总规中土地利用结构调整与农业适宜性评价

Front.Biol.China2008,3(3):360–366DOI10.1007/s11515-008-0040-z

RESEARCHARTICLE

Structureregulationoflanduseandlandscapepatternchangesbasedonmatterelementanalysisinasmallwatershedin

Sichuan,China

JunhuaCHEN1,2,ChanglongMU(*)2,XiumingCHEN2,ChenghuaXIANG2,ChengrongLUO2,HuabaiHAN2,

GuoxianCHEN3,YanjunDU3

1ChengduUniversityofTechnology,Chengdu610059,China2SichuanAcademyofForestry,Chengdu610081,China

3XihuaUniversity,Chengdu611744,China

E

HigherEducationPressandSpringer-Verlag2008

AbstractTheagriculturallandsuitabilityassessmentbasedonthenaturalcharacteristicsoflandblocksistra-ditionallythebasisforagriculturaland/orlanduseplan-ning.Theassessment,however,isstaticandcannotbeincorporatedwithpotentiallandusechanges.Recently,adynamicapproach,i.e.,matterelementanalysis,hasbeeneffectivelyappliedforlanduseplanning.Inthepre-sentstudy,basedonmatterelementanalysis,weestab-lishedamatterelementanalysismodelforlandusesuitabilityassessmentusingthesuitabilitygradeoflanduse,evaluationindicatorsandtheircharacteristicvaluesasmatterelements,andalsousingsutrafield,controlledfield,weightvalueandcorrelationdegreefromfieldsur-vey,aswellasanexpertsystem.ThismodelwasappliedtothestructureregulationofthelanduseinthesmallYuejiagouwatershedoftheLangzhongMunicipalityinSichuanProvince,China.Resultsshowthatthepropor-tionamongagriculture,forestryandanimalhusbandrytendedtorationalizelanduse.Theeconomicandeco-logicalindicesofthelandswereincreasedfrom1529.8to1719.99andfrom1460.94to1758.21aftertheregu-lation,respectively.Theregulationalsocausedchangesinlandscapepatternsasfollows:Theindicesofdiversityandevennesswereincreasedfrom1.3028to2.0920andfrom0.6108to0.8463,orby60.58%and38.56%,respect-ively.However,theindicesofdominanceandcontagionweredecreasedfrom0.6431to0.2106andfrom0.7467to0.7125,respectively.Thisindicatedthatthelanduseinthesmallwatershedwasrational.Thespatialdistributionofpatchestendedtobeuniform.Thepatchcongregationwasgraduallydispersed.Thisstudyverifiedthatthemat-terelementanalysisapproachcannotonlyovercomethe

TranslatedfromActaEcologicaSinica,2006,26(7):2093–2100[译自:生态学报]

E-mail:[email protected]

factitiousinfluencesandimprovetheprecisionoflandassessment,butalsocanbeusedforthestructureregu-lationofspecificpatches.

Keywordsmatterelementanalysis,landuse,structureregulation,landscapepattern,GIS,smallwatershed

1Introduction

Theagriculturallandsuitabilityassessmentbasedonthenaturalcharacteristicsoflandblocksistheimportantbasisofagriculturaldivisionandoveralllanduseplan-ning.However,theassessmentisstaticanditsconclusionisimpracticalandstiff.Theaimoflanduseplanningistoevaluatethepossibilitiesandprinciplesoflandregulationandconvertinappropriatelandusetoothertargets(Yuanetal.,2002).Thus,thereisacontradictionbetweenthetraditionallandsuitabilityassessmentandtheaimoflanduseplanning.Tomakeanefficientlanduseplan,weputforwardthemulti-uselandsuitabilityassessmentbasedonanewapproach,i.e.,matterelementanalysis.Thismethodisabrand-newmathematicalandphilosophicalapproachtodealingwiththestateconversionofasystem.Itwasestablishedinthe1980sbyaChinesescholar,CaiWen,whowashighlycomplimentedbyHerbertA.Simon,theownerofaNobelPrizeforeconomics.Themethodhasbeenappliedinmeteorologyandtheevaluationoflandqualityinrecentyears(Wangetal.,2002;Xuetal.,1997;MenandLiang,2002;FengandGong,2004;Lietal.,2001;Panetal.,2002).However,ithasnotbeenemployedinlanduseplanningandthestructureregu-lationofagro-forestry.

TakingthetypicalsmallYuejiagouwatershedintheLangzhongMunicipalityofSichuanProvinceasan

Regulationoflanduseandlandscapepatternchangesbasedonmatterelementanalysis361

example,weinvestigatedtheapplicationofmatterele-mentanalysistothelandusesuitabilityassessmentandtothestructureregulationofagro-forestryandanalyzedthechangesinecologicalandeconomicbenefitsandland-scapepatternsaftertheregulation.

2Studyarea

TheYuejiagousmallwatershed(105u529300–105u549230E,31u359000–31u369400N)islocatedintheYakouTownshipoftheLangzhongMunicipality,SichuanProvince,China.BasedontheresultofYuanetal.(2002),thetotalareais3.0km2inthenortheast-southwestdirectionwiththehighestaltitudeof665.6m,thelowestof373.2m,andarelativeheightdifferenceof294.4m.Regardingtheclimate,thesmallwatershedissituatedinatypicalsubtropicalhumidzonewithfourdistinctsea-sonsandrichheat.Itsannualmeantemperatureis16.6uCandtheannualaverageprecipitationis955.8mm.Duetotheunevenspatialandtemporaldistributionofrainfalls,windyweatherandhighevaporation,aswellaspoorwaterconservancyfacilities,thesmallwatershedisundervaryingdegreesofdroughtstresseachyear.Purplesandsoilisthetypicalsoilwhichisshallowandinfertile.Thepurecypressoralder-cypressplantationsarethedom-inantvegetationthere.

ThelanduseinthesmallYuejiagouwatershedbeforetheregulation(Table1)wasirrational.Theagriculturallandaccountedfor57.56%,ofwhichdrylandoccupied36.18%andpaddyland(14.86%)wasrelativelysmall.Althoughtheproportionofforestrylandwashigh(41.27%),thestructureoftheforestcategorieswasnotreasonable.Fuelwoodaccountedfor38.26%,whilesmallcommercialandprotectionforestsonlytookup0.01%and2.99%,respectively.Theareaofwaterbodieswasonly3.31hm2(1.18%).Thus,theproportionamongagri-culture,forestryandanimalhusbandrywasunsatisfact-ory.Meanwhile,theheadwaterwasscarce,resultingin

Table1CurrentlanduseintheYuejiagousmallwatershed(in

1996)

currentlandusearea/hm2percent/%

agriculturalland

paddyland41.714.86dryland

101.5136.18crop-treeintercroppingland18.286.51subtotal

161.557.56forestryland

non-commercialforest––commercialforest

0.040.01protectionandfuelwood107.3738.27forest

protectionandtimberforest8.382.99subtotal

115.2941.09waterbodies

3.311.18grassland––total

280.59

100.00

seriouswatershortageandsoilloss,frequentdisasters,laggingeconomyandlowlivingstandardofthepeople.Tochangethetraditionalfood-centeredagriculturalsystemandimprovethedeterioratingecologicalenvir-onment,constructionofaheadwaterandhigh-yieldingpaddylandandtherestructuringoflanduseandforestcategorieswerethefirstpriorities.Theprinciplesoflanduseoptimizationshouldbeabidedby.Thetargetuseandregulationofforestcategorieshavetobeimplementedinspecificpatches.Therefore,thepatches(totally254patchesinthesmallwatershed)werechosenasthebasicelementfortheregulation.

