风力摆控制系统

2015年全国大学生电子设计竞赛

风力摆控制系统(B题)

2015年8月15日

摘要

本系统采用STC12C5A60S2为主控芯片,通过MPU6050传感器提供反馈信息、采用PID控制算法调整轴流风机的工作状态、在液晶和按键的作用下显示并切换工作模式,形成一闭环测控系统。该测控系统通过控制驱动各风机,使风力摆按照一定规律运动,同时保证摆杆下方悬挂的激光笔能在地面画出要求的轨迹。

关键词:

风力摆

STC12单片机轴流风机

目录

摘要---------------------------------------------------------------------------------------------------1

一、设计任务--------------------------------------------------------------------------------------1

二、方案论证--------------------------------------------------------------------------------------1

2.1 控制器模块方案------------------------------------------------------------------------2

2.2位置检测模块----------------------------------------------------------------------------2

2.3动力装置方案设计----------------------------------------------------------------------2

2.4 外围模块方案设计---------------------------------------------------------------------2

2.4.1 功能调用模块的设计---------------------------------------------------------2

2.4.2 显示模块的设计----------------------------------------------------------------3

2.4.3 声光提示模块-------------------------------------------------------------------3

2.4.4 电源模块--------------------------------------------------------------------------3

2.5硬件电路设计-------------------------------------------------------------------------------3

2.6 系统控制方案的整体设计--------------------------------------------------------------3

2.6.1 风力摆摆直线过程分析------------------------------------------------------4

2.6.2 风力摆摆圆过程分析-------------------------------------------------------4

三、理论分析与计算-----------------------------------------------------------------------------5

3.1运动控制----------------------------------------------------------------------------------6

3.1.1直线运动的控制----------------------------------------------------------------6

3.1.2 摆圆运动的控制---------------------------------------------------------------6

3.2 软件实现--------------------------------------------------------------------------------6

3.2.1 所用算法-------------------------------------------------------------------------6

3.2.2 程序部分-------------------------------------------------------------------------6

四、测试结果与误差分析----------------------------------------------------------------------7

4.1风机性能的测试------------------------------------------------------------------------7

4.2摆直线任务的测试---------------------------------------------------------------------7

4.3速停任务测试记录---------------------------------------------------------------------7

4.4圆周轨迹任务测试---------------------------------------------------------------------7

4.5误差分析----------------------------------------------------------------------------------7

五、结论心得体会--------------------------------------------------------------------------------8

5.1结论-----------------------------------------------------------------------------------------8

5.2心得体会----------------------------------------------------------------------------------8 参考文献----------------------------------------------------------------------------------------------9 附录1:电路原理图-----------------------------------------------------------------------------10 附录2:部分PCB设计图-------------------------------------------------------------------------11 附录3:部分关键程序--------------------------------------------------------------------------12 附录4:系统整体照片--------------------------------------------------------------------------13

风力摆控制系统

摘要:本系统采用STC12C5A60S2为主控芯片,通过MPU6050传感器提供反馈信息、采用PID控制算法调整轴流风机的状态、在液晶和按键的人机交互作用下显示并切换工作模式,形成一闭环测控系统。该测控系统通过控制驱动各风机,使风力摆按照一定规律运动,同时保证摆杆下方悬挂的激光笔能在地面画出要求的轨迹。

关键词:风力摆 STC12单片机轴流风机

一、设计任务

一长约 60cm~70cm 的细管上端用万向节固定在支架上,下方悬挂一组(2~4 只)直流风机,构成一风力摆。风力摆上安装一向下的激光笔,静止时,激光笔的下端距地面不超过 20cm。设计一测控系统,控制驱动各风机使风力摆按照一定规律运动,激光笔在地面画出要求的轨迹。具体要求可参看设计任务书。

二、方案论证

根据题目要求,此测控系统完成控制风力摆按照一定规律运动、使激光

笔在地面上画出规定轨迹的任务。其通过按键与LCD三级子菜单,在不同工作模式间切换,完成相应的控制任务,关键在于反馈信息的准确和对轴流风机的控制。为此我们将系统分为五个模块,并对各个模块的方案进行了评估选择。系统整体方案框图如图 1 所示:

图1系统整体框图

2.1控制器模块方案

控制器是整个控制系统的核心,承载着执行控制算法,实现控制功能的作用。因此,要保证系统整体的控制质量,控制器的选择非常重要!在控制器的选择方案中,主要进行了如下对比:

方案一:选择常见且应用广泛的AT89C52作为控制芯片。对于这种单片机,

我们有良好的知识基础,上手快,成本低。然而对于本控制系统,程序量较大、所需I/O口较多,89单片机将很难满足控制要求,难以胜任控制任务。因此,89单片机并不适合作为本系统的控制器。

方案二:较之89系列单片机,STC12单片机资源丰富,集成EEPROM、AD、 PCA可编程计数阵列等;其功能更强大,执行速度更快。对于本系统来说,足以完成控制任务。故而作为本控制系统的首选。

2.2位置检测模块

检测模块不仅是获得被控系统所需信息的唯一渠道,而且从根本上决定了被控系统的控制精度,相当于控制系统中的“眼睛”;因此检测模块的设计对整个控制系统的设计至关重要!基于此,在选择检测元件时,主要做了如下对比:

方案一:选择整合性6轴运动处理组件MPU6050,利用其自身集成的3轴

MEMS陀螺仪,3轴 MEMS加速度计精确地对被控对象的运动状态进行数据采集;在数据处理上采用卡尔曼滤波算法,测量精度极高。另外,该传感器封装小节省空间,对本系统的控制十分有利。

方案二:选择角度、加速度模块 MMA7361传感器。这一模块虽有压降小,适合高噪声电源环境工作等特点,但其测量精度及测量范围等各方面性能不及MPU6050。综合考虑,选取MMA7361作为检测变送传感器并不明智。

经过上述对比,最终本系统选用了MPU6050作为位置检测的传感器。

2.3动力装置方案设计

动力装置作为本控制系统中的执行机构,是控制系统中的重要组成部分。它将控制器送来的控制信号转换成执行动作,从而操纵作用于被控对象的能量,将被控变量维持在所要求的数值上或一定的范围内。轴流风机作为此系统的唯一动力装置,其提供的动力是否充足、可调性是否优良将直接决定能否完成控制任务和控制质量的高低。为此考虑了成本、体积等因素,主要拟定了以下两个方案。

方案一:选择某牌直流12V-2.3A轴流小型风机。该风机体积小、质量轻,对摆杆的运动十分有利。另外,该种风机功率大、动力充足,能为控制系统提供充足的能量。

方案二:选择与上述风机同品牌的12V-1.8A轴流风机。与上述风机相比,该风机质量较大,功率却不及小型风机。其他方面,此二种风机并无差异。

上述方案的论证,似乎证明方案一将是本系统的不二之选,然而事实并非如此。在经过充分的实验发现(详见4.1中风机性能测试),方案一中风机启动过慢、控制不及时,而且其提供风力并不比方案二中轴流风机大。因此,本系统最终确定以方案二作为动力装置。

2.4外围模块方案设计

本系统中的外围模块,主要是指与对风机的控制不起直接作用的功能调用模块、显示模块、声光提示模块、电源模块。

主要是指键盘(按键)模块和显示模块。由于该系统所涉及的控制任务较多,使用键盘按键进行不同那个任务间的相互切换,降低了对程序的逻辑要求,易于编程、方便实施。而显示模块将检测到的信息直观的显示出来,利于对整个控制过程进行实时监控。这种良好的人机交互环境,也非常符合当前控制过程智能友好的趋势。

2.4.1 功能调用模块的设计

功能调用模块主要完成切换系统工作模式的任务。这里工作模式的切换主要

通过按键,常见的按键单元有:矩阵键盘、简单键盘等。以下为两种方案的对比:

方案一:矩阵键盘占用单片机的端口少、节约硬件资源;但电路设计较复杂、开发时间较长、软件设计也相对复杂。主要针对多键盘设计,适用于控制要求高、控制功能多的系统。

方案二:简单键盘设计简单、易于实现、减少了系统的复杂度;尤其适合执行功能不多的系统。

在上面的对比中不难看出,利用简单键盘进行功能调用将更加方便;对本系统的设计更有优势。因此选用方案二。

2.4.2 显示模块的设计

作为人机交互的途径,显示模块旨在占用最小的资源提供最多的可利用信息。常见的显示模块有1602液晶和12864液晶,本文对上述两种液晶做了如下对比:

方案一:采用1602液晶。1602液晶体积小、引脚少,节省硬件资源;但其显示信息量与其他液晶相比较小。

方案二:采用12864液晶。该种液晶微功耗、显示信息量大、字迹清晰、美观、视觉舒适;适合进行菜单显示,使整个控制系统更加人性化。另外,其可在串行口模式下工作,工作时仅需引出两根数据线和两根电源线,更加节省I/O口。

考虑到以上信息、并结合了本系统的特点,最终本系统以12684液晶作为显示单元。

2.4.3 声光提示模块

此模块的设计主要考虑了设计任务的要求,即各项目中,运动达到要求时需有明显的声或光提示,以便开始测试及记录。本系统的提示装置为发光二极管和蜂鸣器,他们在系统中起到了提示作用,这里不再赘述。

2.4.4 电源模块

在该控制系统中,要完成控制任务必须保证风机提供充足的动力。这就要求电源能提供风机工作所需的电流。在选择电源时,主要从如下两个方案中进行实验对比:

方案一:采用类似于驱动直流电机的方法,通过L298N驱动四个风机。此方案在电机的控制中较为常见,轴流风机作为一种直流电机,应该也能正常工作。

方案二:使用两个12V-3A的电源直接供电,每个电源分别为其中的两个风机供电。这样要控制风机,必须选择带有PWM控制线的风机。

通过实验证实:方案一如果没有采用必要的软件控制和硬件补偿,很难提供充足的动力使摆杆摆起足够的角度。而方案二只要选择带有控制线的风机,便避免了方案一中的弊端。故此系统电源选择方案二。

2.5硬件电路设计

在硬件方面,本系统采用了STC12C5A60S2最小系统板、12864液晶以及其他外围模块。相应的电路图和PCB板可参看附录1。

2.6 系统控制方案的整体设计

选择好各模块合适的方案后,系统整体控制方案的设计就相当重要了。首先是系统结构设计,如图2所示是系统的机械结构。

图2系统结构模型 图3风机摆放位置

值得注意的是③风机的摆放位置,为便于设计分析,风机应摆放为十字型如图3所示。

控制系统各部分的关系如图4控制方框图所示。

图4控制系统控制方框图

明确了控制流程和系统结构,系统控制任务的完成就完全依赖于对摆运动过程的理解。这里首先对系统结构进行说明,然后将系统的运动过程分为摆直线和摆圆周两个部分,进行简要分析。

2.6.1 风力摆摆直线过程分析

其简化的模型如图5所示。很显然,在该模型中

摆杆的位置到圆心A的距离与角度α成单值函数关角度α 系。在执行风力摆摆直线的工作模式时,只要根据 反馈的角度α,在确定了摆杆的长度的前提下,即可

由式1得到摆杆所能摆直线的长度D:

由于D=l∗sinα,而事实上,摆杆摆起的高度可以

近似忽略,则

D=l*tanα,(公式1) 圆心A

即:α=arctan(D/l)(公式2)

其中l为摆杆长度。在具体工作时,可将控制器的输

出信号作用于风机,以此来改变其摆动的幅度。此

为风力摆摆直线的简单分析。

图5风力摆简化模型

2.6.2风力摆摆圆过程分析

力摆摆圆过程其实可以分解为两个方向(x轴、y轴)的运动,如图6所示。

在该过程中,四个轴流风机控制了摆杆沿如

图所示的x、y方向的运动。只要使在x方向的

运动与y向的运动频率相同、幅度相等,相位相

差90°,即可完成画圆任务。因此利用反馈的

位置信息,可控制四个风机的工作状态;进而改变摆杆所处位置,完成控制任务。

图6风力摆摆圆简易模型

三、理论分析与计算

3.1运动控制

在2.5部分,对摆的运动状况已经有了一个基本的了解。下文的叙述将在上述运动状态的基础上,以设计任务为最终目的,结合采用的控制算法进行分析论证。

3.1.1直线运动的控制

设计任务中,要求本系统做类似自由摆运动,使激光笔稳定地在地面画出一条长度不短于 50cm 的直线段,其线性度偏差不大于±2.5cm,并且具有较好的重复性。这显然是一个开环控制,通过粗略调节便可实现设计任务。在2.5.1中的运动分析部分已经明确,要求激光笔绘制的距离需要控制的其实是摆杆的角度,而摆杆的角度是通过控制轴流风机的转速产生空气推力来间接控制的。为了使激光笔绘制的轨迹达到设定值,我们就需要控制摆杆的倾角,这个个倾角可以直接计算出来;然后,通过简单的开环调节,给风机以相应的PWM波,风机带动摆杆摆动,便可轻易实现直线任务。

