超导核磁共振谱仪的原理及应用实验指导书

超导核磁共振谱仪的原理及应用实验指导书

贵州大学精细化工研究开发中心(绿色农药与生物工程重点实验室)

1、实验类型及学时数

a) 实验类型:设计性实验(研究性实验)

b) 学时数:10学时

2、实验目的和意义

核磁共振是1946年由美国斯坦福大学布洛赫(F.Block)和哈佛大学珀赛尔(E.M.Purcell)各自独立发现的,两人因此获得1952年诺贝尔物理学奖。50多年来,核磁共振已形成为一门有完整理论的新学科。

在各种各样的化学分析仪器中,核磁共振谱仪被公认为是一种非常重要的研究和测试工具,它的许多功能是其它手段无法代替的。

核磁共振谱仪可以给出小到原子核在分子中的精确位置及其周边环境的微小变化,大到整个人体的断层成像等具有丰富内涵的信息。被广泛用于工业、农业、化学、生物、医药、地球科学和环境科学等领域。

通过学习核磁共振波谱仪的构成、使用方法及其在定性、定量分析中的应用,培养学生严谨的科学态度、细致的工作作风、实事求是的数据报告和良好的实验习惯(准备充分、操作规范,记录简明,台面整洁、实验有序,良好的环保和公德意识);培养学生的动手能力、理论联系实际的能力、统筹思维能力、创新能力、独立分析解决实际问题的能力、查阅手册资料并运用其数据资料的能力以及归纳总结的能力等。

3、实验原理

(1)基本原理

自旋不为零的粒子,如电子和质子,具有自旋磁矩。如果我们把这样的粒子放入稳恒的外磁场中,粒子的磁矩就会和外磁场相互作用使粒子的能级产生分裂,分裂后两能级间的能量差为

ΔE = γhB0 (1)

其中:γ为旋磁比,h 为约化普朗可常数,B0为稳恒外磁场。

如果此时再在稳恒外磁场的垂直方向加上一个交变电磁场,该电磁场的能量为

h ν (2)

其中:ν为交变电磁场的频率。

当该能量等于粒子分裂后两能级间的能量差时,即:

h ν = γh B0 (3)

2πν = γ B0 (4)

低能极上的粒子就要吸收交变电磁场的能量产生跃迁,即所谓的磁共振。

简单地说,核磁共振波谱法就是将自旋核放入磁场中,用适宜频率的电磁波照射,它们会吸收能量,发生原子核能级的跃迁,同时产生核磁共振信号,得到核磁共振谱的实验方法。

(2)脉冲傅立叶NMR 谱仪的基本结构与工作原理

脉冲傅立叶NMR 谱仪一般包括5个主要部分:射频发射系统、探头、磁场系统、信号接收系统和信号处理与控制系统。

a) 射频发射系统:射频发射系统是将一个稳定的、已知频率的石英振荡器产生的电磁波,经频率综合器精确地合成出欲观测核(如1H ,13C ,31P 等)、被辐照核(如照射1H 以消除其对观测核的耦合作用)和锁定核(如2D ,7Li ,用心稳定仪器的磁场强度)的3个通道所需频率的射频源。射频源发射的射频脉冲通过探头上的发射线圈照射到样品上。

b) 探头:探头是整个仪器的心脏,固定在磁极间隙中间。包括样品管支架、发射线圈、接收线圈等,样品管在探头中高速旋转,以消除管内的磁场不均匀性。探头分为多种,如正向探头、反相探头、微量探头、固体探头等。

c) 磁场系统:用心产生一个强、稳、匀的静磁场以便观测化学位移微小差异的共振信息。高磁场磁体(高于2.3T )需要采用超导体绕制的线圈经电激励来产生,称为超导磁体。超导磁体需要使用足够的液He 和液N2来降低温度,维持其正常工作。磁体内同时含有多组匀场线圈,通过调节其电流使它在空间构成相互正交的梯度磁场来补偿主磁体的磁场不均匀性。通过仔细反复调节,可获得足够高的仪器分辨率和良好的NMR 谱图。

d) 信号接收系统:信号接收系统和射频发射系统实际上用的是同一组线圈。当射频泳冲发射并施加到样品上后,发射门关闭,接收门打开,FID 信号被信号接收系统接收下来。信号经前置放大器放大、检波、滤波等处理,再经模数转换转化为数字信号,最后通过计算机快速采样,FID 信号被记录下来。

