铜及铜合金的金相制备

制造和应用

天然条件下存在的金属铜主要是从硫化物矿中通过冶金熔炼工艺提炼得到。另外,少量的铜也可以采用湿法冶金工艺制造。下文简单叙述了铜制造过程的四个步骤。

1. 冰铜,75% Cu:

在此熔炼过程的第一步提炼中,铜精矿,主要是黄铜矿(CuFeS2),在氧闪速炉中用助熔剂焙烧和熔化成冰铜。冰铜是硫化铜和硫化铁的混合物,铜含量约为75%。

2. 粗铜,96-98% Cu:

在转炉内,空气吹入到液态冰铜中,以氧化硫化物。所产生的粗铜中铜含量约为96〜98%。

3. 阳极铜,99% Cu:

粗铜在阳极炉中精炼。连同废铜和电解精炼剩下的阳极一起熔化。空气吹入到熔融物中,形成氧化气氛,使杂质还原并以炉渣的形式排出。熔融物的高含氧量需要降低至不到0.1%,否则铜的氧化物可能会使铜变脆。通过向熔融物中吹入天然气来降低含氧量,使氧化铜还原为铜,并释放出水蒸气和二氧化碳。所获得的铜纯度为99%,浇注成阳极棒,然后用来进行电解精炼。

4. 电解精炼,电解铜,99.99% Cu:

阳极铜仍然夹带镍、铅、银、钯和金等杂质。在电解精炼过程中,杂质落到电解池的底部并回收,同时制出高纯度铜。硫酸和硫酸铜起电解液的作用。通入直流电,阳极发生氧化,溶解,纯铜沉积在纯粉阴极处和不锈钢始极片上,然后用机械方法取下。

贵金属

转炉

氧闪速炉

铜精矿

冰铜

约 75% Cu

废合金

粗铜

约 96% Cu

废铜粗铜

阳极炉

电解

阳极矿泥处理

电解铜 99,99% Cu

连续再加工成铸造铜丝或直接销售

外部阴极,废纯铜

银金铂钯硒

熔炉

非合金化或合金化的铜产品

轧制板

方材

圆棒材

铜的制造简图

残余阳极

阳极铜 99% Cu不锈钢始极片

图5:铜夹杂红色氧化铜,暗场,放大500x图6:无氧铜,用过二硫酸侵蚀,放大100x

位于柏林的丹麦大使馆,外墙装饰有氧化铜板。图片使用许可:丹麦外交部

图4:

饮用水分配控制阀

图7:电解铜,Klemm侵蚀,放大100x

此高纯度铜形成的阴极板与50%纯废铜一起熔化,浇铸成板材、圆形和方形型坯,然后再制成薄板、管材、线材和铸锭(目前,几乎有一半的铜需求来自废铜和回收铜) 。

随着纯度提高,导电率和导热率,以及铜的价格,亦均升高。因此,是否使用纯铜取决于产品应用。凭借其卓越的性能,电子元器件所用的无氧铜(OFE)成为半导体、开关,以及真空技术和电子管用密封圈的基础材料。

铜用量最大的领域包括建筑物外墙、屋顶、饮用水管和加热装置,以及电气零件工业的电动机线圈、发电机和供电系统。其他应用领域包括低温和空调技术、化学工业,以及饮料和酿造业。

铜合金

铜合金的应用领域非常广泛;然而,锌(黄铜)和锡(青铜)是铜最重要的合金化元素。下文简要叙述某些最重要的合金及其应用。

黄铜是含锌5〜45%的铜合金。由于锌的原因,铜的溶解度增加,并且合金非常均质。含锌量低于28%的黄铜称为红黄铜,特别适合机加工。随着含锌量增加,铜颜色将由微红变为黄铜的黄色。含锌量高达37%的合金由α固溶体组成,并且适合进行冷成形。随着含锌量增加,黄铜的硬度升高,因此更适合机加工。从38%含锌量开始,合金显示出α-β两相显微结构,适合进行热成形。通过加入铝、锰、铁、镍和锡等金属,可以制造出具有特殊化学或机械性能的特种合金。加入少量的铅可以提高黄铜的可加工性。