3

Method

3.1

Matterelementanalysis

Basedonpreviousstudies(Yuanetal.,2002,Xuetal.,1997;Fu,1995),matterelementanalysiswascarriedoutinthefollowingsteps.3.1.1

Basicconceptsofmatterelementanalysis

ForagivenmatterN,itsvalueforfactorCisv,thesequentialthree-dimensionR5(N,c,v)istakenasthebasicelementtodescribethematter,whichcanbecalledmatterelement.N,Candvarethethreeelementsofthematter.IfthematterNpossessesmultiplefactors,itcanbedescribedbyc1,c2,…,cn,andcorrespondingvaluev1,v2,…,vn,expressedas:

Nc1 R v1 c2v2

R1

R 2 ...... c ...

n

vn

Rn

Where,Risregardedasn-dimensionmatterelement

andcanbemarkedasR5(N,C,V).3.1.2

Matrixofthesutrafieldandcontrolledfield

ForstandardmatterN0,ifv0i5Sa0i,b0iTisthevaluescopeoffactorci,thematterelementmatrixofthesutrafieldcanbeexpressedas:

R N0c1ha01b01i

c0ðN0CV0Þ

2ha02b02i

ð1Þ ......

cn

ha0nb 0n

i

IfthestandardmatterN0isaddedtomatterelementRpthatcanbeconvertedtostandardmatter,itcanbecalledthematterelementofcontrolledfield.Thus,vpi5Sapi,bpiTisthevaluescopeofthematterelementofcontrolled

362fieldintermsoffactorci,whichisexpandedbycomparingwiththestandard.Thematterelementmatrixofcon-trolledfieldcanberepresentedby:

RpÀNpCVpÁ

Npc1hap1bp1i

c 2hap2bp2i

ð2Þ ......

c n

hapnbpn

i

Obviously,Sa0i,b0iT,Sapi,bpiT(i51,2,???,n).3.1.3Correlationfunctionandcalculationof

correlationdegree

Whenthevalueofmatterelementexpressedinthecor-relationfunctionisapointontherealaxis,matterelementmeetstherequiredscope.Thequantificationofincom-patiblefactorscanberealizedbecausethecorrelationfunctionofextensionsetcanbeexpressedbyanalgebraicequation.GiventhemoulddefinitionofalimitedintervalX05[a,b]as:

jX0jjbaj

ð3Þ

thedistancefrompointXtointervalX 05[a,b]is:

ðXX 1 0Þ X2ab 1

2bað4ÞThen,thedefinitionofcorrelationfunctionis:

8

>>>Kðx

X2X0

0>>> ðXX0Þð5Þ

:X2=Xp00Wherer(x,x0)isthedistancefrompointXtointervalX05[a,b];r(x,xp)isthedistancefrompointXtointervalXp5[ap,bp];X,X0andXparethevalueofmatterelementtobeassessed,thevaluescopeofthesutrafieldandthecontrolledfieldofmatterelement,respectively.3.1.4

Standardforassessment

ThenumericalvalueofthecorrelationfunctionK(x)indi-catesthesubordinatedegreethatassessmentelementmeetsacertainstandardscope.WhenK(x)>1.0,theassessmenttargetexceedstheupperlimitofthestandardandthehigherthevalueis,thebiggerthedevelopingpotentialis.When0(K(x)(1.0,theassessmenttargetmeetsthestandardandthehighvaluemeansthedegreeclosetothestandardupperlimit.When21.0(K(x)(0,theassess-menttargetcannotmeetthestandard,butpossessesthepossibilitiesofconvertingtothestandardone.Thehigherthevalueis,theeasiertheconversionis.K(x)(21.0showsthattheassessmentobjectcannotmeettherequirementandhasnopossibilityofconvertingtothestandardone.

JunhuaCHEN,etal.

3.1.5Integratedcorrelationdegreeofmattersand

evaluationofqualitygrades

Kj(Nx),theintegratedcorrelationdegreeofassessmentmattersintermsofgradej,canbeexpressedas:

KXNjðNxÞ

aiKjðxiÞð6Þ

i1

WhereKj(Nx)istheintegratedcorrelationdegreeofassessmentmattersintermsofgradej;Kj(Xi)isthecor-relationdegreeofmatterstobeassessedintermsofeachgrade(j51,2,…,n);aiistheweightcoefficientofeachevaluationindicator.If

Kj0maxÀkjðNxÞÁ

ðj12ÁÁÁnÞð7ÞThen,Nx,thetargettobeassessedbelongstogradej0.3.2Collectionofthebasicdataandtheevaluation

indicatorsoflandscapepatterns

3.2.1Collectionofthebasicdataforlandscapeassessment

Takingthecontourmapasthebenchmark,thescannedmapsoflandusein1996(beforeregulation)and2002(afterregulation),aswellasthedemarcatedmapintherecentcontinuousforestinventory,wereappliedforcal-ibrationandvectorizationinMapinfo6.5andformedthevectordatabaseofallpatchtypes.Basedontheperimeterandareainformationofeachpatch,thestatisticalanalysisandcalculationoflandscapeevaluationindicatorswereperformedbyusingExcel2002.3.2.2

Evaluationindicatorsoflandscapepatterns

Fiveindices,thediversityindex,dominanceindex,evennessindex,fragmentationandcontagionindices,werechosentoevaluatelandscapepatterns(Fu,1995;Zhangetal.,2003;Zhangetal.,2000;FuandChen,2001;Manetal.,2002;WangandYang,2005;Wangetal.,1999;Zhouetal.,1999).

4Results

4.1MatterelementanalysisforlandsuitabilityassessmentintheYuejiagousmallwatershed

4.1.1Selectionandmeasurementofcharacteristicvaluesoflandblock

Accordingtoavailabledata,sevenfactorswereconsideredinlanduseregulationbyconsultingwithrelevantexpertsandtechnicians.Thequantitativefactorswereslopedegree(0u–5u,5u–15u,15u–25u,26u–35uand.35u),stepsoilwidth

Regulationoflanduseandlandscapepatternchangesbasedonmatterelementanalysis363

(0–5m,6–10m,11–20mand.21m),soilthickness(0–30m,31–80mand.80m)andsoilthicknessoftheAlayer(0–5m,5–10mand.10m).Thequalitativefactorsincludeslopeposition(ridge,upperslope,middleslope,lowerslopeandbottom),headwater(non-irrigated,storedwater,poweredirrigation,self-irrigation),andtraffic(noroad,path,tractor’sroad,townroad,countyroad).4.1.2Matterelementmodelforlandusesuitabilityassessment

AspecialvectormapoflanduseinthesmallYuejiagouwatershedwasestablishedinMapinfo6.5byextractionofthespatialdataofcurrentland.Theexpressionofmatterelementwasobtainedbasedontheformula(1)andthefieldsurveyinMay2001inthewatershed.Forexample,theexpressionforNo.10blockis:

10slopegrade12

slopepositionupper

stepsoilwidth15

Rno:10block soilthickness40 soilthicknessofAlayer8

headwaternonÀirrigated

traffictractor0sroad 4.1.3Sutrafieldandcontrolledfieldofeach

characteristicvalue

ForlandN,ifthecharacteristicvalueoffactorCfluctu-ateswithinthelimitedscopeV0,thereisnochangeinthe

Table2

typei

ABCABCABCABCABCABCABC

land’sfundamentalcharacter.IfthevalueexceedsthescopeV0,thefundamentalcharacterofthelandwillchange.Thelimitedscopeiscalledland’scontrolledfieldJ.Intermsoflandstructureregulation,thesuitabilitycanbeclassifiedintothreegrades,optimumsuitable,second-arysuitableandunsuitable.Forinstance,forapatchplannedforcultivatedland,thecontrolledfieldoffactorslopeis,5u,5u–15u,15u–25u.Tofacilitatecalculationandunification,astandardizedmethod(theintervalofthecontrolledfieldofeachfactorisdefinedwithin1–100andtheircharacteristicvalueisaninteger)isappliedtogradethecontrolledfieldofvariousfactors.Thus,thedifferenceindimensionsandscalesofvariousfactorscanbeeliminated,andthecomparisonsbetweenfactorscanmakesense.Thesutrafieldcouldbedeterminedbyconsultingwithexpertsandusingavailabledata(seeTable2).4.1.4

Weightvalueofvariousfactors

Therearemanywaystodeterminetheweightsofevalu-ationindicators,suchasPCAandAHP.TheDelphi,combinedwithAHP(Leietal.,1999)wasappliedinthisstudy,andtheweightvaluewasgeneratedbysevenexperts(Table3).