e) 信号处理与控制系统:负责控制和协调各系统有条不紊地工作。并对接收的FID 信号进行累、傅立叶变换处理等。

4、实验设备

仪器设备:JEOL ECX 500型超导核磁共振谱仪

JEOL ECX 500核磁共振波谱仪 工作站操作介面

JEOL ECX 500具有51mm 自屏蔽超导磁体,磁场强度11.74T (1H,500MHz),44级匀场线圈,Z1 to Z6氘梯度自动匀场装置,磁场漂移3Hz/h;两个射频通道,频率范围10-1000 MHz;采样谱宽50Hz-2MHz ;配备自动调谐5mm 梯度宽带探头(多核15N-31P ,19F, 1H ,分辨率小于0.45Hz ,变温范围-100 to +150℃);5mm FG/HX反向探头(1H ,变温范围:-100 to +150℃);3mm 微量探头(分辨率0.5Hz) 。

目前开展的常规测试项目有:1H 、13C 、DEPT90、DEPT135、31P 、19F 、15N 、H-H COSY、H-C COSY(HMQC 、HSQC )等一维和二维谱。

5、实验内容

了解并初步掌握脉冲傅立叶变换NMR 谱仪的基本原理与构造;学习核磁共振波谱法测定化合物结构的方法;通过测定已知和未知样品的1HNMR 和13CNMR ,初步掌握获得谱图的一般操作程序与技术;了解影响分析测定的重要因素,学会优化分析条件;学习核磁共振谱图的解析方法。

6、实验步骤

1) 样品的制备

为了获取分子内部高分辨率的NMR 谱图,一般需采用液态样品。固体样品要用隋性溶剂稀释成样品溶液,溶液应尽量浓一些以减少测量时间,但不宜过于粘稠,样品溶液保持较好的流动性可以减少分子间的相互作用,避免谱线过宽。在作精细测量时应采用内锁方式进行锁场,溶剂必须采用氘代溶剂如CDCl 3,D 2O ,(CD3) 2CO ,(CD3) 2SO 等,氘代溶剂还可避免溶剂信号过强而干扰测量。

样品溶液中应不含未溶解的固体微粒、灰尘或顺磁性杂质,否则会导致谱线变宽,甚至失去应有的精细结构。

2) 标准参考样品

测量样品的化学位移必须用标准物质作为参考,按标准参考物加入的方式可分为外标法和内标法。

外标法是将标准参考物装于毛细管中,再插入样品管,与样品溶液同轴进行测量。 内标法是将标准参考物直接加入样品中进行测量。

内标优于外标法。对于1H 谱,通常采用四甲基硅(TMS )作内标,TMS 化学隋性,具有12个等价质子,只有一个尖锐单峰,出现在很高场,将其化学位移定为0点,一般化合物的谱峰都在它的左边。不同核素所用的标准参考物不同。13C 核与29Si 核皆用TMS 作内标。而31P 核用85%的磷酸,以外标法测定。

3) 样品测试

a) 将样品管放入仪器进样口。要求注意安全,必须垂直放入和取出,以名样品管折断污染探头。

b) 锁场,仔细匀场以调整好仪器的分辨率。

c) 设置测量参数并测量样品。需要设置的参数包括:所用溶剂、观测核、测量方法、脉冲系列类型、脉冲角度、谱宽、延迟时间、累加次数、采样点数等。

d) 测量,谱图处理。谱图处理包括相伴调整、化学位移标定、积分等。

e) 结束实验,取出样品。

4) 谱图解析

5) 数据分析和实验报告

7、注意事项

a) 所有操作在老师指导下完成,禁止擅动仪器;

b) 严格按照操作程序进行操作,实验不用的命令不能乱动;

c) 严禁将磁性物体带到磁体附件,尤其是探头区;

d) 样品管的插入与取出,务必小心谨慎,切忌折断或碰碎在探头中造成事故;

e) 样品管外壁应擦试干净,用量规限定涡轮转子的高度,以保证样品在磁体中心位置;

8、思考题或作业

(1) NMR波谱法与IR 、UV 光谱法相比较有何重要差异?为什么?