根据含锌量的不同,黄铜广泛用于多个领域:从钟表、珠宝、电子器件(CuZn5)、弹簧、螺钉、销、模塑件(CuZn30)、到电枢(CuZn40),以及耐海水腐蚀泵壳的轴承(CuZn10Sn2)等。

图8:耐磨及滚柱轴承的黄铜罩

是铜锡合金,分成含锡量在8.5%以下的锻造合金、含锡量通常在9~12%的铸造青铜,以及含锡量高达20%图10:α黄铜,着色腐蚀,放大200x

图11:α-β黄铜铸件(CuZn40Pb2),灰蓝色铅夹杂物,未侵蚀,放大500x

图12:α-β黄铜铸件,Klemm侵蚀,淡色α固溶体和深色β固溶体基体,放大100x。

的所谓铸钟青铜。

根据所需要的特性,可以向锻造合金中加入少量的锌和磷,例如轴承。这种合金称为磷青铜。铅、镍和铁是铸造合金的常见添加元素。

铜-锡-锌合金称为炮铜。这种合金常常用来制造滑动轴承、蜗轮蜗杆、轴承衬套等,这些零件需要提供一个能够承受高接触载荷的支撑表面。除了良好的耐腐蚀性之外,炮铜还具有较低的摩擦系数,从而降低了在此类条件下咬合发生的概率。

铝青铜是含铝量不超过11%的铜合金,具有良好的高温强度和卓越的耐腐蚀性。特别适合制造船舶螺旋桨、泵和水轮机的高应力转子、轴承,以及化学工业所用零件。铜-铝锻造合金还适用于机械和光学工程。

铍青铜具有较高的强度和硬度,在与其他金属碰撞时不产生火花。因此,这种类型的青铜特别适合于制造精炼厂等爆炸性环境里所用工具。

由于具有卓越的耐腐蚀性,铜-镍合金用来制造海水淡化装置、硬币、烤箱的加热丝及吹风机。铜-镍-锌合金,称为德银,具有高强度、良好的耐腐蚀性和易成型性。应用领域包括手术仪器、食品工业、银餐具的基础金属、连接器触点,以及首饰等。

图14:带石墨的锻造青铜衬里

铜及铜合金制备 过程中的难点

随着纯度升高,铜变得更软,更易于发生机械变形和划伤。因此,研磨可能会使高纯度铜严重变形,同时磨粒和抛光膏也可能会被压入表面内。铜合金较硬,但是仍然可能会产生划痕,对于某些青铜,可能只在个别的晶粒上会出现这种情况。

铜及铜合金制备的建议

对于铜的切割,可以采用普遍适用于有色金属的硬质SiC切割轮。

对于镶样,在大多数情况下,酚醛树脂就足够了。

CitoPress 热镶样机

机械研磨和抛光

建议以尽可能细的粒度对铜进行粗磨,以避免发生过大的机械变形。必须考虑试样的硬度、大小和数目,但是即使对于较大数目的纯铜试样,用500#SiC薄片1进行粗磨即已足够。较大的铜合金铸件可以用220#或320#SiC薄片研磨。另外,减小研磨力以避免发生深层变形也是非常重要的。

如制备数据表所示,对于软合金,推荐用细粒度SiC薄片进行精磨;对于较硬的合金,可以使用带金刚石的MD-Largo。使用MD-Largo可以获得更好的平整度和边缘保护。

必须通过金刚石抛光除去研磨产生的所有变形以及嵌入的磨粒。使用二氧化硅进行化学-机械精抛可以获得几乎没有任何划痕的表面,因此这种方法特别重要。对于纯铜,实践证明用含有硝酸铁的溶液进行终抛可以获得非常好的结果。对于铜合金,推荐采用带过氧化氢的OP-S悬浮液和氨水的混合液(配方见下表)。抛光1分钟后,在显微镜下检查结果。如有必要,继续抛光1分钟,并再次检查结果。建议重复执行此抛光/检查程序,直到获得要求的质量结果为止。如果抛光过快或过强,则应该用水稀释混合液。

(抛光结束前约30秒钟,将水倒在抛光布上,以冲洗试样和抛光布。然后,再次用干净的自来水洗净电解抛光获得良好效果的前提是先用试样,并干燥。)

