从一道高考试题谈函数的凹凸性

从一道高考试题谈函数的凹凸性

徐解清 (江苏省苏州市相城区教研室 215131)

1 引例

近日做到这样一题:已知函数犳(狓)=tan狓,)),若狓1,,且狓1≠狓2,证狓∈(0狓2∈(0积化和差公式与半角正切的有理表达正弦公式、

式,不等式的意义和基本性质等.覆盖的知识点比涉及了三角函数的大多数基础知识.试题设较多,

22明2

[犳(狓1)+犳(

狓2)]>犳122)

.思路1 根据不等式的意义,只要证明

[犳(狓1)+犳(狓2)]-犳狓1狓22)

>0即可.

证明 2[犳(

狓1)+犳(狓2)]-犳狓1狓2

2)

=狓1狓2

tan狓1+tan狓2)-tan

sin(狓1狓2)

2cos狓1

cos狓2)-

1+cos狓1+狓2=

sin(狓1+狓2)cos狓1cos狓2-

1+cos狓1+狓2]

sin(狓1狓2)[

122cos狓11cos狓2

-1+cos(狓1+狓2)]

(12)·(12)2cos狓+cos(狓.1cos狓211+狓2)

因为狓1,狓2∈(02

),且狓1≠狓2,所以sin(狓1+狓2)>0,1-cos(狓1-狓2)>0,2

[犳(狓1)+犳(

狓2)]>犳狓1狓22)

.运用了证明不等式的基本方法———比较法.证明能不能深入下去,关键在于能否根据题设条件正确地选择公式,进行三角恒等变形.

思路2 本题要证2(tan狓1+tan狓2)>

tan

狓1狓22

,左边运用同角三角函数的基本关系

式与两角和的正弦公式,化为正余弦,得

2cos狓1+2)

(12)cos狓,右边运用2=

2cos狓1cos狓2

半角正切的有理表达式,得(12)

1+cos(狓.

两1+狓2)

式的分子相同,只要比较分母2cos狓1cos狓2与1+cos(

狓1+狓2)的大小,不等式即可得证(证略).试题考查的数学知识主要包括:三角函数的图象和性质,同角三角函数的基本关系式,两角和

计在三角函数和不等式知识的交汇点处,匠心独具,使学生感到既熟悉又陌生,是一道构思巧妙、值得称道的好题.

实际上,此题为1994年全国高考数学(理科)

第22题,该题还有多种证法,如分析法、换元法、几何方法和函数凹凸性等.

因为在高中数学教学中,对二阶导数没有教学要求,所以函数的凹凸性这一概念在高中数学的课本中还未曾被提及,

但是利用函数凹凸性解决某些函数类问题和不等式问题的案例已经在全国各地的高考中频繁出现,并且有些题目若利用函数的凹凸性解题,则可收到事半功倍的效果.2 凹凸函数的定义

如果函数犳(狓)对其定义域中任意的狓1,狓2都

有如下不等式犳狓1狓22)≤

[犳(狓1)+犳(狓2)]①成立,

则称犳(狓)是下凸函数(图1),当且仅当狓1=狓2时取等号;

如果函数犳(狓)对其定义域中任意的狓1,狓2都有如下不等式犳狓1狓22)≥

[犳(狓1)+犳(

狓2)]②成立,则称犳(狓)是上凸函数(图2),当且仅当狓1=狓2时取等号.(注:国内外数学界对函

数凹凸性的定义尚不一致

图1         图2

从几何意义来看,不等式①表示定义域中任意两点狓1,狓2的中点犕所对应的曲线上的点犙位于弦

上对应点犘的下面.不等式②则有相反的意义.

利用上述关系,不仅可以深刻地研究函数的有关性质,较为准确地绘制函数的图象,而且可以为许多问题的求解带来积极的启迪作用,对优化学生思维的品质十分有益.

3 典例分析

例1 (设函数犳(对2005年北京卷)狓)=2,于任意的狓1,,有下列命题:狓2(狓1≠狓2)狓1①犳(

;狓1)狓2)狓1狓2)=犳(狓1)++狓2)=犳(②犳(犳(

犳(狓1)狓2)犳(;狓2)③④犳犳(>0;<

2狓1-狓2

())其中正确的命题序号是(

..