4.1.5Outcomesoflandsuitabilityassessmentbasedonmatterelementanalysis

Onthebasisoftheattributedatabaseoflanduse,coveringthecharacteristicvaluesofthesevenfactors,sutraandcontrolledfield,etc.,thelinkbetweenthetablesofthe

Sutrafieldofvariousfactors

slope80–9960–791–5960–9940–591–3960–9940–591–3940–993–391–240–9920–391–1960–992–391–240–992–391–2

slopeposition

60–9940–591–4060–9920–391–2060–9920–391–201–9960–791–1040–9920–601–1060–9920–601–2010–995–91–4

stepsoilwidth

11–506–101–511–506–101–511–506–101–53–501–31–13–201–31–16–501–51–111–501–101–1

soilthickness81–10031–801–3181–10031–801–3181–10031–801–3131–1005–311–531–1005–311–55–1003–51–35–1003–51–3

soilthicknessofalayer

10–505–101–510–505101–510–505101–55–502–51–25–502–51–22–501–21–22–501–21–2

headwater75–9925741–2450–9925–491–2450–9925–491–2425–495–241–525–495–241–550–9925–241–2450–9925–401–24

traffic40–9920–391–1910–792–91–210–792–91–22–501–21–21–21–21–23–991–21–270–9930–601–29

ii

iii

iv

v

vi

vii

Note:i:Paddyland;ii:Dryland;iii:Crop-treeintercroppingland;iv:Forestryland;v:Grassland;vi:Waterbodies;vii:Constructionland;A:Optimumsuitable;B:Secondarysuitable;C:Unsuitable.

364

Table3

typeiiiiiiivvvivii

JunhuaCHEN,etal.

Weightvalueofvariousfactors

slope21.010.010.09.09.09.013.0

slopeposition

13.015.015.07.09.07.05.0

stepsoilwidth

15.013.013.03.03.05.07.0

soilthickness

13.019.019.09.07.03.03.0

soilthicknessofalayer

4.09.09.09.07.03.03.0

headwater21.013.013.05.07.021.013.0

traffic3.03.03.01.01.01.05.0

characteristicvalueandspatialdatabaseoflandusewasestablished.Bytakinglandusetypeasakeyfield,thetableofsutrafieldandtableofweightvaluewereassoc-iatedwitheachother.Inordertocalculatetheindicesofeconomicandecologicalbenefits,forestrylandwasfur-therdividedintonon-commercialforestland,commercialforestland,protectionandfuelwoodforestlandandpro-tectionandtimberforestland.Thecorrelationdegreeofeachcharacteristicvaluewascalculatedbyformula5andtheblock’ssuitabilitygradewascalculatedbyformula7.K(Nx)wasappliedtodefinethedegreeofsuitability.TheresultisshowninTable4.

Table4TheareaofeachlandsuitabilityclassinthesmallYuejia-gouwatershed/hm2

typeprimaryuseOptimumsecondaryi–27.5927.59ii0.0413.0326.96iii107.3732.5234.32iv8.3821.3025.04v101.5147.3910.41vi18.2856.547.73vii41.7041.70128.97viii–21.05–ix3.3111.813.60x–7.6615.97total

280.59

280.59

280.59

Note:i:Non-commercialforest;ii:Commercialforest;iii:Protectionandfuelwoodforest;iv:Protectionandtimberforest;v:Dryland;vi:Crop-treeintercroppingland;vii:Paddyland;viii:Grassland;ix:Waterbodies;x:Constructionland.

4.1.6StructureregulationoflanduseintheYuejiagousmallwatershed

Theassessmentofeachblockprovidesabasisforlanduseplanningandthestructureregulationofforestcategories.Onthebasisofoptimumandsecondarysuitability,foreachblock,fieldempiricaldiagnosisforpossibletransformationoflandusewasconductedbyanexpertpanelconsistingofsevenspecialists.Then,intermsofpossibletransformationcombinationofmatterelement(drylandRcommercialforest,drylandRprotectionforest,drylandRcrop-treeintercroppingland,protectionforestRcommercialforest,protectionforestRprotectionandtimberforest,protectionforestRprotectionandfuelwoodforest,protectionforestRnon-commercialforest),byincorporatingwith

therestructuringobjective(Yuanetal.,2002),(i.e.,ensuringtheself-supplyoffoodaspriority,strengtheninglocaleco-logicalandeconomicbenefits),theoptimalregulationwasachievedusingasuccessiveapproximationobjectiveapproach(Yuanetal.,2002).Theregulationresultindi-catedthattheproportionamongagriculture,forestryandanimalhusbandrybecamemorerational.Theareasforprotectionandfuelwoodforest,anddrylandweresignifi-cantlyreducedby68.04%and68.01%respectively(Table5).Theareasforcommercialforest,paddylandandwaterbodies,however,weresignificantlyincreased,especiallyforcommercialforest.Theincreasingcom-mercialforestcanpromotelocaleconomicdevelopment.Theexpansionofwaterbodiescangreatlymitigatethedroughtandimproveecologicalenvironmenttosomeextent.4.1.7Benefitanalysisforthestructureregulationofland

use

Thelandusevaluesbeforeandafterregulationhavebeencalculatedusingthestatisticalmethodforecologicalandeconomicbenefits(Leietal.,1999;Duetal.,2003).Table6indicatesthatthelandusebenefitwassignifi-cantlyincreasedafterregulation,theindexoftheeco-logicalbenefitwasincreasedfrom1460.94to1758.21,orby20.35%.Theindexofeconomicbenefitwasincreasedfrom1529.8to1719.99,orby12.43%.

4.2AnalysisofchangesinlanduselandscapepatterninthesmallYuejiagouwatershed4.2.1

Spatialdistributionoflandscapepatterns

ThespatialdistributionoflandscapepatternsisshowninTable7.Afterregulation,theindicesofdiversityandevennesswereincreasedfrom1.3028to2.0920,andfrom0.6108to0.8463,orby60.58%and38.56%respectively.Moreover,thedifference(9.15%)betweendiversityandoptimumdiversitywaslowerthanthat(33.05%)beforeregulation.Meanwhile,theindicesofdominanceandcon-tagionwerereducedfrom0.6431to0.2106andfrom0.7467to0.7125,respectively.Thesechangesindicatethatthespatialdistributionofpatchestendedtobeevenandpatchcongregationwasgraduallydispersed.

Regulationoflanduseandlandscapepatternchangesbasedonmatterelementanalysis

Table5

TheresultoflandusestructureregulationandplanninginthesmallYuejiagouwatershed

primaryarea/hm2

–0.04107.378.38101.5118.2841.70–3.31–280.59

plannedarea/hm2

27.5926.9634.3225.0432.4739.0071.703.9410.588.99280.59

primaryrate/%

–0.0138.272.9936.186.5114.86–1.18–100

plannedrate/%

9.839.6112.238.9211.5713.9025.551.403.773.20100

365

landusetypeiiiiiiivvviviiviiiixxtotal

Table6

type

Thelandusevaluebeforeandafterregulation

indexofecologicalbenefitbeforeregulation

afterregulation275.90107.84274.56175.2832.4778.00645.3019.7095.2253.941758.21

indexofeconomicbenefitbeforeregulation–0.20322.1133.52609.06146.25417.00–1.66–1529.8

afterregulation55.18134.80102.96100.16194.82312.00717.007.885.2989.901719.99

increaseofarea(673%)andlowerincreaseofpatchnum-bers(270%).Thefragmentationindexfordrylandwentupfrom0.58to0.62,orby6.9%,indicatingthatcultivatedlandusetendedtobediversified.

iiiiiiivvviviiviiiixxtotal–0.16858.9658.66101.5136.56375.30–29.79–1460.94

5Conclusions

Table7

item

Spatialdistributionoflandscapepatterns

beforeregulation

1.30281.94590.64310.61080.7467

afterregulation

2.09202.30260.21060.84630.7125

diversity(H)

optimumdiversity(Hmax)dominance(D)evenness(E)contagion(C)

4.2.2Analysisoflandscapefragmentation

ThefragmentationindexisshowninTable8.Exceptdryland,thefragmentationindexoflandscapeforotherpatcheswasdecreased.Amongthem,themaximalreduc-tionoccurredinthecommercialforestduetoahigher

Table8

typeiiiiiiivvviviiviiiixx

Fragmentationoflandscape

beforeregulation

–25.000.561.310.584.380.74–3.63–

afterregulation

0.912.000.550.320.621.770.491.271.510.33

(1)Landsuitabilityassessmentisimportantinagricul-turaldevelopmentandlanduseplanning.Previously,someapproaches,suchasintegratedfuzzysettheory,parametricapproach,greyclusteranalysisandsimplelimitationmethod(ChengandLiu,1999)wereoftenappliedinlandsuitabilityassessments.However,eachofthemhassomeshortcomings.Forexample,thescopeofsubordinatefunc-tionintheintegratedfuzzysettheoryisonly[0,1],whichmayresultinthelossofsomevarianceinformation.Besides,thesemethodscontainsomefactitiouselementsthatcanreducetheprecisionofassessment.Incontrast,thecorrelationfunctionofthematterelementanalysissub-ordinates(2‘,+‘),whichgreatlyexpandsitsapplicationscope,canrevealmorevarianceinformation.Basedonmat-terelementanalysis,sutrafield,controlledfieldweightandcorrelationdegreearegeneratedandthematterelementassessmentmodelforlandusesuitabilityisestablishedbytheuseofsuitabilitygrade,evaluationindicatorsandtheircharacteristicvaluesasmatterelements,aswellasbyfielddataandanexpertsystemThisapproachcanovercometheinfluenceoffactitiouselements,andimprovetheaccuracybythequantitativemeasurementofevaluationindicators.Matterelementanalysiscanbeusedtoregulatethelandusestructureofspecificblocksandmakefulluseofpotentiallandproductivity.Inaddition,thematterelementanalysisapproachiseasytocarryoutwhichisadvantageousoverotherplanningmethods(targetorientedplanning,linearplanning,etc)(Huetal.,2005).