2000#或4000#SiC薄片进行预精磨。由于铸造合金中含有不同的相,所以制备数据适用于6个已镶试样的自动研不适合进行电解抛光。

磨和抛光,试样直径30mm,夹固在电解液: D2试样夹具座中。

面积: 0.5 cm2电压: 24 伏电解抛光特别适用于纯铜和α黄铜锻流量: 10造合金。两相α-β黄铜也可以采用时间:

20 秒钟

电解抛光。但是结果并不非常适合进行定量分析,特别是当合金中含有铅抛光之后,试样可以用相同的电解液时。

在2〜4伏电压作用下直接侵蚀4秒钟。

1

SiC薄片,即SiC Foil,需配合MD-Gekko或Gekko PSA使用。

图15:α-β黄铜铸件,机械抛光,未侵蚀,放大200x。

图16:试样同图15,电解抛光,未侵蚀,

放大200x。

侵蚀

对铜及铜合金可应用多种侵蚀剂,并且侵蚀相对比较容易。大多数铸造合金并不难侵蚀。为某些锻造合金寻找适合的侵蚀剂则比较困难,特别是当合金进行过深度冷作时。此时,可以采用着色腐蚀。

需要注意:铅会被侵蚀剂除去,几乎只剩下一个个黑洞。在侵蚀之前,必须拍摄显微照片,确定铅的数量和分布。纯铅的颜色为灰蓝色。

图17:青铜铸件,CuSn8Pb,未侵蚀,大大小小的蓝灰色铅夹杂物,可看到淡蓝色α-δ共析体,放大500x。

图18:试样同图17,Klemm着色腐蚀,树枝状组织,带浅蓝色共析体和蓝色铅夹杂物,放大500x。

青铜铸件,CuSn10,用氯化高铁侵蚀,树枝状结构α-δ共析体,放大200倍。

总结

由于具有良好的可成型性、导电性和导热性,以及耐腐蚀性,纯铜主要用于电气工程、电子工业和食品饮料工业。锻造及铸造黄铜及青铜的应用领域从小零件一直到耐海水腐蚀泵壳。金相检验用于铜及其合金的质量控制,主要是检验纯度和确定晶粒度。另外,铸造合金还需进行一般结构评估。铜较软、延展性好,特别容易发生机械变形。因此,研磨第一步中就应该小心地采用尽可能细的粒度。纯铜采用中软或柔软抛光布进行金刚石抛光,时间要适当。用OP-S悬浮液进行化学-机械终抛非常重要,可以获得无划痕表面。另外,无铅锻造合金还可以采用电解抛光。铜可以比较容易地用普通侵蚀剂进行侵蚀,而着色腐蚀可以展现出铸造青铜的一些特色结

构。

司特尔(上海)国际贸易有限公司中国上海市杨浦区大连路970号海上海9号楼702室邮编: 200092

电话: +86 (21) 5228 8811传真: +86 (21) 5228 [email protected] A/S

Pederstrupvej 84

DK-2750 Ballerup, Denmark Phone +45 44 600 800作者

Fax +45 44 600 [email protected]

Elisabeth Weidmann, Anne Guesnier, Struers A/S 声明

感谢德国Ople的Gebr. Kempe准许复制图13的泵壳和图4的阀门照片。

感谢奥地利Amstetten的Buntmetall amstetten Ges.m.b.H.提供试样材料,感谢Silivia Topsever和Siegfried Pirschl提供支持。

感谢奥地利Enzesfeld的Enzesfeld-Caro Metallwerke AG准许复制图8、9和14,感谢Andreas Drivodelits的支持。感谢德国斯图加特市Max-Planck Institut für Metallforschung 的G. Kiessler和G. Elsner准许复制图15和图16。感谢德国杜塞尔多夫市Deutsches Kupferinstitut(德国铜协会)准许复制图3。

感谢德国Willich市Struers GmbH的Wieland Fischer提供显微照片图1和图2。

参考文献

最新印刷信息来自德国杜塞尔多夫Deutsches Kupferinstitut。ASM手册,第9卷,金相学与微观结构,ASM,2004。金属手册,简装版, ASM, 1997.

Handbuch der metallographischen Ätzverfahren, M. Beckert und H. Klemm, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1976.