分析 2狓1·2狓2=2狓1+狓2,所以①成立;2狓1+,所以②不成立;函数犳(2≠2狓)=2在犚狓2

狓1狓2

图1

,则犳(因为狔=sin狓,当狓∈狓)狓-sin狓.=

2(时为上凸函数,当狓∈(时为下凸函0,2π)π)π,所以犳(当狓∈(数,狓)0,π)时为下=狓-sin狓,凸函数,当狓(观察四个2)时为上凸函数.,上是单调递增函数,若狓1>狓2,则犳(狓1)>

狓2),则(1)(2)狓>0;若狓1<狓2,则1-狓2

狓()1)<犳(狓2),则犳狓1犳(狓2)狓1-狓2

>0,故③正确;因为犳(狓)=2狓是下凸函数,所以

狓1狓2)

犳(1)犳(2)2<

,故④正确.本题根据指数的运算性质和指数函数的单调性以及凹凸性对①②③④进行逐一进行判定即可.

例2 (2005年湖北卷)在狔=2狓,狔=log2狓,=狓2,狔=cos2狓这四个函数中,

当0<狓1<狓2<1时,犳12犳(狓1)犳(狓2)2)

恒成立的函数的个数是(  )

.(A)0  (B)1  (C)2  (D)3

分析 运用数形结合思想,考察各函数的图象.注意到对任意狓1,狓2∈犐,且狓1<狓2,当犳(狓)

总满足犳狓1狓22)

>(1)(2)

时,函数

狓)在区间犐上的图象是上凸的,由此否定狔=2狓

,狔=狓2

,狔=cos2狓,

应选B.本题主要考查函数的凹凸性,试题给出了四

个基本初等函数,要求考生根据函数的图象研究函数的性质———凹凸性.对试题中的不等关系式

既可以利用函数的图象直观地认识,也可以通过代数式的不等关系来理解.考查的重点是结合函数的图象准确理解凹凸的含义.

例3 (2006年重庆卷)如图1,

单位圆中弧犅的长为狓,犳(

狓)表示弧犃犅与弦犃犅所围成的弓形面积的2倍,则函数狔=犳(狓)的图象是(  )

.分析 扇形犗犃犅的面积为2π·π=2,

△犃

犅犗的面积为2,所以弓形面积为2

-∈ππ选项,只有D符合.

本题考查的知识点是函数的图象与图象变化,其中根据已知计算出函数的解析式,从而分析函数犳(狓)=狓-sin狓,利用凹凸函数的性质及图象表象是解答本题的关键.

4 高中数学中常见函数的凹凸性

以下列出的中数学中常见函数的凹凸性:

(1)反比例函数狔=狓

(犽≠0)

:当犽>0且狓∈(

-∞,0)时,为上凸函数;当犽>0且狓∈(0,+∞)时,为下凸函数.当犽<0且狓∈(-∞,0)

时,为下凸函数;当犽<0且狓∈(0,+∞)时,为上凸函数.

(2)二次函数狔=犪狓2+犫狓+狓(犪≠0):犪>0时为下凸函数,犪<0时为上凸函数.

(3)指数函数狔=犪狓

(犪>0,且犪≠1)为下凸函数.

(4)对数函数狔=log犪狓(犪>0,且犪≠1):0<<1时为下凸函数,犪>1时为上凸函数.

(5)“双勾”函数狔=犪狓+狓

(犪>0,犫>0)

:∈(-∞,0)时为上凸函数,狓∈(0,+∞)时为下凸函数.

(6)三角函数狔=sin狓:狓∈(0,π)

时为上凸函数,狓∈(π,2π)时为下凸函数;三角函数狔=cos狓:狓∈(-22)

时为上凸函数,狓∈22)时为下凸函数;三角函数狔=tan狓:狓∈(-2,

0)时为上凸函数,狓∈(02

)时为下凸函数.事实上,有些涉及对数函数、指数函数以及一些三角不等式的计算或证明,往往看起来很复杂,甚至无从下手,但如果利用凹凸函数的性质给予计算或证明,则会起到简捷明了、事半功倍的效果.