(2)Afterregulation,thelanduseinthesmallYuejiagouwatershedtendedtoberational,thepropor-tionamongagriculture,forestryandanimalhusbandrybecamemorereasonableandtheeffectivenessoflandusewasincreasedsignificantly.Theindexofecologicalbenefitwasincreasedfrom1460.94to1758.21,orby

36620.35%;theindexofeconomicbenefitwasincreasedfrom1529.8to1719.99,orby12.43%.

(3)Theregulationbroughtgreatchangesintheland-scapepatterns.Theareasofcommercialforests,andbodiesofwaterwereenhancedsignificantly.Theindicesofdiversityandevennesswereincreasedby60.58%and38.56%,respectively.Theindicesofdominanceandcon-tagion,however,significantlydecreased.Thesechangesindicatethatthespatialdistributionoflandusetendedtobeevenandthepatchcongregationgraduallydis-persed.

Acknowledgements

ThestudywassupportedbytheKeyProjectof

the11th

Five-yearProgramforScienceandTechnologyDevelopmentofChina(No.2006BAD03A0504)andtheKeyProjectof11thFive-yearProgramforScienceandTechnologyDevelopmentofChina(No.2006BAD03A0204).

References

CaiW(1994).Thematterelementmodelanditsapplication.Beijing:ScienceandTechnologyLiteraturePress(inChinese)

ChenJF,LiuWM(1999).Anintegratedevaluationoflandsuit-abilitybasedonfuzzysettheory.ResourcesScience,21(4):71–74(inChinese)

DuYJ,ChenGX,ChenXM,ChenJH,LeiXZ,CaiXH,PengPH(2003).Comprehensivebenefitevaluationandanalysisof77counties’onYangtzeRiverprotectionforestengineering(thefirstperiod)inSichuanandChongqing.ChineseJournalofEcology,22(1):69–72(inChinese)

FengLH,GongJL(2004).Runoffproductionforecastforadrain-agebasinbasedonmatterelementanalysis.BulletinofSoilandWaterConservation,24(4):63–66(inChinese)

FuBJ(1995).Landscapediversityanalysisandmapping.ActaEcologicaSinica,15(4):345–350(inChinese)

FuBJ,ChenLD(2001).Theoryandapplicationoflandscapeeco-logy.Beijing:SciencePress(inChinese)

HuJZ,PangYZ,ZhengJL(2005).PlanningonlandusestructureandstrategyonconvertingcroplandtoforestandgrasslandinDatongcounty.ResearchofSoilandWaterConservation,12(4):172–177(inChinese)

JunhuaCHEN,etal.

LeiXZ,WangJX(1999).ThebenefitevaluationindexofecologicalforestengineeringofChina.JournalofNaturalResource,14(2):175–182(inChinese)

LiZY,LinL,DengXM(2001).Recognitionmodelofhailcloudbasedonmatterelementsandextensionsetsanditsresultsveri-fication.PlateauMeteorology,20(2):197–201(inChinese)

ManAQ,ChenDJ,WangJH(2002).LandscapepatternanddifferentiationinLongdongloessplateaubasedonRSandGIS.JournalofSoilandWaterConservation,16(3):56–59(inChinese)

MenBH,LiangC(2002).Applicationofmatterelementmodelforsoilecologicalsystemquantitativeevaluation.JournalofSoilandWaterConservation,16(6):62–65(inChinese)

PanF,LiangC,FuQ(2002).Applicationofmatterelementmodelbasedonstratificationanalysismethodinsoilqualityevaluation.ResearchofAgriculturalModernization,23(2):93–96(inChinese)

WangRR,YangGS(2005).ChangesoflanduseandlandscapepatterninTaihulakebasin.ChineseJournalofAppliedEcology,16(3):475–480(inChinese)

research.JournalofSoilandWaterConservation,16(6):58–61(inChinese)

WangYL,ZhaoYB,HanD(1999).Thespatialstructureofland-scapeecosystems:concept,indicesandcasestudies.AdvanceinEarthSciences,14(3):235–241(inChinese)

XuBG,NieHS,ZhangXL(1997).Applicationofthemethodofmatterelementanalysisinthedesignofecologicalagriculturemodel—asampleoftheecologicalagriculturemodelforcheckingwindandfixingsandinShanxi.ChineseJournalofEcology,16(4):72–76(inChinese)

YuanZK,LangNJ,WuQX(2002).Studyanddemonstrationonthetechniquesofprotectionforestsystemsintheplateau,moun-tainandhillyareasintheUpperreachofChangjiangRiver.Hunan:ScienceandTechnologyPressofHunan,225–251(inChinese)

ZhangJT,QiuY,ZhengFY(2000).Quantitativemethodsinlandscapepatternanalysis.JournalofMountainScience,18(4):346–352(inChinese)

ZhangSR,GongGS,DengLJ(2003).AnalysisoflandscapespatialpatternsinthehillregioninthewestofSichuanbasin.ActaEcologicaSinica,23(2):380–386(inChinese)

ZhouZZ,CaiMT,XuYT(1999).Landuseandlandscapedynamicsinaruralarea.ForestResearch,12(6):599–605(inChinese)

Front.Biol.China2008,3(3):360–366DOI10.1007/s11515-008-0040-z

RESEARCHARTICLE

Structureregulationoflanduseandlandscapepatternchangesbasedonmatterelementanalysisinasmallwatershedin

Sichuan,China

JunhuaCHEN1,2,ChanglongMU(*)2,XiumingCHEN2,ChenghuaXIANG2,ChengrongLUO2,HuabaiHAN2,

GuoxianCHEN3,YanjunDU3

1ChengduUniversityofTechnology,Chengdu610059,China2SichuanAcademyofForestry,Chengdu610081,China

3XihuaUniversity,Chengdu611744,China

E

HigherEducationPressandSpringer-Verlag2008

AbstractTheagriculturallandsuitabilityassessmentbasedonthenaturalcharacteristicsoflandblocksistra-ditionallythebasisforagriculturaland/orlanduseplan-ning.Theassessment,however,isstaticandcannotbeincorporatedwithpotentiallandusechanges.Recently,adynamicapproach,i.e.,matterelementanalysis,hasbeeneffectivelyappliedforlanduseplanning.Inthepre-sentstudy,basedonmatterelementanalysis,weestab-lishedamatterelementanalysismodelforlandusesuitabilityassessmentusingthesuitabilitygradeoflanduse,evaluationindicatorsandtheircharacteristicvaluesasmatterelements,andalsousingsutrafield,controlledfield,weightvalueandcorrelationdegreefromfieldsur-vey,aswellasanexpertsystem.ThismodelwasappliedtothestructureregulationofthelanduseinthesmallYuejiagouwatershedoftheLangzhongMunicipalityinSichuanProvince,China.Resultsshowthatthepropor-tionamongagriculture,forestryandanimalhusbandrytendedtorationalizelanduse.Theeconomicandeco-logicalindicesofthelandswereincreasedfrom1529.8to1719.99andfrom1460.94to1758.21aftertheregu-lation,respectively.Theregulationalsocausedchangesinlandscapepatternsasfollows:Theindicesofdiversityandevennesswereincreasedfrom1.3028to2.0920andfrom0.6108to0.8463,orby60.58%and38.56%,respect-ively.However,theindicesofdominanceandcontagionweredecreasedfrom0.6431to0.2106andfrom0.7467to0.7125,respectively.Thisindicatedthatthelanduseinthesmallwatershedwasrational.Thespatialdistributionofpatchestendedtobeuniform.Thepatchcongregationwasgraduallydispersed.Thisstudyverifiedthatthemat-terelementanalysisapproachcannotonlyovercomethe

TranslatedfromActaEcologicaSinica,2006,26(7):2093–2100[译自:生态学报]

E-mail:[email protected]

factitiousinfluencesandimprovetheprecisionoflandassessment,butalsocanbeusedforthestructureregu-lationofspecificpatches.