(2) 如何获取一张正确的1H NMR谱图?试讨论你所作的谱图的优劣。

(3) 结合本实验讨论从中可获取哪些信息,分析你推定化合物结构的理由。

(4) 比较、归纳13C NMR谱与1H NMR谱的特点。

超导核磁共振谱仪的原理及应用实验指导书

贵州大学精细化工研究开发中心(绿色农药与生物工程重点实验室)

1、实验类型及学时数

a) 实验类型:设计性实验(研究性实验)

b) 学时数:10学时

2、实验目的和意义

核磁共振是1946年由美国斯坦福大学布洛赫(F.Block)和哈佛大学珀赛尔(E.M.Purcell)各自独立发现的,两人因此获得1952年诺贝尔物理学奖。50多年来,核磁共振已形成为一门有完整理论的新学科。

在各种各样的化学分析仪器中,核磁共振谱仪被公认为是一种非常重要的研究和测试工具,它的许多功能是其它手段无法代替的。

核磁共振谱仪可以给出小到原子核在分子中的精确位置及其周边环境的微小变化,大到整个人体的断层成像等具有丰富内涵的信息。被广泛用于工业、农业、化学、生物、医药、地球科学和环境科学等领域。

通过学习核磁共振波谱仪的构成、使用方法及其在定性、定量分析中的应用,培养学生严谨的科学态度、细致的工作作风、实事求是的数据报告和良好的实验习惯(准备充分、操作规范,记录简明,台面整洁、实验有序,良好的环保和公德意识);培养学生的动手能力、理论联系实际的能力、统筹思维能力、创新能力、独立分析解决实际问题的能力、查阅手册资料并运用其数据资料的能力以及归纳总结的能力等。

3、实验原理

(1)基本原理

自旋不为零的粒子,如电子和质子,具有自旋磁矩。如果我们把这样的粒子放入稳恒的外磁场中,粒子的磁矩就会和外磁场相互作用使粒子的能级产生分裂,分裂后两能级间的能量差为

ΔE = γhB0 (1)

其中:γ为旋磁比,h 为约化普朗可常数,B0为稳恒外磁场。

如果此时再在稳恒外磁场的垂直方向加上一个交变电磁场,该电磁场的能量为

h ν (2)

其中:ν为交变电磁场的频率。

当该能量等于粒子分裂后两能级间的能量差时,即:

h ν = γh B0 (3)

2πν = γ B0 (4)

低能极上的粒子就要吸收交变电磁场的能量产生跃迁,即所谓的磁共振。

简单地说,核磁共振波谱法就是将自旋核放入磁场中,用适宜频率的电磁波照射,它们会吸收能量,发生原子核能级的跃迁,同时产生核磁共振信号,得到核磁共振谱的实验方法。

(2)脉冲傅立叶NMR 谱仪的基本结构与工作原理

脉冲傅立叶NMR 谱仪一般包括5个主要部分:射频发射系统、探头、磁场系统、信号接收系统和信号处理与控制系统。

a) 射频发射系统:射频发射系统是将一个稳定的、已知频率的石英振荡器产生的电磁波,经频率综合器精确地合成出欲观测核(如1H ,13C ,31P 等)、被辐照核(如照射1H 以消除其对观测核的耦合作用)和锁定核(如2D ,7Li ,用心稳定仪器的磁场强度)的3个通道所需频率的射频源。射频源发射的射频脉冲通过探头上的发射线圈照射到样品上。

b) 探头:探头是整个仪器的心脏,固定在磁极间隙中间。包括样品管支架、发射线圈、接收线圈等,样品管在探头中高速旋转,以消除管内的磁场不均匀性。探头分为多种,如正向探头、反相探头、微量探头、固体探头等。

c) 磁场系统:用心产生一个强、稳、匀的静磁场以便观测化学位移微小差异的共振信息。高磁场磁体(高于2.3T )需要采用超导体绕制的线圈经电激励来产生,称为超导磁体。超导磁体需要使用足够的液He 和液N2来降低温度,维持其正常工作。磁体内同时含有多组匀场线圈,通过调节其电流使它在空间构成相互正交的梯度磁场来补偿主磁体的磁场不均匀性。通过仔细反复调节,可获得足够高的仪器分辨率和良好的NMR 谱图。

d) 信号接收系统:信号接收系统和射频发射系统实际上用的是同一组线圈。当射频泳冲发射并施加到样品上后,发射门关闭,接收门打开,FID 信号被信号接收系统接收下来。信号经前置放大器放大、检波、滤波等处理,再经模数转换转化为数字信号,最后通过计算机快速采样,FID 信号被记录下来。