犳犳犳狔犪犳狓犃

从一道高考试题谈函数的凹凸性

徐解清 (江苏省苏州市相城区教研室 215131)

1 引例

近日做到这样一题:已知函数犳(狓)=tan狓,)),若狓1,,且狓1≠狓2,证狓∈(0狓2∈(0积化和差公式与半角正切的有理表达正弦公式、

式,不等式的意义和基本性质等.覆盖的知识点比涉及了三角函数的大多数基础知识.试题设较多,

22明2

[犳(狓1)+犳(

狓2)]>犳122)

.思路1 根据不等式的意义,只要证明

[犳(狓1)+犳(狓2)]-犳狓1狓22)

>0即可.

证明 2[犳(

狓1)+犳(狓2)]-犳狓1狓2

2)

=狓1狓2

tan狓1+tan狓2)-tan

sin(狓1狓2)

2cos狓1

cos狓2)-

1+cos狓1+狓2=

sin(狓1+狓2)cos狓1cos狓2-

1+cos狓1+狓2]

sin(狓1狓2)[

122cos狓11cos狓2

-1+cos(狓1+狓2)]

(12)·(12)2cos狓+cos(狓.1cos狓211+狓2)

因为狓1,狓2∈(02

),且狓1≠狓2,所以sin(狓1+狓2)>0,1-cos(狓1-狓2)>0,2

[犳(狓1)+犳(

狓2)]>犳狓1狓22)

.运用了证明不等式的基本方法———比较法.证明能不能深入下去,关键在于能否根据题设条件正确地选择公式,进行三角恒等变形.

思路2 本题要证2(tan狓1+tan狓2)>

tan

狓1狓22

,左边运用同角三角函数的基本关系

式与两角和的正弦公式,化为正余弦,得

2cos狓1+2)

(12)cos狓,右边运用2=

2cos狓1cos狓2

半角正切的有理表达式,得(12)

1+cos(狓.

两1+狓2)

式的分子相同,只要比较分母2cos狓1cos狓2与1+cos(

狓1+狓2)的大小,不等式即可得证(证略).试题考查的数学知识主要包括:三角函数的图象和性质,同角三角函数的基本关系式,两角和

计在三角函数和不等式知识的交汇点处,匠心独具,使学生感到既熟悉又陌生,是一道构思巧妙、值得称道的好题.

实际上,此题为1994年全国高考数学(理科)

第22题,该题还有多种证法,如分析法、换元法、几何方法和函数凹凸性等.

因为在高中数学教学中,对二阶导数没有教学要求,所以函数的凹凸性这一概念在高中数学的课本中还未曾被提及,

但是利用函数凹凸性解决某些函数类问题和不等式问题的案例已经在全国各地的高考中频繁出现,并且有些题目若利用函数的凹凸性解题,则可收到事半功倍的效果.2 凹凸函数的定义

如果函数犳(狓)对其定义域中任意的狓1,狓2都

有如下不等式犳狓1狓22)≤

[犳(狓1)+犳(狓2)]①成立,

则称犳(狓)是下凸函数(图1),当且仅当狓1=狓2时取等号;

如果函数犳(狓)对其定义域中任意的狓1,狓2都有如下不等式犳狓1狓22)≥

[犳(狓1)+犳(

狓2)]②成立,则称犳(狓)是上凸函数(图2),当且仅当狓1=狓2时取等号.(注:国内外数学界对函

数凹凸性的定义尚不一致

图1         图2

从几何意义来看,不等式①表示定义域中任意两点狓1,狓2的中点犕所对应的曲线上的点犙位于弦

上对应点犘的下面.不等式②则有相反的意义.

利用上述关系,不仅可以深刻地研究函数的有关性质,较为准确地绘制函数的图象,而且可以为许多问题的求解带来积极的启迪作用,对优化学生思维的品质十分有益.