3.1.2 摆圆运动的控制

在2.5.2的基础上,可做如下分析。如图7运动分

解,并结合公式1和公式2不难得出如下公式:

tan

2015年全国大学生电子设计竞赛

风力摆控制系统(B题)

2015年8月15日

摘要

本系统采用STC12C5A60S2为主控芯片,通过MPU6050传感器提供反馈信息、采用PID控制算法调整轴流风机的工作状态、在液晶和按键的作用下显示并切换工作模式,形成一闭环测控系统。该测控系统通过控制驱动各风机,使风力摆按照一定规律运动,同时保证摆杆下方悬挂的激光笔能在地面画出要求的轨迹。

关键词:

风力摆

STC12单片机轴流风机

目录

摘要---------------------------------------------------------------------------------------------------1

一、设计任务--------------------------------------------------------------------------------------1

二、方案论证--------------------------------------------------------------------------------------1

2.1 控制器模块方案------------------------------------------------------------------------2

2.2位置检测模块----------------------------------------------------------------------------2

2.3动力装置方案设计----------------------------------------------------------------------2

2.4 外围模块方案设计---------------------------------------------------------------------2

2.4.1 功能调用模块的设计---------------------------------------------------------2

2.4.2 显示模块的设计----------------------------------------------------------------3

2.4.3 声光提示模块-------------------------------------------------------------------3

2.4.4 电源模块--------------------------------------------------------------------------3

2.5硬件电路设计-------------------------------------------------------------------------------3

2.6 系统控制方案的整体设计--------------------------------------------------------------3

2.6.1 风力摆摆直线过程分析------------------------------------------------------4

2.6.2 风力摆摆圆过程分析-------------------------------------------------------4

三、理论分析与计算-----------------------------------------------------------------------------5

3.1运动控制----------------------------------------------------------------------------------6

3.1.1直线运动的控制----------------------------------------------------------------6

3.1.2 摆圆运动的控制---------------------------------------------------------------6

3.2 软件实现--------------------------------------------------------------------------------6

3.2.1 所用算法-------------------------------------------------------------------------6

3.2.2 程序部分-------------------------------------------------------------------------6

四、测试结果与误差分析----------------------------------------------------------------------7

4.1风机性能的测试------------------------------------------------------------------------7

4.2摆直线任务的测试---------------------------------------------------------------------7

4.3速停任务测试记录---------------------------------------------------------------------7

4.4圆周轨迹任务测试---------------------------------------------------------------------7

4.5误差分析----------------------------------------------------------------------------------7

五、结论心得体会--------------------------------------------------------------------------------8

5.1结论-----------------------------------------------------------------------------------------8

5.2心得体会----------------------------------------------------------------------------------8 参考文献----------------------------------------------------------------------------------------------9 附录1:电路原理图-----------------------------------------------------------------------------10 附录2:部分PCB设计图-------------------------------------------------------------------------11 附录3:部分关键程序--------------------------------------------------------------------------12 附录4:系统整体照片--------------------------------------------------------------------------13

风力摆控制系统

摘要:本系统采用STC12C5A60S2为主控芯片,通过MPU6050传感器提供反馈信息、采用PID控制算法调整轴流风机的状态、在液晶和按键的人机交互作用下显示并切换工作模式,形成一闭环测控系统。该测控系统通过控制驱动各风机,使风力摆按照一定规律运动,同时保证摆杆下方悬挂的激光笔能在地面画出要求的轨迹。

关键词:风力摆 STC12单片机轴流风机

一、设计任务

一长约 60cm~70cm 的细管上端用万向节固定在支架上,下方悬挂一组(2~4 只)直流风机,构成一风力摆。风力摆上安装一向下的激光笔,静止时,激光笔的下端距地面不超过 20cm。设计一测控系统,控制驱动各风机使风力摆按照一定规律运动,激光笔在地面画出要求的轨迹。具体要求可参看设计任务书。

二、方案论证

根据题目要求,此测控系统完成控制风力摆按照一定规律运动、使激光

笔在地面上画出规定轨迹的任务。其通过按键与LCD三级子菜单,在不同工作模式间切换,完成相应的控制任务,关键在于反馈信息的准确和对轴流风机的控制。为此我们将系统分为五个模块,并对各个模块的方案进行了评估选择。系统整体方案框图如图 1 所示:

图1系统整体框图

2.1控制器模块方案

控制器是整个控制系统的核心,承载着执行控制算法,实现控制功能的作用。因此,要保证系统整体的控制质量,控制器的选择非常重要!在控制器的选择方案中,主要进行了如下对比:

方案一:选择常见且应用广泛的AT89C52作为控制芯片。对于这种单片机,

我们有良好的知识基础,上手快,成本低。然而对于本控制系统,程序量较大、所需I/O口较多,89单片机将很难满足控制要求,难以胜任控制任务。因此,89单片机并不适合作为本系统的控制器。

方案二:较之89系列单片机,STC12单片机资源丰富,集成EEPROM、AD、 PCA可编程计数阵列等;其功能更强大,执行速度更快。对于本系统来说,足以完成控制任务。故而作为本控制系统的首选。

2.2位置检测模块

检测模块不仅是获得被控系统所需信息的唯一渠道,而且从根本上决定了被控系统的控制精度,相当于控制系统中的“眼睛”;因此检测模块的设计对整个控制系统的设计至关重要!基于此,在选择检测元件时,主要做了如下对比:

方案一:选择整合性6轴运动处理组件MPU6050,利用其自身集成的3轴

MEMS陀螺仪,3轴 MEMS加速度计精确地对被控对象的运动状态进行数据采集;在数据处理上采用卡尔曼滤波算法,测量精度极高。另外,该传感器封装小节省空间,对本系统的控制十分有利。

方案二:选择角度、加速度模块 MMA7361传感器。这一模块虽有压降小,适合高噪声电源环境工作等特点,但其测量精度及测量范围等各方面性能不及MPU6050。综合考虑,选取MMA7361作为检测变送传感器并不明智。

经过上述对比,最终本系统选用了MPU6050作为位置检测的传感器。

2.3动力装置方案设计

动力装置作为本控制系统中的执行机构,是控制系统中的重要组成部分。它将控制器送来的控制信号转换成执行动作,从而操纵作用于被控对象的能量,将被控变量维持在所要求的数值上或一定的范围内。轴流风机作为此系统的唯一动力装置,其提供的动力是否充足、可调性是否优良将直接决定能否完成控制任务和控制质量的高低。为此考虑了成本、体积等因素,主要拟定了以下两个方案。

方案一:选择某牌直流12V-2.3A轴流小型风机。该风机体积小、质量轻,对摆杆的运动十分有利。另外,该种风机功率大、动力充足,能为控制系统提供充足的能量。

方案二:选择与上述风机同品牌的12V-1.8A轴流风机。与上述风机相比,该风机质量较大,功率却不及小型风机。其他方面,此二种风机并无差异。

上述方案的论证,似乎证明方案一将是本系统的不二之选,然而事实并非如此。在经过充分的实验发现(详见4.1中风机性能测试),方案一中风机启动过慢、控制不及时,而且其提供风力并不比方案二中轴流风机大。因此,本系统最终确定以方案二作为动力装置。

2.4外围模块方案设计

本系统中的外围模块,主要是指与对风机的控制不起直接作用的功能调用模块、显示模块、声光提示模块、电源模块。

主要是指键盘(按键)模块和显示模块。由于该系统所涉及的控制任务较多,使用键盘按键进行不同那个任务间的相互切换,降低了对程序的逻辑要求,易于编程、方便实施。而显示模块将检测到的信息直观的显示出来,利于对整个控制过程进行实时监控。这种良好的人机交互环境,也非常符合当前控制过程智能友好的趋势。

2.4.1 功能调用模块的设计

功能调用模块主要完成切换系统工作模式的任务。这里工作模式的切换主要

通过按键,常见的按键单元有:矩阵键盘、简单键盘等。以下为两种方案的对比:

方案一:矩阵键盘占用单片机的端口少、节约硬件资源;但电路设计较复杂、开发时间较长、软件设计也相对复杂。主要针对多键盘设计,适用于控制要求高、控制功能多的系统。

方案二:简单键盘设计简单、易于实现、减少了系统的复杂度;尤其适合执行功能不多的系统。

在上面的对比中不难看出,利用简单键盘进行功能调用将更加方便;对本系统的设计更有优势。因此选用方案二。

2.4.2 显示模块的设计

作为人机交互的途径,显示模块旨在占用最小的资源提供最多的可利用信息。常见的显示模块有1602液晶和12864液晶,本文对上述两种液晶做了如下对比:

方案一:采用1602液晶。1602液晶体积小、引脚少,节省硬件资源;但其显示信息量与其他液晶相比较小。

方案二:采用12864液晶。该种液晶微功耗、显示信息量大、字迹清晰、美观、视觉舒适;适合进行菜单显示,使整个控制系统更加人性化。另外,其可在串行口模式下工作,工作时仅需引出两根数据线和两根电源线,更加节省I/O口。

考虑到以上信息、并结合了本系统的特点,最终本系统以12684液晶作为显示单元。

2.4.3 声光提示模块

此模块的设计主要考虑了设计任务的要求,即各项目中,运动达到要求时需有明显的声或光提示,以便开始测试及记录。本系统的提示装置为发光二极管和蜂鸣器,他们在系统中起到了提示作用,这里不再赘述。

2.4.4 电源模块

在该控制系统中,要完成控制任务必须保证风机提供充足的动力。这就要求电源能提供风机工作所需的电流。在选择电源时,主要从如下两个方案中进行实验对比:

方案一:采用类似于驱动直流电机的方法,通过L298N驱动四个风机。此方案在电机的控制中较为常见,轴流风机作为一种直流电机,应该也能正常工作。

方案二:使用两个12V-3A的电源直接供电,每个电源分别为其中的两个风机供电。这样要控制风机,必须选择带有PWM控制线的风机。

通过实验证实:方案一如果没有采用必要的软件控制和硬件补偿,很难提供充足的动力使摆杆摆起足够的角度。而方案二只要选择带有控制线的风机,便避免了方案一中的弊端。故此系统电源选择方案二。

2.5硬件电路设计

在硬件方面,本系统采用了STC12C5A60S2最小系统板、12864液晶以及其他外围模块。相应的电路图和PCB板可参看附录1。

2.6 系统控制方案的整体设计

选择好各模块合适的方案后,系统整体控制方案的设计就相当重要了。首先是系统结构设计,如图2所示是系统的机械结构。

图2系统结构模型 图3风机摆放位置

值得注意的是③风机的摆放位置,为便于设计分析,风机应摆放为十字型如图3所示。

控制系统各部分的关系如图4控制方框图所示。

图4控制系统控制方框图

明确了控制流程和系统结构,系统控制任务的完成就完全依赖于对摆运动过程的理解。这里首先对系统结构进行说明,然后将系统的运动过程分为摆直线和摆圆周两个部分,进行简要分析。

2.6.1 风力摆摆直线过程分析

其简化的模型如图5所示。很显然,在该模型中

摆杆的位置到圆心A的距离与角度α成单值函数关角度α 系。在执行风力摆摆直线的工作模式时,只要根据 反馈的角度α,在确定了摆杆的长度的前提下,即可

由式1得到摆杆所能摆直线的长度D:

由于D=l∗sinα,而事实上,摆杆摆起的高度可以

近似忽略,则

D=l*tanα,(公式1) 圆心A

即:α=arctan(D/l)(公式2)

其中l为摆杆长度。在具体工作时,可将控制器的输

出信号作用于风机,以此来改变其摆动的幅度。此

为风力摆摆直线的简单分析。

图5风力摆简化模型

2.6.2风力摆摆圆过程分析

力摆摆圆过程其实可以分解为两个方向(x轴、y轴)的运动,如图6所示。

在该过程中,四个轴流风机控制了摆杆沿如

图所示的x、y方向的运动。只要使在x方向的

运动与y向的运动频率相同、幅度相等,相位相

差90°,即可完成画圆任务。因此利用反馈的

位置信息,可控制四个风机的工作状态;进而改变摆杆所处位置,完成控制任务。

图6风力摆摆圆简易模型

三、理论分析与计算

3.1运动控制

在2.5部分,对摆的运动状况已经有了一个基本的了解。下文的叙述将在上述运动状态的基础上,以设计任务为最终目的,结合采用的控制算法进行分析论证。

3.1.1直线运动的控制

设计任务中,要求本系统做类似自由摆运动,使激光笔稳定地在地面画出一条长度不短于 50cm 的直线段,其线性度偏差不大于±2.5cm,并且具有较好的重复性。这显然是一个开环控制,通过粗略调节便可实现设计任务。在2.5.1中的运动分析部分已经明确,要求激光笔绘制的距离需要控制的其实是摆杆的角度,而摆杆的角度是通过控制轴流风机的转速产生空气推力来间接控制的。为了使激光笔绘制的轨迹达到设定值,我们就需要控制摆杆的倾角,这个个倾角可以直接计算出来;然后,通过简单的开环调节,给风机以相应的PWM波,风机带动摆杆摆动,便可轻易实现直线任务。