e) 信号处理与控制系统:负责控制和协调各系统有条不紊地工作。并对接收的FID 信号进行累、傅立叶变换处理等。

4、实验设备

仪器设备:JEOL ECX 500型超导核磁共振谱仪

JEOL ECX 500核磁共振波谱仪 工作站操作介面

JEOL ECX 500具有51mm 自屏蔽超导磁体,磁场强度11.74T (1H,500MHz),44级匀场线圈,Z1 to Z6氘梯度自动匀场装置,磁场漂移3Hz/h;两个射频通道,频率范围10-1000 MHz;采样谱宽50Hz-2MHz ;配备自动调谐5mm 梯度宽带探头(多核15N-31P ,19F, 1H ,分辨率小于0.45Hz ,变温范围-100 to +150℃);5mm FG/HX反向探头(1H ,变温范围:-100 to +150℃);3mm 微量探头(分辨率0.5Hz) 。

目前开展的常规测试项目有:1H 、13C 、DEPT90、DEPT135、31P 、19F 、15N 、H-H COSY、H-C COSY(HMQC 、HSQC )等一维和二维谱。

5、实验内容

了解并初步掌握脉冲傅立叶变换NMR 谱仪的基本原理与构造;学习核磁共振波谱法测定化合物结构的方法;通过测定已知和未知样品的1HNMR 和13CNMR ,初步掌握获得谱图的一般操作程序与技术;了解影响分析测定的重要因素,学会优化分析条件;学习核磁共振谱图的解析方法。

6、实验步骤

1) 样品的制备

为了获取分子内部高分辨率的NMR 谱图,一般需采用液态样品。固体样品要用隋性溶剂稀释成样品溶液,溶液应尽量浓一些以减少测量时间,但不宜过于粘稠,样品溶液保持较好的流动性可以减少分子间的相互作用,避免谱线过宽。在作精细测量时应采用内锁方式进行锁场,溶剂必须采用氘代溶剂如CDCl 3,D 2O ,(CD3) 2CO ,(CD3) 2SO 等,氘代溶剂还可避免溶剂信号过强而干扰测量。

样品溶液中应不含未溶解的固体微粒、灰尘或顺磁性杂质,否则会导致谱线变宽,甚至失去应有的精细结构。

2) 标准参考样品

测量样品的化学位移必须用标准物质作为参考,按标准参考物加入的方式可分为外标法和内标法。

外标法是将标准参考物装于毛细管中,再插入样品管,与样品溶液同轴进行测量。 内标法是将标准参考物直接加入样品中进行测量。

内标优于外标法。对于1H 谱,通常采用四甲基硅(TMS )作内标,TMS 化学隋性,具有12个等价质子,只有一个尖锐单峰,出现在很高场,将其化学位移定为0点,一般化合物的谱峰都在它的左边。不同核素所用的标准参考物不同。13C 核与29Si 核皆用TMS 作内标。而31P 核用85%的磷酸,以外标法测定。

3) 样品测试

a) 将样品管放入仪器进样口。要求注意安全,必须垂直放入和取出,以名样品管折断污染探头。

b) 锁场,仔细匀场以调整好仪器的分辨率。

c) 设置测量参数并测量样品。需要设置的参数包括:所用溶剂、观测核、测量方法、脉冲系列类型、脉冲角度、谱宽、延迟时间、累加次数、采样点数等。

d) 测量,谱图处理。谱图处理包括相伴调整、化学位移标定、积分等。

e) 结束实验,取出样品。

4) 谱图解析

5) 数据分析和实验报告

7、注意事项

a) 所有操作在老师指导下完成,禁止擅动仪器;

b) 严格按照操作程序进行操作,实验不用的命令不能乱动;

c) 严禁将磁性物体带到磁体附件,尤其是探头区;

d) 样品管的插入与取出,务必小心谨慎,切忌折断或碰碎在探头中造成事故;

e) 样品管外壁应擦试干净,用量规限定涡轮转子的高度,以保证样品在磁体中心位置;

8、思考题或作业

(1) NMR波谱法与IR 、UV 光谱法相比较有何重要差异?为什么?