Metallographische Anleitung zum Farbätzen nach dem Tauchverfahren, E. Weck, E. Leistner, Deutscher Verlag für Schweißtechnik, Düsseldorf, 1982

www.struers.cn

07.2010 / 62040408. Printed in China

制造和应用

天然条件下存在的金属铜主要是从硫化物矿中通过冶金熔炼工艺提炼得到。另外,少量的铜也可以采用湿法冶金工艺制造。下文简单叙述了铜制造过程的四个步骤。

1. 冰铜,75% Cu:

在此熔炼过程的第一步提炼中,铜精矿,主要是黄铜矿(CuFeS2),在氧闪速炉中用助熔剂焙烧和熔化成冰铜。冰铜是硫化铜和硫化铁的混合物,铜含量约为75%。

2. 粗铜,96-98% Cu:

在转炉内,空气吹入到液态冰铜中,以氧化硫化物。所产生的粗铜中铜含量约为96〜98%。

3. 阳极铜,99% Cu:

粗铜在阳极炉中精炼。连同废铜和电解精炼剩下的阳极一起熔化。空气吹入到熔融物中,形成氧化气氛,使杂质还原并以炉渣的形式排出。熔融物的高含氧量需要降低至不到0.1%,否则铜的氧化物可能会使铜变脆。通过向熔融物中吹入天然气来降低含氧量,使氧化铜还原为铜,并释放出水蒸气和二氧化碳。所获得的铜纯度为99%,浇注成阳极棒,然后用来进行电解精炼。

4. 电解精炼,电解铜,99.99% Cu:

阳极铜仍然夹带镍、铅、银、钯和金等杂质。在电解精炼过程中,杂质落到电解池的底部并回收,同时制出高纯度铜。硫酸和硫酸铜起电解液的作用。通入直流电,阳极发生氧化,溶解,纯铜沉积在纯粉阴极处和不锈钢始极片上,然后用机械方法取下。

贵金属

转炉

氧闪速炉

铜精矿

冰铜

约 75% Cu

废合金

粗铜

约 96% Cu

废铜粗铜

阳极炉

电解

阳极矿泥处理

电解铜 99,99% Cu

连续再加工成铸造铜丝或直接销售

外部阴极,废纯铜

银金铂钯硒

熔炉

非合金化或合金化的铜产品

轧制板

方材

圆棒材

铜的制造简图

残余阳极

阳极铜 99% Cu不锈钢始极片

图5:铜夹杂红色氧化铜,暗场,放大500x图6:无氧铜,用过二硫酸侵蚀,放大100x

位于柏林的丹麦大使馆,外墙装饰有氧化铜板。图片使用许可:丹麦外交部

图4:

饮用水分配控制阀

图7:电解铜,Klemm侵蚀,放大100x

此高纯度铜形成的阴极板与50%纯废铜一起熔化,浇铸成板材、圆形和方形型坯,然后再制成薄板、管材、线材和铸锭(目前,几乎有一半的铜需求来自废铜和回收铜) 。

随着纯度提高,导电率和导热率,以及铜的价格,亦均升高。因此,是否使用纯铜取决于产品应用。凭借其卓越的性能,电子元器件所用的无氧铜(OFE)成为半导体、开关,以及真空技术和电子管用密封圈的基础材料。

铜用量最大的领域包括建筑物外墙、屋顶、饮用水管和加热装置,以及电气零件工业的电动机线圈、发电机和供电系统。其他应用领域包括低温和空调技术、化学工业,以及饮料和酿造业。

铜合金

铜合金的应用领域非常广泛;然而,锌(黄铜)和锡(青铜)是铜最重要的合金化元素。下文简要叙述某些最重要的合金及其应用。

黄铜是含锌5〜45%的铜合金。由于锌的原因,铜的溶解度增加,并且合金非常均质。含锌量低于28%的黄铜称为红黄铜,特别适合机加工。随着含锌量增加,铜颜色将由微红变为黄铜的黄色。含锌量高达37%的合金由α固溶体组成,并且适合进行冷成形。随着含锌量增加,黄铜的硬度升高,因此更适合机加工。从38%含锌量开始,合金显示出α-β两相显微结构,适合进行热成形。通过加入铝、锰、铁、镍和锡等金属,可以制造出具有特殊化学或机械性能的特种合金。加入少量的铅可以提高黄铜的可加工性。