3.1.2 摆圆运动的控制

在2.5.2的基础上,可做如下分析。如图7运动分

解,并结合公式1和公式2不难得出如下公式:

tan

相关内容

  • 风力发电实验用模拟风力机
  • 第25卷第6期 2004年12月 太阳能学报 ACTAENERGIAESOLARISSINICA V01.25.No.6 Dec..2004 文章编号:0254J吣96(2004)06JD735稍 风力发电实验用模拟风力机 贾要勤 (清华大学汽车安全与节能国家重点实验室,北京100084) 摘 要: ...

  • 垂直轴风力机研究进展
  • 2010年第38卷第10期 文章编号:1005-0329(2010)10-0039一05 流体机械 39 垂直轴风力机研究进展 戴庚,徐璋,皇甫凯林.钟英杰 (浙江工业大学浙江杭州310014) 摘要:垂直轴风力机是目前风力发电事业风力机的重要研究方向.垂直轴风力机在某些关键技术方面可能能够很好的解 ...

  • 定桨距风力发电机非并网系统内模控制
  • 第40卷第4期 2010年7月 东南大学学报(自然科学版) JOURNAL V01.40 Edition) No.4 OFSOUTHEAST UNIVERSITY(Natural Science July2010 doi:10.3969/j.issn.1001-0505.2010.04.022 定桨 ...

  • 风能和风力发电技术论文
  • 甘肃机电职业技术学院 现代装备制造工程系毕业论文 风能和风力发电技术 姓 名: 酸菜 学 号:G14270118 班 级: G142701 年 级: 2014级 指导老师: 酸菜 摘要 ......................................................... ...

  • 风力发电原理及生产过程
  • 风 能发电的主要形式有三种:一是独立运行:二是风力发电与其他发电方式(如柴油机发电)相结合:三是风力并网发电.由于并网发电的单机容量大.发展潜力大,故本文所指的风电, 未经特别说明,均指并网发电. 1.小型独立风力发电系统 小型独立风力发电系统一般不并网发电,只能独立使用,单台装机容量约为100瓦- ...

  • 风力发电机组变桨系统的维_护与检修毕业论文
  • 风力发电机组变桨系统的 维护与检修 毕业顶岗实习报告书 风力发电机组变桨系统的维护与检修 毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教 师的指导下进行的研究工作及取得的成果.尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组 ...

  • 小型风力发电机性能测试
  • 小型风力发电机性能测试 1.2 小型风力机开发背景 近三十年来随着世界资源的过度消耗,人类可用资源日益减少,石油价格不断上涨,世界 各地频发石油短缺信号,并且由于化学能源的应用,人类居住环境日益恶化,人类迫切需要 一种清洁的持续能源.由于风能取之不尽,用之不竭,不消耗资源,清洁卫生,分布范围广 等特 ...

  • 风能利用的效率问题
  • 或者 P0.678aA3 (12.9b) 式中a=0.0024lb s2/ft4,A的单位是,因为速度的常用单位是英里每小时,所以将利用下面的公式进行单位转换: vft/s1.47mph (12.10) 下面给出对上述公式的改进形式来确定风能功率: 13PACp (12.11) a ...

  • Elspec风力发电应用
  • 以色列ELSPEC动态无功补偿技术在风力发电中的应用 Elspec中国代表处 邓剑琪 [1**********](上海) 一.Elspec产品在风力发电中的应用 由于风能具有不稳定性,造成使用风电的电网的稳定性较差.当整个电网中风电的比例不大时,不会对电网造成大的影响:但当风电在电网中的比例较大时, ...

  • 风电及其并网技术
  • 电气工程新技术专题 题 目: 专 业: 班 级: 姓 名: 学 号: 指导老师:风能是一种清洁.实用.经济和环境友好的可再生能源,与其他可再生能源一道,可以为人类发展提供可持续的能源基础.在未来能源系统中,风电具有重 要的战略地位.风力发电是一种技术最成熟的可再生能源利用方式,其发电原理是利用风力带 ...