Keywordsmatterelementanalysis,landuse,structureregulation,landscapepattern,GIS,smallwatershed

1Introduction

Theagriculturallandsuitabilityassessmentbasedonthenaturalcharacteristicsoflandblocksistheimportantbasisofagriculturaldivisionandoveralllanduseplan-ning.However,theassessmentisstaticanditsconclusionisimpracticalandstiff.Theaimoflanduseplanningistoevaluatethepossibilitiesandprinciplesoflandregulationandconvertinappropriatelandusetoothertargets(Yuanetal.,2002).Thus,thereisacontradictionbetweenthetraditionallandsuitabilityassessmentandtheaimoflanduseplanning.Tomakeanefficientlanduseplan,weputforwardthemulti-uselandsuitabilityassessmentbasedonanewapproach,i.e.,matterelementanalysis.Thismethodisabrand-newmathematicalandphilosophicalapproachtodealingwiththestateconversionofasystem.Itwasestablishedinthe1980sbyaChinesescholar,CaiWen,whowashighlycomplimentedbyHerbertA.Simon,theownerofaNobelPrizeforeconomics.Themethodhasbeenappliedinmeteorologyandtheevaluationoflandqualityinrecentyears(Wangetal.,2002;Xuetal.,1997;MenandLiang,2002;FengandGong,2004;Lietal.,2001;Panetal.,2002).However,ithasnotbeenemployedinlanduseplanningandthestructureregu-lationofagro-forestry.

TakingthetypicalsmallYuejiagouwatershedintheLangzhongMunicipalityofSichuanProvinceasan

Regulationoflanduseandlandscapepatternchangesbasedonmatterelementanalysis361

example,weinvestigatedtheapplicationofmatterele-mentanalysistothelandusesuitabilityassessmentandtothestructureregulationofagro-forestryandanalyzedthechangesinecologicalandeconomicbenefitsandland-scapepatternsaftertheregulation.

2Studyarea

TheYuejiagousmallwatershed(105u529300–105u549230E,31u359000–31u369400N)islocatedintheYakouTownshipoftheLangzhongMunicipality,SichuanProvince,China.BasedontheresultofYuanetal.(2002),thetotalareais3.0km2inthenortheast-southwestdirectionwiththehighestaltitudeof665.6m,thelowestof373.2m,andarelativeheightdifferenceof294.4m.Regardingtheclimate,thesmallwatershedissituatedinatypicalsubtropicalhumidzonewithfourdistinctsea-sonsandrichheat.Itsannualmeantemperatureis16.6uCandtheannualaverageprecipitationis955.8mm.Duetotheunevenspatialandtemporaldistributionofrainfalls,windyweatherandhighevaporation,aswellaspoorwaterconservancyfacilities,thesmallwatershedisundervaryingdegreesofdroughtstresseachyear.Purplesandsoilisthetypicalsoilwhichisshallowandinfertile.Thepurecypressoralder-cypressplantationsarethedom-inantvegetationthere.

ThelanduseinthesmallYuejiagouwatershedbeforetheregulation(Table1)wasirrational.Theagriculturallandaccountedfor57.56%,ofwhichdrylandoccupied36.18%andpaddyland(14.86%)wasrelativelysmall.Althoughtheproportionofforestrylandwashigh(41.27%),thestructureoftheforestcategorieswasnotreasonable.Fuelwoodaccountedfor38.26%,whilesmallcommercialandprotectionforestsonlytookup0.01%and2.99%,respectively.Theareaofwaterbodieswasonly3.31hm2(1.18%).Thus,theproportionamongagri-culture,forestryandanimalhusbandrywasunsatisfact-ory.Meanwhile,theheadwaterwasscarce,resultingin

Table1CurrentlanduseintheYuejiagousmallwatershed(in

1996)

currentlandusearea/hm2percent/%

agriculturalland

paddyland41.714.86dryland

101.5136.18crop-treeintercroppingland18.286.51subtotal

161.557.56forestryland

non-commercialforest––commercialforest

0.040.01protectionandfuelwood107.3738.27forest

protectionandtimberforest8.382.99subtotal

115.2941.09waterbodies

3.311.18grassland––total

280.59

100.00

seriouswatershortageandsoilloss,frequentdisasters,laggingeconomyandlowlivingstandardofthepeople.Tochangethetraditionalfood-centeredagriculturalsystemandimprovethedeterioratingecologicalenvir-onment,constructionofaheadwaterandhigh-yieldingpaddylandandtherestructuringoflanduseandforestcategorieswerethefirstpriorities.Theprinciplesoflanduseoptimizationshouldbeabidedby.Thetargetuseandregulationofforestcategorieshavetobeimplementedinspecificpatches.Therefore,thepatches(totally254patchesinthesmallwatershed)werechosenasthebasicelementfortheregulation.

3

Method

3.1

Matterelementanalysis

Basedonpreviousstudies(Yuanetal.,2002,Xuetal.,1997;Fu,1995),matterelementanalysiswascarriedoutinthefollowingsteps.3.1.1

Basicconceptsofmatterelementanalysis

ForagivenmatterN,itsvalueforfactorCisv,thesequentialthree-dimensionR5(N,c,v)istakenasthebasicelementtodescribethematter,whichcanbecalledmatterelement.N,Candvarethethreeelementsofthematter.IfthematterNpossessesmultiplefactors,itcanbedescribedbyc1,c2,…,cn,andcorrespondingvaluev1,v2,…,vn,expressedas:

Nc1 R v1 c2v2

R1

R 2 ...... c ...

n

vn

Rn

Where,Risregardedasn-dimensionmatterelement

andcanbemarkedasR5(N,C,V).3.1.2

Matrixofthesutrafieldandcontrolledfield

ForstandardmatterN0,ifv0i5Sa0i,b0iTisthevaluescopeoffactorci,thematterelementmatrixofthesutrafieldcanbeexpressedas:

R N0c1ha01b01i

c0ðN0CV0Þ

2ha02b02i

ð1Þ ......

cn

ha0nb 0n

i

IfthestandardmatterN0isaddedtomatterelementRpthatcanbeconvertedtostandardmatter,itcanbecalledthematterelementofcontrolledfield.Thus,vpi5Sapi,bpiTisthevaluescopeofthematterelementofcontrolled

362fieldintermsoffactorci,whichisexpandedbycomparingwiththestandard.Thematterelementmatrixofcon-trolledfieldcanberepresentedby:

RpÀNpCVpÁ

Npc1hap1bp1i

c 2hap2bp2i

ð2Þ ......

c n

hapnbpn

i

Obviously,Sa0i,b0iT,Sapi,bpiT(i51,2,???,n).3.1.3Correlationfunctionandcalculationof

correlationdegree

Whenthevalueofmatterelementexpressedinthecor-relationfunctionisapointontherealaxis,matterelementmeetstherequiredscope.Thequantificationofincom-patiblefactorscanberealizedbecausethecorrelationfunctionofextensionsetcanbeexpressedbyanalgebraicequation.GiventhemoulddefinitionofalimitedintervalX05[a,b]as:

jX0jjbaj

ð3Þ

thedistancefrompointXtointervalX 05[a,b]is:

ðXX 1 0Þ X2ab 1

2bað4ÞThen,thedefinitionofcorrelationfunctionis:

8

>>>Kðx

X2X0

0>>> ðXX0Þð5Þ

:X2=Xp00Wherer(x,x0)isthedistancefrompointXtointervalX05[a,b];r(x,xp)isthedistancefrompointXtointervalXp5[ap,bp];X,X0andXparethevalueofmatterelementtobeassessed,thevaluescopeofthesutrafieldandthecontrolledfieldofmatterelement,respectively.3.1.4

Standardforassessment

ThenumericalvalueofthecorrelationfunctionK(x)indi-catesthesubordinatedegreethatassessmentelementmeetsacertainstandardscope.WhenK(x)>1.0,theassessmenttargetexceedstheupperlimitofthestandardandthehigherthevalueis,thebiggerthedevelopingpotentialis.When0(K(x)(1.0,theassessmenttargetmeetsthestandardandthehighvaluemeansthedegreeclosetothestandardupperlimit.When21.0(K(x)(0,theassess-menttargetcannotmeetthestandard,butpossessesthepossibilitiesofconvertingtothestandardone.Thehigherthevalueis,theeasiertheconversionis.K(x)(21.0showsthattheassessmentobjectcannotmeettherequirementandhasnopossibilityofconvertingtothestandardone.