根据含锌量的不同,黄铜广泛用于多个领域:从钟表、珠宝、电子器件(CuZn5)、弹簧、螺钉、销、模塑件(CuZn30)、到电枢(CuZn40),以及耐海水腐蚀泵壳的轴承(CuZn10Sn2)等。

图8:耐磨及滚柱轴承的黄铜罩

是铜锡合金,分成含锡量在8.5%以下的锻造合金、含锡量通常在9~12%的铸造青铜,以及含锡量高达20%图10:α黄铜,着色腐蚀,放大200x

图11:α-β黄铜铸件(CuZn40Pb2),灰蓝色铅夹杂物,未侵蚀,放大500x

图12:α-β黄铜铸件,Klemm侵蚀,淡色α固溶体和深色β固溶体基体,放大100x。

的所谓铸钟青铜。

根据所需要的特性,可以向锻造合金中加入少量的锌和磷,例如轴承。这种合金称为磷青铜。铅、镍和铁是铸造合金的常见添加元素。

铜-锡-锌合金称为炮铜。这种合金常常用来制造滑动轴承、蜗轮蜗杆、轴承衬套等,这些零件需要提供一个能够承受高接触载荷的支撑表面。除了良好的耐腐蚀性之外,炮铜还具有较低的摩擦系数,从而降低了在此类条件下咬合发生的概率。

铝青铜是含铝量不超过11%的铜合金,具有良好的高温强度和卓越的耐腐蚀性。特别适合制造船舶螺旋桨、泵和水轮机的高应力转子、轴承,以及化学工业所用零件。铜-铝锻造合金还适用于机械和光学工程。

铍青铜具有较高的强度和硬度,在与其他金属碰撞时不产生火花。因此,这种类型的青铜特别适合于制造精炼厂等爆炸性环境里所用工具。

由于具有卓越的耐腐蚀性,铜-镍合金用来制造海水淡化装置、硬币、烤箱的加热丝及吹风机。铜-镍-锌合金,称为德银,具有高强度、良好的耐腐蚀性和易成型性。应用领域包括手术仪器、食品工业、银餐具的基础金属、连接器触点,以及首饰等。

图14:带石墨的锻造青铜衬里

铜及铜合金制备 过程中的难点

随着纯度升高,铜变得更软,更易于发生机械变形和划伤。因此,研磨可能会使高纯度铜严重变形,同时磨粒和抛光膏也可能会被压入表面内。铜合金较硬,但是仍然可能会产生划痕,对于某些青铜,可能只在个别的晶粒上会出现这种情况。

铜及铜合金制备的建议

对于铜的切割,可以采用普遍适用于有色金属的硬质SiC切割轮。

对于镶样,在大多数情况下,酚醛树脂就足够了。

CitoPress 热镶样机

机械研磨和抛光

建议以尽可能细的粒度对铜进行粗磨,以避免发生过大的机械变形。必须考虑试样的硬度、大小和数目,但是即使对于较大数目的纯铜试样,用500#SiC薄片1进行粗磨即已足够。较大的铜合金铸件可以用220#或320#SiC薄片研磨。另外,减小研磨力以避免发生深层变形也是非常重要的。

如制备数据表所示,对于软合金,推荐用细粒度SiC薄片进行精磨;对于较硬的合金,可以使用带金刚石的MD-Largo。使用MD-Largo可以获得更好的平整度和边缘保护。

必须通过金刚石抛光除去研磨产生的所有变形以及嵌入的磨粒。使用二氧化硅进行化学-机械精抛可以获得几乎没有任何划痕的表面,因此这种方法特别重要。对于纯铜,实践证明用含有硝酸铁的溶液进行终抛可以获得非常好的结果。对于铜合金,推荐采用带过氧化氢的OP-S悬浮液和氨水的混合液(配方见下表)。抛光1分钟后,在显微镜下检查结果。如有必要,继续抛光1分钟,并再次检查结果。建议重复执行此抛光/检查程序,直到获得要求的质量结果为止。如果抛光过快或过强,则应该用水稀释混合液。

(抛光结束前约30秒钟,将水倒在抛光布上,以冲洗试样和抛光布。然后,再次用干净的自来水洗净电解抛光获得良好效果的前提是先用试样,并干燥。)