3 典例分析

例1 (设函数犳(对2005年北京卷)狓)=2,于任意的狓1,,有下列命题:狓2(狓1≠狓2)狓1①犳(

;狓1)狓2)狓1狓2)=犳(狓1)++狓2)=犳(②犳(犳(

犳(狓1)狓2)犳(;狓2)③④犳犳(>0;<

2狓1-狓2

())其中正确的命题序号是(

..

分析 2狓1·2狓2=2狓1+狓2,所以①成立;2狓1+,所以②不成立;函数犳(2≠2狓)=2在犚狓2

狓1狓2

图1

,则犳(因为狔=sin狓,当狓∈狓)狓-sin狓.=

2(时为上凸函数,当狓∈(时为下凸函0,2π)π)π,所以犳(当狓∈(数,狓)0,π)时为下=狓-sin狓,凸函数,当狓(观察四个2)时为上凸函数.,上是单调递增函数,若狓1>狓2,则犳(狓1)>

狓2),则(1)(2)狓>0;若狓1<狓2,则1-狓2

狓()1)<犳(狓2),则犳狓1犳(狓2)狓1-狓2

>0,故③正确;因为犳(狓)=2狓是下凸函数,所以

狓1狓2)

犳(1)犳(2)2<

,故④正确.本题根据指数的运算性质和指数函数的单调性以及凹凸性对①②③④进行逐一进行判定即可.

例2 (2005年湖北卷)在狔=2狓,狔=log2狓,=狓2,狔=cos2狓这四个函数中,

当0<狓1<狓2<1时,犳12犳(狓1)犳(狓2)2)

恒成立的函数的个数是(  )

.(A)0  (B)1  (C)2  (D)3

分析 运用数形结合思想,考察各函数的图象.注意到对任意狓1,狓2∈犐,且狓1<狓2,当犳(狓)

总满足犳狓1狓22)

>(1)(2)

时,函数

狓)在区间犐上的图象是上凸的,由此否定狔=2狓

,狔=狓2

,狔=cos2狓,

应选B.本题主要考查函数的凹凸性,试题给出了四

个基本初等函数,要求考生根据函数的图象研究函数的性质———凹凸性.对试题中的不等关系式

既可以利用函数的图象直观地认识,也可以通过代数式的不等关系来理解.考查的重点是结合函数的图象准确理解凹凸的含义.

例3 (2006年重庆卷)如图1,

单位圆中弧犅的长为狓,犳(

狓)表示弧犃犅与弦犃犅所围成的弓形面积的2倍,则函数狔=犳(狓)的图象是(  )

.分析 扇形犗犃犅的面积为2π·π=2,

△犃

犅犗的面积为2,所以弓形面积为2

-∈ππ选项,只有D符合.

本题考查的知识点是函数的图象与图象变化,其中根据已知计算出函数的解析式,从而分析函数犳(狓)=狓-sin狓,利用凹凸函数的性质及图象表象是解答本题的关键.

4 高中数学中常见函数的凹凸性

以下列出的中数学中常见函数的凹凸性:

(1)反比例函数狔=狓

(犽≠0)

:当犽>0且狓∈(

-∞,0)时,为上凸函数;当犽>0且狓∈(0,+∞)时,为下凸函数.当犽<0且狓∈(-∞,0)

时,为下凸函数;当犽<0且狓∈(0,+∞)时,为上凸函数.

(2)二次函数狔=犪狓2+犫狓+狓(犪≠0):犪>0时为下凸函数,犪<0时为上凸函数.

(3)指数函数狔=犪狓

(犪>0,且犪≠1)为下凸函数.

(4)对数函数狔=log犪狓(犪>0,且犪≠1):0<<1时为下凸函数,犪>1时为上凸函数.

(5)“双勾”函数狔=犪狓+狓

(犪>0,犫>0)

:∈(-∞,0)时为上凸函数,狓∈(0,+∞)时为下凸函数.