JunhuaCHEN,etal.

3.1.5Integratedcorrelationdegreeofmattersand

evaluationofqualitygrades

Kj(Nx),theintegratedcorrelationdegreeofassessmentmattersintermsofgradej,canbeexpressedas:

KXNjðNxÞ

aiKjðxiÞð6Þ

i1

WhereKj(Nx)istheintegratedcorrelationdegreeofassessmentmattersintermsofgradej;Kj(Xi)isthecor-relationdegreeofmatterstobeassessedintermsofeachgrade(j51,2,…,n);aiistheweightcoefficientofeachevaluationindicator.If

Kj0maxÀkjðNxÞÁ

ðj12ÁÁÁnÞð7ÞThen,Nx,thetargettobeassessedbelongstogradej0.3.2Collectionofthebasicdataandtheevaluation

indicatorsoflandscapepatterns

3.2.1Collectionofthebasicdataforlandscapeassessment

Takingthecontourmapasthebenchmark,thescannedmapsoflandusein1996(beforeregulation)and2002(afterregulation),aswellasthedemarcatedmapintherecentcontinuousforestinventory,wereappliedforcal-ibrationandvectorizationinMapinfo6.5andformedthevectordatabaseofallpatchtypes.Basedontheperimeterandareainformationofeachpatch,thestatisticalanalysisandcalculationoflandscapeevaluationindicatorswereperformedbyusingExcel2002.3.2.2

Evaluationindicatorsoflandscapepatterns

Fiveindices,thediversityindex,dominanceindex,evennessindex,fragmentationandcontagionindices,werechosentoevaluatelandscapepatterns(Fu,1995;Zhangetal.,2003;Zhangetal.,2000;FuandChen,2001;Manetal.,2002;WangandYang,2005;Wangetal.,1999;Zhouetal.,1999).

4Results

4.1MatterelementanalysisforlandsuitabilityassessmentintheYuejiagousmallwatershed

4.1.1Selectionandmeasurementofcharacteristicvaluesoflandblock

Accordingtoavailabledata,sevenfactorswereconsideredinlanduseregulationbyconsultingwithrelevantexpertsandtechnicians.Thequantitativefactorswereslopedegree(0u–5u,5u–15u,15u–25u,26u–35uand.35u),stepsoilwidth

Regulationoflanduseandlandscapepatternchangesbasedonmatterelementanalysis363

(0–5m,6–10m,11–20mand.21m),soilthickness(0–30m,31–80mand.80m)andsoilthicknessoftheAlayer(0–5m,5–10mand.10m).Thequalitativefactorsincludeslopeposition(ridge,upperslope,middleslope,lowerslopeandbottom),headwater(non-irrigated,storedwater,poweredirrigation,self-irrigation),andtraffic(noroad,path,tractor’sroad,townroad,countyroad).4.1.2Matterelementmodelforlandusesuitabilityassessment

AspecialvectormapoflanduseinthesmallYuejiagouwatershedwasestablishedinMapinfo6.5byextractionofthespatialdataofcurrentland.Theexpressionofmatterelementwasobtainedbasedontheformula(1)andthefieldsurveyinMay2001inthewatershed.Forexample,theexpressionforNo.10blockis:

10slopegrade12

slopepositionupper

stepsoilwidth15

Rno:10block soilthickness40 soilthicknessofAlayer8

headwaternonÀirrigated

traffictractor0sroad 4.1.3Sutrafieldandcontrolledfieldofeach

characteristicvalue

ForlandN,ifthecharacteristicvalueoffactorCfluctu-ateswithinthelimitedscopeV0,thereisnochangeinthe

Table2

typei

ABCABCABCABCABCABCABC

land’sfundamentalcharacter.IfthevalueexceedsthescopeV0,thefundamentalcharacterofthelandwillchange.Thelimitedscopeiscalledland’scontrolledfieldJ.Intermsoflandstructureregulation,thesuitabilitycanbeclassifiedintothreegrades,optimumsuitable,second-arysuitableandunsuitable.Forinstance,forapatchplannedforcultivatedland,thecontrolledfieldoffactorslopeis,5u,5u–15u,15u–25u.Tofacilitatecalculationandunification,astandardizedmethod(theintervalofthecontrolledfieldofeachfactorisdefinedwithin1–100andtheircharacteristicvalueisaninteger)isappliedtogradethecontrolledfieldofvariousfactors.Thus,thedifferenceindimensionsandscalesofvariousfactorscanbeeliminated,andthecomparisonsbetweenfactorscanmakesense.Thesutrafieldcouldbedeterminedbyconsultingwithexpertsandusingavailabledata(seeTable2).4.1.4

Weightvalueofvariousfactors

Therearemanywaystodeterminetheweightsofevalu-ationindicators,suchasPCAandAHP.TheDelphi,combinedwithAHP(Leietal.,1999)wasappliedinthisstudy,andtheweightvaluewasgeneratedbysevenexperts(Table3).

4.1.5Outcomesoflandsuitabilityassessmentbasedonmatterelementanalysis

Onthebasisoftheattributedatabaseoflanduse,coveringthecharacteristicvaluesofthesevenfactors,sutraandcontrolledfield,etc.,thelinkbetweenthetablesofthe

Sutrafieldofvariousfactors

slope80–9960–791–5960–9940–591–3960–9940–591–3940–993–391–240–9920–391–1960–992–391–240–992–391–2

slopeposition

60–9940–591–4060–9920–391–2060–9920–391–201–9960–791–1040–9920–601–1060–9920–601–2010–995–91–4

stepsoilwidth

11–506–101–511–506–101–511–506–101–53–501–31–13–201–31–16–501–51–111–501–101–1

soilthickness81–10031–801–3181–10031–801–3181–10031–801–3131–1005–311–531–1005–311–55–1003–51–35–1003–51–3

soilthicknessofalayer

10–505–101–510–505101–510–505101–55–502–51–25–502–51–22–501–21–22–501–21–2

headwater75–9925741–2450–9925–491–2450–9925–491–2425–495–241–525–495–241–550–9925–241–2450–9925–401–24

traffic40–9920–391–1910–792–91–210–792–91–22–501–21–21–21–21–23–991–21–270–9930–601–29

ii

iii

iv

v

vi

vii

Note:i:Paddyland;ii:Dryland;iii:Crop-treeintercroppingland;iv:Forestryland;v:Grassland;vi:Waterbodies;vii:Constructionland;A:Optimumsuitable;B:Secondarysuitable;C:Unsuitable.

364

Table3

typeiiiiiiivvvivii

JunhuaCHEN,etal.

Weightvalueofvariousfactors

slope21.010.010.09.09.09.013.0

slopeposition

13.015.015.07.09.07.05.0

stepsoilwidth

15.013.013.03.03.05.07.0

soilthickness

13.019.019.09.07.03.03.0

soilthicknessofalayer

4.09.09.09.07.03.03.0

headwater21.013.013.05.07.021.013.0

traffic3.03.03.01.01.01.05.0

characteristicvalueandspatialdatabaseoflandusewasestablished.Bytakinglandusetypeasakeyfield,thetableofsutrafieldandtableofweightvaluewereassoc-iatedwitheachother.Inordertocalculatetheindicesofeconomicandecologicalbenefits,forestrylandwasfur-therdividedintonon-commercialforestland,commercialforestland,protectionandfuelwoodforestlandandpro-tectionandtimberforestland.Thecorrelationdegreeofeachcharacteristicvaluewascalculatedbyformula5andtheblock’ssuitabilitygradewascalculatedbyformula7.K(Nx)wasappliedtodefinethedegreeofsuitability.TheresultisshowninTable4.