2000#或4000#SiC薄片进行预精磨。由于铸造合金中含有不同的相,所以制备数据适用于6个已镶试样的自动研不适合进行电解抛光。

磨和抛光,试样直径30mm,夹固在电解液: D2试样夹具座中。

面积: 0.5 cm2电压: 24 伏电解抛光特别适用于纯铜和α黄铜锻流量: 10造合金。两相α-β黄铜也可以采用时间:

20 秒钟

电解抛光。但是结果并不非常适合进行定量分析,特别是当合金中含有铅抛光之后,试样可以用相同的电解液时。

在2〜4伏电压作用下直接侵蚀4秒钟。

1

SiC薄片,即SiC Foil,需配合MD-Gekko或Gekko PSA使用。

图15:α-β黄铜铸件,机械抛光,未侵蚀,放大200x。

图16:试样同图15,电解抛光,未侵蚀,

放大200x。

侵蚀

对铜及铜合金可应用多种侵蚀剂,并且侵蚀相对比较容易。大多数铸造合金并不难侵蚀。为某些锻造合金寻找适合的侵蚀剂则比较困难,特别是当合金进行过深度冷作时。此时,可以采用着色腐蚀。

需要注意:铅会被侵蚀剂除去,几乎只剩下一个个黑洞。在侵蚀之前,必须拍摄显微照片,确定铅的数量和分布。纯铅的颜色为灰蓝色。

图17:青铜铸件,CuSn8Pb,未侵蚀,大大小小的蓝灰色铅夹杂物,可看到淡蓝色α-δ共析体,放大500x。

图18:试样同图17,Klemm着色腐蚀,树枝状组织,带浅蓝色共析体和蓝色铅夹杂物,放大500x。

青铜铸件,CuSn10,用氯化高铁侵蚀,树枝状结构α-δ共析体,放大200倍。

总结

由于具有良好的可成型性、导电性和导热性,以及耐腐蚀性,纯铜主要用于电气工程、电子工业和食品饮料工业。锻造及铸造黄铜及青铜的应用领域从小零件一直到耐海水腐蚀泵壳。金相检验用于铜及其合金的质量控制,主要是检验纯度和确定晶粒度。另外,铸造合金还需进行一般结构评估。铜较软、延展性好,特别容易发生机械变形。因此,研磨第一步中就应该小心地采用尽可能细的粒度。纯铜采用中软或柔软抛光布进行金刚石抛光,时间要适当。用OP-S悬浮液进行化学-机械终抛非常重要,可以获得无划痕表面。另外,无铅锻造合金还可以采用电解抛光。铜可以比较容易地用普通侵蚀剂进行侵蚀,而着色腐蚀可以展现出铸造青铜的一些特色结

构。

司特尔(上海)国际贸易有限公司中国上海市杨浦区大连路970号海上海9号楼702室邮编: 200092

电话: +86 (21) 5228 8811传真: +86 (21) 5228 [email protected] A/S

Pederstrupvej 84

DK-2750 Ballerup, Denmark Phone +45 44 600 800作者

Fax +45 44 600 [email protected]

Elisabeth Weidmann, Anne Guesnier, Struers A/S 声明

感谢德国Ople的Gebr. Kempe准许复制图13的泵壳和图4的阀门照片。

感谢奥地利Amstetten的Buntmetall amstetten Ges.m.b.H.提供试样材料,感谢Silivia Topsever和Siegfried Pirschl提供支持。

感谢奥地利Enzesfeld的Enzesfeld-Caro Metallwerke AG准许复制图8、9和14,感谢Andreas Drivodelits的支持。感谢德国斯图加特市Max-Planck Institut für Metallforschung 的G. Kiessler和G. Elsner准许复制图15和图16。感谢德国杜塞尔多夫市Deutsches Kupferinstitut(德国铜协会)准许复制图3。

感谢德国Willich市Struers GmbH的Wieland Fischer提供显微照片图1和图2。

参考文献

最新印刷信息来自德国杜塞尔多夫Deutsches Kupferinstitut。ASM手册,第9卷,金相学与微观结构,ASM,2004。金属手册,简装版, ASM, 1997.

Handbuch der metallographischen Ätzverfahren, M. Beckert und H. Klemm, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1976.