(2) 如何获取一张正确的1H NMR谱图?试讨论你所作的谱图的优劣。

(3) 结合本实验讨论从中可获取哪些信息,分析你推定化合物结构的理由。

(4) 比较、归纳13C NMR谱与1H NMR谱的特点。


相关内容

  • 解析超导低温材料技术在国内外的成功应用案例
  • 解析高均匀度低温超导磁体制造技术在国外的成功应用案例 简要综述: 高均匀度低温超导磁体研制成功,表明我所具有独立研制超导磁体的制造技术能力和装备基础,具备了研制高均匀度超导磁体的条件. 该超导磁体为水平温孔.冷铁被动屏蔽结构,线圈采用多组同轴螺线管以提高磁场均匀度,磁体杜瓦采用真空多层绝热结构.磁铁 ...

  • 强磁场实验装置 2011 年年度报告
  • 2011年年度报告 (稳态,合肥) 中国科学院强磁场科学中心 稳态强磁场大科学工程经理部 2012年2月 强磁场实验装置 一.装置概况 装置概况 强磁场实验装置(HMFF)项目是由中国科学院和教育部联合申报并获批准的"十一五"国家重大科技基础设施建设项目.根据<国家发展改革 ...

  • 现代仪器分析测试方法
  • 现代仪器分析测试方法 现代分析有分离分析法.热分析法.光学分析法.质谱分析法.电分析化学法.分析仪器联用技术这集中类型.具体有:核磁共振(NMR),红外光谱(IR),紫外光谱(UV),质谱(MS),气相色谱(GC),液相色谱(LC),气相色谱与质谱联用(GC/MS)技术和液相色谱与质谱联用(LC/M ...

  • 正电子湮灭
  • 正电子湮灭仪 正电子湮没技术(Position Annihilation Technique,PAT),是一项较新的核物理技术,它利用正电子在凝聚物质中的湮没辐射带出物质内部的微观结构.电子动量分布及缺陷状态等信息,从而提供一种非破坏性的研究手段而备受人们青睐.现在正电子湮没技术已经进入固体物理.半 ...

  • 检验仪器学教学大纲(检验四年制)
  • <临床检验仪器与技术>教学大纲 课程名称:临床检验仪器和技术 学时与学分:2学分/32学时(其中实验学时: 4学时) 先修课程:物理.基础化学.分析化学.高等数学.计算机基础 适用专业(方向):医学检验技术专业 一.课程性质.目的与任务 本课程围绕培养创新型医学检验人才的目标,使学生通过 ...

  • 我国成功研制首台近室温超低场核磁共振谱仪
  • 来源:中国科技网-科技日报作者:吴佳珅2013年11月24日 00:50 [导读] 中科院武汉物理与数学研究所周欣研究员带领的超灵敏磁共振研究组,成功研制了我国首台近室温(40摄氏度)的超低场核磁共振谱仪. 原标题:我成功研制首台近室温超低场核磁共振谱仪 科技日报讯(记者吴佳珅)记者日前从中科院获悉 ...

  • 磁强计调研报告
  • 磁强计调查总结 1.什么是磁强计: 磁强计(magnetometer ):通常指的是测量给定方向磁感应强度的仪表.按照全国科学技术名词审定委员会的公布的概念,磁强计:矢量型磁敏感器.用于测定地磁场的大小与方向,即测定航天器所在处地磁场强度矢量在本体系中的分量.是测量磁感应强度的仪器.根据小磁针在磁场 ...

  • -核磁共振波谱法测定扑热息痛
  • 核磁共振波谱法测定扑热息痛氢谱 核磁共振波谱法测定扑热息痛氢谱 核磁共振(NMR )波谱是一种基于特定原子核在外磁场中吸收了与其裂分能级间能量差相对应的射频场能量而产生共振现象的分析方法.核磁共振波谱通过化学位移值.谱峰多重性.偶合常数值.谱峰相对强度和在各种二维谱及多维谱中呈现的相关峰,提供分子中 ...

  • 现代仪器分析综述
  • 现代仪器分析综述 (1309011025 韩武) 现代仪器分析为现代分析化学奠定了雄厚的学科理论基础--信息理论, 使现代仪器分析已经成为分析化学极其重要的组成部分,现代仪器分析所采用的分析仪器是化学.光学.电学.磁学.机械及计算机科学等现代科学综合发展的产物,仪器本身就是科学技术水平的标志.若能充 ...