Table4TheareaofeachlandsuitabilityclassinthesmallYuejia-gouwatershed/hm2

typeprimaryuseOptimumsecondaryi–27.5927.59ii0.0413.0326.96iii107.3732.5234.32iv8.3821.3025.04v101.5147.3910.41vi18.2856.547.73vii41.7041.70128.97viii–21.05–ix3.3111.813.60x–7.6615.97total

280.59

280.59

280.59

Note:i:Non-commercialforest;ii:Commercialforest;iii:Protectionandfuelwoodforest;iv:Protectionandtimberforest;v:Dryland;vi:Crop-treeintercroppingland;vii:Paddyland;viii:Grassland;ix:Waterbodies;x:Constructionland.

4.1.6StructureregulationoflanduseintheYuejiagousmallwatershed

Theassessmentofeachblockprovidesabasisforlanduseplanningandthestructureregulationofforestcategories.Onthebasisofoptimumandsecondarysuitability,foreachblock,fieldempiricaldiagnosisforpossibletransformationoflandusewasconductedbyanexpertpanelconsistingofsevenspecialists.Then,intermsofpossibletransformationcombinationofmatterelement(drylandRcommercialforest,drylandRprotectionforest,drylandRcrop-treeintercroppingland,protectionforestRcommercialforest,protectionforestRprotectionandtimberforest,protectionforestRprotectionandfuelwoodforest,protectionforestRnon-commercialforest),byincorporatingwith

therestructuringobjective(Yuanetal.,2002),(i.e.,ensuringtheself-supplyoffoodaspriority,strengtheninglocaleco-logicalandeconomicbenefits),theoptimalregulationwasachievedusingasuccessiveapproximationobjectiveapproach(Yuanetal.,2002).Theregulationresultindi-catedthattheproportionamongagriculture,forestryandanimalhusbandrybecamemorerational.Theareasforprotectionandfuelwoodforest,anddrylandweresignifi-cantlyreducedby68.04%and68.01%respectively(Table5).Theareasforcommercialforest,paddylandandwaterbodies,however,weresignificantlyincreased,especiallyforcommercialforest.Theincreasingcom-mercialforestcanpromotelocaleconomicdevelopment.Theexpansionofwaterbodiescangreatlymitigatethedroughtandimproveecologicalenvironmenttosomeextent.4.1.7Benefitanalysisforthestructureregulationofland

use

Thelandusevaluesbeforeandafterregulationhavebeencalculatedusingthestatisticalmethodforecologicalandeconomicbenefits(Leietal.,1999;Duetal.,2003).Table6indicatesthatthelandusebenefitwassignifi-cantlyincreasedafterregulation,theindexoftheeco-logicalbenefitwasincreasedfrom1460.94to1758.21,orby20.35%.Theindexofeconomicbenefitwasincreasedfrom1529.8to1719.99,orby12.43%.

4.2AnalysisofchangesinlanduselandscapepatterninthesmallYuejiagouwatershed4.2.1

Spatialdistributionoflandscapepatterns

ThespatialdistributionoflandscapepatternsisshowninTable7.Afterregulation,theindicesofdiversityandevennesswereincreasedfrom1.3028to2.0920,andfrom0.6108to0.8463,orby60.58%and38.56%respectively.Moreover,thedifference(9.15%)betweendiversityandoptimumdiversitywaslowerthanthat(33.05%)beforeregulation.Meanwhile,theindicesofdominanceandcon-tagionwerereducedfrom0.6431to0.2106andfrom0.7467to0.7125,respectively.Thesechangesindicatethatthespatialdistributionofpatchestendedtobeevenandpatchcongregationwasgraduallydispersed.

Regulationoflanduseandlandscapepatternchangesbasedonmatterelementanalysis

Table5

TheresultoflandusestructureregulationandplanninginthesmallYuejiagouwatershed

primaryarea/hm2

–0.04107.378.38101.5118.2841.70–3.31–280.59

plannedarea/hm2

27.5926.9634.3225.0432.4739.0071.703.9410.588.99280.59

primaryrate/%

–0.0138.272.9936.186.5114.86–1.18–100

plannedrate/%

9.839.6112.238.9211.5713.9025.551.403.773.20100

365

landusetypeiiiiiiivvviviiviiiixxtotal

Table6

type

Thelandusevaluebeforeandafterregulation

indexofecologicalbenefitbeforeregulation

afterregulation275.90107.84274.56175.2832.4778.00645.3019.7095.2253.941758.21

indexofeconomicbenefitbeforeregulation–0.20322.1133.52609.06146.25417.00–1.66–1529.8

afterregulation55.18134.80102.96100.16194.82312.00717.007.885.2989.901719.99

increaseofarea(673%)andlowerincreaseofpatchnum-bers(270%).Thefragmentationindexfordrylandwentupfrom0.58to0.62,orby6.9%,indicatingthatcultivatedlandusetendedtobediversified.

iiiiiiivvviviiviiiixxtotal–0.16858.9658.66101.5136.56375.30–29.79–1460.94

5Conclusions

Table7

item

Spatialdistributionoflandscapepatterns

beforeregulation

1.30281.94590.64310.61080.7467

afterregulation

2.09202.30260.21060.84630.7125

diversity(H)

optimumdiversity(Hmax)dominance(D)evenness(E)contagion(C)

4.2.2Analysisoflandscapefragmentation

ThefragmentationindexisshowninTable8.Exceptdryland,thefragmentationindexoflandscapeforotherpatcheswasdecreased.Amongthem,themaximalreduc-tionoccurredinthecommercialforestduetoahigher

Table8

typeiiiiiiivvviviiviiiixx

Fragmentationoflandscape

beforeregulation

–25.000.561.310.584.380.74–3.63–

afterregulation

0.912.000.550.320.621.770.491.271.510.33

(1)Landsuitabilityassessmentisimportantinagricul-turaldevelopmentandlanduseplanning.Previously,someapproaches,suchasintegratedfuzzysettheory,parametricapproach,greyclusteranalysisandsimplelimitationmethod(ChengandLiu,1999)wereoftenappliedinlandsuitabilityassessments.However,eachofthemhassomeshortcomings.Forexample,thescopeofsubordinatefunc-tionintheintegratedfuzzysettheoryisonly[0,1],whichmayresultinthelossofsomevarianceinformation.Besides,thesemethodscontainsomefactitiouselementsthatcanreducetheprecisionofassessment.Incontrast,thecorrelationfunctionofthematterelementanalysissub-ordinates(2‘,+‘),whichgreatlyexpandsitsapplicationscope,canrevealmorevarianceinformation.Basedonmat-terelementanalysis,sutrafield,controlledfieldweightandcorrelationdegreearegeneratedandthematterelementassessmentmodelforlandusesuitabilityisestablishedbytheuseofsuitabilitygrade,evaluationindicatorsandtheircharacteristicvaluesasmatterelements,aswellasbyfielddataandanexpertsystemThisapproachcanovercometheinfluenceoffactitiouselements,andimprovetheaccuracybythequantitativemeasurementofevaluationindicators.Matterelementanalysiscanbeusedtoregulatethelandusestructureofspecificblocksandmakefulluseofpotentiallandproductivity.Inaddition,thematterelementanalysisapproachiseasytocarryoutwhichisadvantageousoverotherplanningmethods(targetorientedplanning,linearplanning,etc)(Huetal.,2005).

(2)Afterregulation,thelanduseinthesmallYuejiagouwatershedtendedtoberational,thepropor-tionamongagriculture,forestryandanimalhusbandrybecamemorereasonableandtheeffectivenessoflandusewasincreasedsignificantly.Theindexofecologicalbenefitwasincreasedfrom1460.94to1758.21,orby

36620.35%;theindexofeconomicbenefitwasincreasedfrom1529.8to1719.99,orby12.43%.

(3)Theregulationbroughtgreatchangesintheland-scapepatterns.Theareasofcommercialforests,andbodiesofwaterwereenhancedsignificantly.Theindicesofdiversityandevennesswereincreasedby60.58%and38.56%,respectively.Theindicesofdominanceandcon-tagion,however,significantlydecreased.Thesechangesindicatethatthespatialdistributionoflandusetendedtobeevenandthepatchcongregationgraduallydis-persed.