Metallographische Anleitung zum Farbätzen nach dem Tauchverfahren, E. Weck, E. Leistner, Deutscher Verlag für Schweißtechnik, Düsseldorf, 1982

www.struers.cn

07.2010 / 62040408. Printed in China


相关内容

  • 金相实验报告
  • 金相试验报告 姓名:洪琦棱 学号:[1**********] 班级:材料物理1班 一.实验名称 金相试样的制备与观察 二.实验项目简介 通过制备试样,并在显微镜下观察铝合金的金相组织,使学生掌握金相试样制备的方法,认识铝合金的金相组织和形态特征,建立成分与组织之间相互关系的概念. 三.实验目的 1. ...

  • 实验一 金相分析操作指导书
  • 金相检验 -低碳钢和铸铁的组 织的观察与分析 实验指导书 XX 大学 (一)金相样品的制备方法概述 在用金相显微镜来检验和分析材料的显微组织时,需将所分析的材料制备成一定尺寸的试样,并经磨制.抛光与腐蚀工序,才能进行材料的组织观察和研究工作. 一.金相样品的制备过程一般包括如下步骤: 取样.镶嵌.粗 ...

  • 铝合金金相组织检验与力学性能实验
  • 实验1.3 1.4 铝合金金相组织的观察及力学性能测定 一. 实验目的 1.巩固制备金相试样的方法与技术 2.了解各种加工工艺对铝合金显微组织以及力学性能(硬度)的影响 二. 实验内容 1. 对4种试样进行硬度测试 本次试验采用的是TH320全洛氏硬度计. 本次实验所涉及的样品中内应当包括:铸态.固 ...

  • 铝合金及铜合金金相制样的制备
  • 铝合金及铜合金金相制样的制备 材料成型实验室内部资料 2012.9.14 内容是根据个人经验总结得来,每个人的经验可能不同,具体操作技巧还有自己多磨多总结,本文仅供参考.刚开始一般几天都很难磨好一个样,但熟练后一天10-20个不成问题.如果谁有上面好的经验可以慢慢总结尽量,慢慢完善. 金相试样制备步 ...

  • 本科毕业论文中期检查报告
  • 本科毕业论文中期检查报告 学专班姓学 院:业:级:名:号: 指导教师: 一.工作任务的进展情况 1.开题报告结束后,张老师给我们开了有关中期准备工作的见面会,简要指导了我们接下来的任务:2.金相试样的制备 (1)金相检验是研究金属及合金内部组织的重要方法之一,为了在金相显微镜下正确有效地观察到内部显 ...

  • 材料专业毕业论文
  • 毕业论文 激光熔覆AlCrCoFeNi 高熵合金涂层力 学性能及组织研究 学生姓名: 学号: 系 专 二〇一三年六月 诚信声明 本人郑重声明:本论文及其研究工作是本人在指导教师的指导下独立完成的,在完成论文时所利用的一切资料均已在参考文献中列出. 本人签名: 年 月 日 毕业设计(论文)任务书 设计 ...

  • 铝合金焊接工艺规范(工作试样)
  • 铝合金焊接工艺规范目录(工作试样) 序号[***********][***********][***********][***********]1 WPS №SFW-A-701SFW-A-702SFW-A-703SFW-A-704SFW-A-705SFW-A-706SFW-A-707SFW-A-70 ...

  • 稀土改性非晶带材的制备与软磁性能研究
  • 稀土改性非晶带材的制备与软磁性能研究 蒋达国1,2,朱正吼1,宋晖1 (1.南昌大学材料科学与工程学院,江西南昌330047:2.井冈山学院工学院,江西井冈山343009) 摘 要:利用稀土La掺杂Fe73.5Cu1Nb3Si13.5B9非晶合金,成功制备了稀土La改性的非晶带材.对制得的非晶 带材 ...

  • 铸铝材料固溶处理
  • 设计型综合实验 实验论文 年月日 固溶处理对铸铝合金性能的影响 李星 西安工业大学北方信息工程学院 摘要:铸造铝硅合金是一种重要的合金材料,具有质量轻.强度高.耐磨耐蚀性好等优点,广泛应用于航空航天及汽车领域,但其组织中常出现的粗大共晶硅组织对合金的力学性能具有严重的不利影响,因此需要对该组织进行变 ...