单选题]如图所示的图像中,描述的是同一种运动形式的是( ) [A]A与B [B]A与C [C]C与D [D]B与C [知识点]匀速直线运动的s-t图像 [答案]D [解析] {步骤⊙}提示1:由题知,B与C描述的都是匀速直线运动,是同一种运动. [本题结束] [单选题]汽车在平直公路上匀速行驶,图 ...

  • 高一物理对匀速圆周运动认识
  • 第7点 对匀速圆周运动认识的四个误区 同学们在学习匀速圆周运动时,经常对匀速圆周运动的基本概念.基本特点等产生以下四个错误认识: (1)认为匀速圆周运动是匀速运动 做匀速圆周运动的物体,其速度方向时刻发生变化,因此,匀速圆周运动中的"匀速"只是"匀速率"的意思 ...

  • 向心加速度学案
  • 海南省海口市第十四中学高中物理必修二学案:第五章 曲线运动 5 向心加速度 学习目标 1. 知道匀速圆周运动是变速运动,具有向心加速度. 2. 理解向心加速度的方向. 3. 会用矢量图表示速度变化量,理解加速度与速度.速度变化量之间的关系. 4. 知道向心加速度的公式. 5. 能分析匀速圆周运动的向 ...

  • 向心力.向心加速度的教学设计
  • <向心力 向心加速度>的教学设计 何强 一.教学目标 (一)知识目标 1.知道向心力的方向和大小,理解向心力的作用: 2.知道向心加速度的方向及大小: 3.知道在变速圆周运动中可用上述公式求质点在圆周上某一点的向 心力和向心加速度. (二)能力目标 1.会分析实验现象,提高观察能力和分析 ...

  • 匀速圆周运动精品教案
  • 匀速圆周运动向心力 一.教学目标 1.物理知识方面: (1)理解匀速圆周运动是变速运动: (2)掌握匀速圆周运动的线速度.角速度.周期的物理意义及它们间的数量关系: (3)初步掌握向心力概念及计算公式. 2.通过匀速圆周运动.向心力概念的建立过程,培养学生观察能力.抽象概括和归纳推理能力. 3.渗透 ...

  • 007运动快慢 直线运动
  • 03-2 试 卷 24 初中物理学习质量检测 直线运动(一) 一.填空题(每空3分,共57分) 1. 运动物体通过路径的_____________叫做路程,路程的主单位是_______________. 2. 物体沿直线运动,如果在____________内通过的路程___________这种运动就 ...

  • 高中物理必修二第五章导学案汇总
  • 曲线运动(预习案) [预习目标] 1. 通过阅读课本知道什么是曲线运动及曲线运动中速度的方向 2. 通过举例分析知道物体做曲线运动的条件 [预习内容](认真阅读教材P 2-P 6,独立完成下列问题) 1. 什么是曲线运动? 2. 曲线运动的速度方向? 3. 曲线运动是一种什么运动? 4. 物体做曲线 ...

  • B.匀速直线运动的图像
  • 第一章.匀变速直线运动 B .匀速直线运动的图像 一.知识要点: (一)匀速直线运动 1.匀速直线运动 定义:在_____________的时间里,物体的__________都相同的直线运动叫做匀速直线运动. 2.速度 速度是描述质点__________和_______________的物理量. 定 ...

  • 向心力典型例题(附答案详解)
  • 1.如图所示,半径为r 的圆筒,绕竖直中心轴OO′转动,小物块a 靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使a 不下滑,则圆筒转动的角速度ω至少为( ) A. B. C. D. 2.下面关于向心力的叙述中,正确的是( ) A. 向心力的方向始终沿着半径指向圆心,所以是一个变力 B. 做匀速圆 ...