Acknowledgements

ThestudywassupportedbytheKeyProjectof

the11th

Five-yearProgramforScienceandTechnologyDevelopmentofChina(No.2006BAD03A0504)andtheKeyProjectof11thFive-yearProgramforScienceandTechnologyDevelopmentofChina(No.2006BAD03A0204).

References

CaiW(1994).Thematterelementmodelanditsapplication.Beijing:ScienceandTechnologyLiteraturePress(inChinese)

ChenJF,LiuWM(1999).Anintegratedevaluationoflandsuit-abilitybasedonfuzzysettheory.ResourcesScience,21(4):71–74(inChinese)

DuYJ,ChenGX,ChenXM,ChenJH,LeiXZ,CaiXH,PengPH(2003).Comprehensivebenefitevaluationandanalysisof77counties’onYangtzeRiverprotectionforestengineering(thefirstperiod)inSichuanandChongqing.ChineseJournalofEcology,22(1):69–72(inChinese)

FengLH,GongJL(2004).Runoffproductionforecastforadrain-agebasinbasedonmatterelementanalysis.BulletinofSoilandWaterConservation,24(4):63–66(inChinese)

FuBJ(1995).Landscapediversityanalysisandmapping.ActaEcologicaSinica,15(4):345–350(inChinese)

FuBJ,ChenLD(2001).Theoryandapplicationoflandscapeeco-logy.Beijing:SciencePress(inChinese)

HuJZ,PangYZ,ZhengJL(2005).PlanningonlandusestructureandstrategyonconvertingcroplandtoforestandgrasslandinDatongcounty.ResearchofSoilandWaterConservation,12(4):172–177(inChinese)

JunhuaCHEN,etal.

LeiXZ,WangJX(1999).ThebenefitevaluationindexofecologicalforestengineeringofChina.JournalofNaturalResource,14(2):175–182(inChinese)

LiZY,LinL,DengXM(2001).Recognitionmodelofhailcloudbasedonmatterelementsandextensionsetsanditsresultsveri-fication.PlateauMeteorology,20(2):197–201(inChinese)

ManAQ,ChenDJ,WangJH(2002).LandscapepatternanddifferentiationinLongdongloessplateaubasedonRSandGIS.JournalofSoilandWaterConservation,16(3):56–59(inChinese)

MenBH,LiangC(2002).Applicationofmatterelementmodelforsoilecologicalsystemquantitativeevaluation.JournalofSoilandWaterConservation,16(6):62–65(inChinese)

PanF,LiangC,FuQ(2002).Applicationofmatterelementmodelbasedonstratificationanalysismethodinsoilqualityevaluation.ResearchofAgriculturalModernization,23(2):93–96(inChinese)

WangRR,YangGS(2005).ChangesoflanduseandlandscapepatterninTaihulakebasin.ChineseJournalofAppliedEcology,16(3):475–480(inChinese)

research.JournalofSoilandWaterConservation,16(6):58–61(inChinese)

WangYL,ZhaoYB,HanD(1999).Thespatialstructureofland-scapeecosystems:concept,indicesandcasestudies.AdvanceinEarthSciences,14(3):235–241(inChinese)

XuBG,NieHS,ZhangXL(1997).Applicationofthemethodofmatterelementanalysisinthedesignofecologicalagriculturemodel—asampleoftheecologicalagriculturemodelforcheckingwindandfixingsandinShanxi.ChineseJournalofEcology,16(4):72–76(inChinese)

YuanZK,LangNJ,WuQX(2002).Studyanddemonstrationonthetechniquesofprotectionforestsystemsintheplateau,moun-tainandhillyareasintheUpperreachofChangjiangRiver.Hunan:ScienceandTechnologyPressofHunan,225–251(inChinese)

ZhangJT,QiuY,ZhengFY(2000).Quantitativemethodsinlandscapepatternanalysis.JournalofMountainScience,18(4):346–352(inChinese)

ZhangSR,GongGS,DengLJ(2003).AnalysisoflandscapespatialpatternsinthehillregioninthewestofSichuanbasin.ActaEcologicaSinica,23(2):380–386(inChinese)

ZhouZZ,CaiMT,XuYT(1999).Landuseandlandscapedynamicsinaruralarea.ForestResearch,12(6):599–605(inChinese)


相关内容

  • 我国城镇化土地利用的现状.问题.与对策
  • 我国城镇化土地利用的现状.问题.与对策 摘 要:通过分析我国城镇化进程中的现状,指出我国目前城镇化进程中土地利用中的主要矛盾和需要解决的问题,提出其应对措施,并指出土地整理是推进我国城镇化进程的有效方法,强调只有做到在保证经济建设必须用地的同时,实现耕地的总量动态平衡,才能实现土地资源的可持续利用和 ...

  • 景观生态学原理在土地整理中的应用
  • 作者:安晨刘世梁李新举邱扬 地域研究与开发 2010年06期 修回日期:2009-09-30 中图分类号:F311 文献标识码:A 文章编号:1003-2363(2009)06-0068-07 土地整理是指在一定地域范围内,按照土地利用规划,采取行政.经济.法律和工程技术手段,对土地利用状况进行调整 ...

  • 山东省耕地利用变化驱动力分析
  • 摘要:保持一定数量的耕地是人类赖以生存的基本条件.但由于社会经济发展.人口增长和非农业建设等原因,占用耕地现象特别严重, 致使耕地日益减少.本文利用了山东省的相关资料, 研究其耕地变化原因,为山东省耕地资源保护和土地利用政策的制定提供科学的依据. 关键词:耕地:动态变化:驱动因子:回归预测 由于社会 ...

  • 我国新型城镇化建设中土地利用存在的问题及解决对策
  • 我国新型城镇化建设中土地利用存在的问题及解决对策 孔令仙(安徽经济管理干部学院社会与公共管理系,安徽合肥230059) 摘 要:土地是城镇化发展的物质载体,是我国新型城镇化建设中的重要制约因素之一.城镇规模的不 断扩张和城镇发展速度的加快,导致原本稀缺的土地资源日益紧缺,土地利用问题日益突出.研究土 ...

  • 土地资源可持续利用问题浅析
  • 土地是由气候.地貌.岩石.土壤.植被.水文.基础地质以及人类活动的种种结果组成的土地生态经济系统,它是社会存在的基础和源泉,是人类最基本的生产资料.我国人口众多,人均土地占有量低,人地矛盾突出.另外.由于对土地资源的不合理开发利用,造成了土地的退化,土地利用率不高.后备土地资源不足,耕地资源过度损耗 ...

  • 微生物肥料探讨
  • 摘 要:在农业生产中,长期和过量使用化肥会造成土壤板结和盐碱化,肥料养分流失严重,水资源和农产品受到污染及其产品质量下降等问题,如何跳出"石化农业的怪圈",生产绿色食品,不断满足人民群众日益增长物质文化生活需要,研究和推广微生物肥料已成为我国新型肥料发展的一个重要领域,对我国今后 ...

  • 城市土地利用变化方法
  • 城市土地利用变化方法 摘要:城市土地的发展建设对城市整体的发展是有着重要的影响的,在经济快速发展的今天,土地资源也变得日益紧张,不管是公共用地,住宅用地都需要进行合理的规划,城市土地利用变化方法正式能够对城市土地进行合理规划,它的发展前景关乎城市经济发展建设,具有十分重要的价值.本文以此为基点,深入 ...

  • 土地适宜性评价方法研究
  • 30 现代化农业2009年第3期(总第356期) 土地适宜性评价方法研究 李亚萍,马蓉 (石河子大学机械电气工程学院,新疆石河子832003) 摘要:通过划分评价单元建立评价指标体系,利用德尔斐法等多种方法确定权重,探讨土地适宜性评价的方法 与步骤.为土地利用现状分析.土地利用潜力分析.土地利用结构 ...

  • 高标准基本农田建设项目-3项目建设条件分析
  • 3 项目建设条件分析 3.1 基础设施条件 3.1.1 水源条件 项目区灌溉用水主要来源于流溪河支流,地表水丰富,可满足灌溉要求. 3.1.2 灌排设施状况 项目区骨干灌排设施较完善,大部分农田主要靠三座原有泵站从流溪河支流抽水到抬渠再经过区内原有小型土质沟渠进行灌溉,小部分农田通过引广从路三支渠和 ...