一元二次方程(1)

教学目的

  1.了解整式方程和一元二次方程的概念;

  2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

  3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学难点和难点:

 重点:

  1.一元二次方程的有关概念

  2.会把一元二次方程化成一般形式

 难点: 一元二次方程的含义.

教学过程设计

 一、引入新课

  引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?

  分析:1.要解决这个问题,就要求出铁片的长和宽。

     2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。

     3.让学生自己列出方程   (     x(x十5)=150    )

  深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?

 二、新课

    1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)

  2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)

  3.强化一元二次方程的概念

  下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?

  (1)3x十2=5x—3:  (2)x2=4

  (2)(x十3)(3x·4)=(x十2)2;  (4)(x—1)(x—2)=x2十8

  从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。

  4. 一元二次方程概念的延伸

  提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?

  引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式

ax2+bx+c=0   (a≠0)

  1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。

  2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.

  3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。

教学目的

  1.了解整式方程和一元二次方程的概念;

  2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

  3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学难点和难点:

 重点:

  1.一元二次方程的有关概念

  2.会把一元二次方程化成一般形式

 难点: 一元二次方程的含义.

教学过程设计

 一、引入新课

  引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?

  分析:1.要解决这个问题,就要求出铁片的长和宽。

     2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。

     3.让学生自己列出方程   (     x(x十5)=150    )

  深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?

 二、新课

    1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)

  2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)

  3.强化一元二次方程的概念

  下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?

  (1)3x十2=5x—3:  (2)x2=4

  (2)(x十3)(3x·4)=(x十2)2;  (4)(x—1)(x—2)=x2十8

  从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。

  4. 一元二次方程概念的延伸

  提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?

  引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式

ax2+bx+c=0   (a≠0)

  1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。

  2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.

  3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。


相关内容

  • 一元二次方程的概念及直接开平方法
  • 一元二次方程的概念及直接开平方法 学习目标:理解一元二次方程的相关概念及一般形式,掌握其应用,并会用直接开平方法求简单的一元二次方程 学习重点:一元二次方程的应用,直接开平方法 学习过程: 一.课前回顾 1. 一元一次方程及二元一次方程的定义 题1 以下哪些是一元一次方程?哪些又是二元一次方程? ( ...

  • 公式法解一元二次方程说课稿
  • <公式法解一元二次方程>说课 哈拉直沟中学理科组 蒋国联 各位评委,各位老师: 大家好! 今天我说课的内容是人教版数学九年级上册第22章一元二次方程中<公式法解一元二次方程>. 教学的实质是以教材中提供的素材为载体,通过一系列探究互动过程,达到学生知识的构建.能力的培养.情感 ...

  • 一元二次方程与解法(一)教案
  • 教学过程 一.复习预习 学生活动:列方程 问题(1)<九章算术>"勾股"章有一题:"今有户高多于广六尺八寸,两隅相去适一丈,问户高.广各几何?" 大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少? 如果假设门的高为 ...

  • 九年级数学集体备课教案
  • 九年级数学集体备课教案 16. 课题:一元二次方程 课型:新授 时间:2011.10.10 执笔: 审核:九数备课组 [学习目标] 1.知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式( ≠0)2. 在分析.揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生增 ...

  • 一元二次方程知识点的总结
  • 一元二次方程知识点的总结 知识点归类 考点一 一元二次方程的定义 如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程. 注意:一元二次方程必须同时满足以下三点:①方程是整式方程.②它只含有一个未知数. ③未知数的最高次数是2.同时还要注意在判断时, ...

  • 一元二次方程导学案
  • 第二十二章 一元二次方程(1课时) 学习目标: 1.会根据具体问题列出一元二次方程,体会方程的模型思想,提高归纳.分析的能力. 2.理解一元二次方程的概念:知道一元二次方程的一般形式:会把一个一元二次方程化为一般形式:会判断一元二次方程的二次项系数.一次项系数和常数项. 重点:由实际问题列出一元二次 ...

  • 中考复习_用去分母法或换元法求分式方程的解
  • 用去分母法或换元法求分式方程的解 一.选择题 1. (2011•江苏宿迁,5,3)方程 2x1 1错误!未找到引用源.的解是( ) x1x1 A.﹣1 B.2 C.1 D.0 考点:解分式方程. 专题:计算题. 分析:观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为 ...

  • 求一元二次方程的根
  • 求一元二次方程的根 一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是学生今后学习数学的基础.在没讲一元二次方程的解法之前,先说明一下它与一元一次方程区别.根据定义可知,只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程一般式为: .一元二次方程有三个特点:(1 ...

  • 初三一元二次方程知识点和易错点总结
  • 一元二次方程知识点总结 考点一.一元二次方程 1.一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 2.一元二次方程的一般形式:ax2bxc0(a0),它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中ax2叫做二次项,a叫做二次项系数: ...