(6)三角函数狔=sin狓:狓∈(0,π)

时为上凸函数,狓∈(π,2π)时为下凸函数;三角函数狔=cos狓:狓∈(-22)

时为上凸函数,狓∈22)时为下凸函数;三角函数狔=tan狓:狓∈(-2,

0)时为上凸函数,狓∈(02

)时为下凸函数.事实上,有些涉及对数函数、指数函数以及一些三角不等式的计算或证明,往往看起来很复杂,甚至无从下手,但如果利用凹凸函数的性质给予计算或证明,则会起到简捷明了、事半功倍的效果.

犳犳犳狔犪犳狓犃


相关内容

  • 高考数学知识点
  • 高等数学知识点 一.填空题 1. 设函数f (x )= ln x,g (x )=e2x+1 ,则f [g(x)]=2x+1. 2. lim sin 2x x 2 x →0 =54 3. lim x +x -6x -4 2 x →2 = 4. 设函数 f (x )= 11+cos x { e ,x ≤ ...

  • 证明不等式的若干方法
  • 在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法.辅助函数法.泰勒公式法.函数的凹凸性法.柯西施瓦茨不等式. 1 中值定理定理法 ...

  • 经济应用数学06956
  • 课程名称:经济应用数学 课程代码:06956 第一部分 课程性质与目标 一 .课程的性质与特点 <经济应用数学>是高等教育自学考试会计电算化专业开设的基础课,是重要 的工具学科.在经济管理科学中有着广泛的应用.该课程具有广泛的应用性.高度 的抽象性和严密的逻辑性,对学生的专业学习和培养学 ...

  • 上海第二大学专升本考试大纲[高等数学](一)
  • 个人总结,仅供交流 上海第二大学专升本考试大纲 <高等数学>(一) 一.考试性质 <高等数学>考试大纲为上海第二工业大学"专升本"招生制定 二.考试目标 <高等数学>专升本入学考试注重考察学生基础知识.基本技能和思维能力.运算能力.以及分析问题 ...

  • 高 三 数 学 一 轮 复 习 建 议
  • 高 三 数 学 一 轮 复 习 建 议 在潍坊市高三数学一轮复习研讨会上的发言 (2007年9月4日 安丘) 一轮复习是整个高三复习阶段最重要的环节,复习质量关乎高考的成败.学生经过了高一高二两年的学习,因为各种因素的影响,学习上或多或少地留下不少的缺憾和问题,能否通过一轮复习解决这些问题,关系到学 ...

  • 校园招聘数字电路,模拟电路类常用笔试题
  • 数字电路 1.同步电路和异步电路的区别是什么?(仕兰微电子) 2.什么是同步逻辑和异步逻辑?(汉王笔试) 同步逻辑是时钟之间有固定的因果关系.异步逻辑是各时钟之间没有固定的因果关系. 3.什么是" 线与" 逻辑,要实现它,在硬件特性上有什么具体要求?(汉王笔试) 线与逻辑是两个输 ...

  • 大一上学期微积分高数复习要点
  • 大一上学期高数复习要点 同志们,马上就要考试了,考虑到这是你们上大学后的第一个春节,为了不影响阖家团圆的气氛,营造以人文本,积极向上,相互理解的师生关系,减轻大家学习负担,以下帮大家梳理本学期知识脉络,抓住复习重点: 1.主要以教材为主,看教材时,先把教材看完一节就做一节的练习,看完一章后,通过看小 ...

  • 导数在高中数学的应用
  • 导数在高中数学的应用 [摘 要]导数是联系高等数学与初等数学的纽带,高中阶段引进导数的学习有利于学生更好地理解函数的性态,掌握函数思想,搞清曲线的切线问题,学好其他学科并发展学生的思维能力.因而在中学数学教学及解题过程中,可以利用导数思想解决诸如函数(解析式.值域.最(极)值.单调区间等)问题.切线 ...

  • 一道高考压轴题多种解题思路的思考
  • [摘 要]作为高中数学教师,应该对高考压轴题认真分析研究,了解试题背景,摸清命题意图,揭示试题本质,以达到拓宽数学视野的目的.适当的"一题多解"可以促使学生多方面.多层次.多角度地思考问题,从而深化对知识的理解,激活学生的数学思维. [关键词]高考 压轴题 多解 [中图分类号]G ...