换元法证明不等式

已知a,b,c,d都是实数,且满足a^2+b^2=1,c^2+d^2=4,求证:|ac+bd|≤2

a=cosA,b=sinA

c=2cosB,d=2sinB

|ac+bd|=2|cosAcocB+sinAsinB}=2|cos(A-B)|

<=2

得证

若x+y+z=1,试用换元法证明x²+y²+z²≥1/3

解法一:(换元法)

证明:因为

(x-1/3)^2+(y-1/3)^2+(z-1/3)^2≥0

展开,得

x^2+y^2+z^2-2/3*(x+y+z)+3*1/9≥0

x^2+y^2+z^2-2/3+1/3≥0

x^2+y^2+z^2≥1/3。

其中等号当且仅当x=y=z=1/3时成立

解法二:

因为:x+y+z=1

所以:(x+y+z)²=1

化解为:x²+y²+z²+2xy+2xz+2yz=1

又因为:

x²+y²≥2xy;

x²+z²≥2xz;

y²+z²≥2yz;

所以x²+y²+z²+2xy+2xz+2yz=1<=3(x²+y²+z²)

固x²+y²+z²≥1/3

例1:已知a+b+c=1,求证:a2+b2+c2≥1/3

证明:令a=m+1/3,b=n+1/3,c=t+1/3,则m+n+t=0

∴a2+b2+c2=(m+1/3)2+(n+1/3)2+(t+1/3)2

=m2+n2+t2+2(m+n+t)/3+1/3

=m2+n2+t2+1/3

∵m2+n2+t2≥0, ∴a2+b2+c2≥1/3 得证。

换元的目的:转化、化简已知条件,使已知条件更易于使用。

例2:已知a>b>c,求证:1/(a-b)+1/(b-c)≥4/(a-c)

证明:令x=a-b,y=b-c,则a-c=x+y且x>0,y>0

∴原不等式转化为:1/x+1/y≥4/(x+y)

因此,只要证明:(x+y)/x+(x+y)/y≥4

只要证:1+y/x+1+x/y≥4

只要证:y/x+x/y≥2,而y/x+x/y≥2恒成立。

∴1/(a-b)+1/(b-c)≥4/(a-c) 得证。

换元的目的:

化简、化熟命题,把复杂的、不熟悉的命题化为简单的、熟悉的命题。

例3:已知(x2-y2+1) 2+4x2y2-x2-y2=0,求证:(3-√5 )/2≤x2+y2≤ (3 +√5 )/2

证明:令x2+y2=t

由(x2-y2+1) 2+4x2y2-x2-y2=0整理得:

(x2+y2) 2-3(x2+y2)+1=-4x2

∴(x2+y2) 2-3(x2+y2)+1≤0

∴t2-3t+1≤0,解之得:(3-√5 )/2≤t≤(3 +√5 )/2

∴ (3-√5 )/2≤x2+y2≤(3 +√5 )/2 得证。

换元的目的:转化条件,建立条件与结论间的联系。

例4:已知x-1=(y+1)/2=(z-2)/3,求证:x2+y2+z2≥59/14

证明:设x-1=(y+1)/2=(z-2)/3=k,

则x=k+1,y=2k-1,z=3k+2

∴x2+y2+z2=(k+1) 2+(2k-1) 2+( 3k+2) 2

=14k2+10k+6

=14(k2+5k/7)+6

=14(k+5/14) 2+59/14≥59/14

∴x2+y2+z2≥59/14 得证。

换元的目的:减少未知数的个数,直接利用已知条件。

例5:已知a>0,求证:(a+(a+(a+(a+…+a 0.5) 0.5) 0.5) 0.5) 0.5<[1+(1+4a) 0.5]/2

证明:设t1=a 0.5,t2=(a+a 0.5) 0.5,……,tn=(a+(a+(a+(a+…+a 0.5) 0.5) 0.5) 0.5) 0.5

tn=(a+ tn-1) 0.5

tn2=a+ tn-1,且tn>0,而tn> tn-1

∴tn20

∴tn<[1+(1+4a) 0.5]/2 原不等式得证。

换元的目的:转换、化简命题

例6:已知a≥c>0,b≥c,求证:√c(a-c)+√c(b-c) ≤√ab

证明:要证明原不等式,只要证明:

√c(a-c)/ ab +√c(b-c)/ ab ≤1

只要证明:√(c/b)(1-c/a) +√c/a(1-c/b) ≤1

令sinα= √c/b ,sinβ=√c/a ,且α、β∈(0,π]

只要证明:sinαcosβ+cosαsinβ≤1

只要证明:sin(α+β)≤1,而sin(α+β)≤1显然成立

∴原不等式得证。

换元的目的:利用两个正数的和等于1进行三角换元,可以将原问题得到极大

程度的化简,在各种命题的解题中有着广泛的应用。

例7:已知a2+b2=c2,且a、b、c均为正数,求证:an+bn2且n∈N

证明:设a=csinα,b=ccosα。α∈(0,π/2)

则:an+bn=cnsinnα+ cncosnα=cn (sinnα+ cosnα)

∵0

已知a,b,c,d都是实数,且满足a^2+b^2=1,c^2+d^2=4,求证:|ac+bd|≤2

a=cosA,b=sinA

c=2cosB,d=2sinB

|ac+bd|=2|cosAcocB+sinAsinB}=2|cos(A-B)|

<=2

得证

若x+y+z=1,试用换元法证明x²+y²+z²≥1/3

解法一:(换元法)

证明:因为

(x-1/3)^2+(y-1/3)^2+(z-1/3)^2≥0

展开,得

x^2+y^2+z^2-2/3*(x+y+z)+3*1/9≥0

x^2+y^2+z^2-2/3+1/3≥0

x^2+y^2+z^2≥1/3。

其中等号当且仅当x=y=z=1/3时成立

解法二:

因为:x+y+z=1

所以:(x+y+z)²=1

化解为:x²+y²+z²+2xy+2xz+2yz=1

又因为:

x²+y²≥2xy;

x²+z²≥2xz;

y²+z²≥2yz;

所以x²+y²+z²+2xy+2xz+2yz=1<=3(x²+y²+z²)

固x²+y²+z²≥1/3

例1:已知a+b+c=1,求证:a2+b2+c2≥1/3

证明:令a=m+1/3,b=n+1/3,c=t+1/3,则m+n+t=0

∴a2+b2+c2=(m+1/3)2+(n+1/3)2+(t+1/3)2

=m2+n2+t2+2(m+n+t)/3+1/3

=m2+n2+t2+1/3

∵m2+n2+t2≥0, ∴a2+b2+c2≥1/3 得证。

换元的目的:转化、化简已知条件,使已知条件更易于使用。

例2:已知a>b>c,求证:1/(a-b)+1/(b-c)≥4/(a-c)

证明:令x=a-b,y=b-c,则a-c=x+y且x>0,y>0

∴原不等式转化为:1/x+1/y≥4/(x+y)

因此,只要证明:(x+y)/x+(x+y)/y≥4

只要证:1+y/x+1+x/y≥4

只要证:y/x+x/y≥2,而y/x+x/y≥2恒成立。

∴1/(a-b)+1/(b-c)≥4/(a-c) 得证。

换元的目的:

化简、化熟命题,把复杂的、不熟悉的命题化为简单的、熟悉的命题。

例3:已知(x2-y2+1) 2+4x2y2-x2-y2=0,求证:(3-√5 )/2≤x2+y2≤ (3 +√5 )/2

证明:令x2+y2=t

由(x2-y2+1) 2+4x2y2-x2-y2=0整理得:

(x2+y2) 2-3(x2+y2)+1=-4x2

∴(x2+y2) 2-3(x2+y2)+1≤0

∴t2-3t+1≤0,解之得:(3-√5 )/2≤t≤(3 +√5 )/2

∴ (3-√5 )/2≤x2+y2≤(3 +√5 )/2 得证。

换元的目的:转化条件,建立条件与结论间的联系。

例4:已知x-1=(y+1)/2=(z-2)/3,求证:x2+y2+z2≥59/14

证明:设x-1=(y+1)/2=(z-2)/3=k,

则x=k+1,y=2k-1,z=3k+2

∴x2+y2+z2=(k+1) 2+(2k-1) 2+( 3k+2) 2

=14k2+10k+6

=14(k2+5k/7)+6

=14(k+5/14) 2+59/14≥59/14

∴x2+y2+z2≥59/14 得证。

换元的目的:减少未知数的个数,直接利用已知条件。

例5:已知a>0,求证:(a+(a+(a+(a+…+a 0.5) 0.5) 0.5) 0.5) 0.5<[1+(1+4a) 0.5]/2

证明:设t1=a 0.5,t2=(a+a 0.5) 0.5,……,tn=(a+(a+(a+(a+…+a 0.5) 0.5) 0.5) 0.5) 0.5

tn=(a+ tn-1) 0.5

tn2=a+ tn-1,且tn>0,而tn> tn-1

∴tn20

∴tn<[1+(1+4a) 0.5]/2 原不等式得证。

换元的目的:转换、化简命题

例6:已知a≥c>0,b≥c,求证:√c(a-c)+√c(b-c) ≤√ab

证明:要证明原不等式,只要证明:

√c(a-c)/ ab +√c(b-c)/ ab ≤1

只要证明:√(c/b)(1-c/a) +√c/a(1-c/b) ≤1

令sinα= √c/b ,sinβ=√c/a ,且α、β∈(0,π]

只要证明:sinαcosβ+cosαsinβ≤1

只要证明:sin(α+β)≤1,而sin(α+β)≤1显然成立

∴原不等式得证。

换元的目的:利用两个正数的和等于1进行三角换元,可以将原问题得到极大

程度的化简,在各种命题的解题中有着广泛的应用。

例7:已知a2+b2=c2,且a、b、c均为正数,求证:an+bn2且n∈N

证明:设a=csinα,b=ccosα。α∈(0,π/2)

则:an+bn=cnsinnα+ cncosnα=cn (sinnα+ cosnα)

∵0


相关内容

  • 平均值及有关的不等式
  • 襄樊学院2010届本科生毕业论文 论文题目:院 系:专 业:班 级: 平均值及有关的不等式 数学与计算机科学学院 信息与计算科学 信息0711班 材 料 清 单 一.毕业论文 二.毕业设计任务书 三.毕业设计开题申请表 四.毕业设计开题报告正文 平均值及有关的不等式 摘 要:随着信息时代的发展,许多 ...

  • 不等式的几种证明方法及简单应用
  • 本科毕业论文 不等式的几种证明方法及简单应用 姓 名 院 系 专 业 班 级 学 号 指导教师 答辩日期 成 绩 数学与计算机科学学院 数学与应用数学 不等式的几种证明方法及简单应用 摘 要 我们在数学的学习过程中, 不等式很重要. 其中不等式的证明方法在不 等式基础理论中非常重要. 文中总结了部分 ...

  • 不等式证明的微分法与积分法
  • 不等式证明的微分法与积分法 摘要 本文主要介绍微积分学的有关概念.定理以及性质在证明不等式证明中的应用,结合实例,讨论了不等式证明的微分法与积分法,以及相应的思路与技巧. 关键词 不等式证明 微分法 积分法 不等式是数学的重要内容之一,在解各类方程.有关函数的问题.三角证明.几何证明等许多方面都有广 ...

  • 不等式选讲
  • 选修4--5 不等式选讲 一.课程目标解读 选修系列4-5专题不等式选讲,内容包括:不等式的基本性质.含有绝对值的不等式.不等式的证明.几个著名的不等式.利用不等式求最大(小)值.数学归纳法与不等式. 通过本专题的教学,使学生理解在自然界中存在着大量的不等量关系和等量关系,不等关系和相等关系都是基本 ...

  • 探讨定积分不等式的证明方法
  • 探讨定积分不等式的证明方法 摘要:文章针对被积函数的特性,给出了几种关于定积分不等式的有效证明方法. 关键词:定积分 不等式 证法 不等式的证明在高等数学的学习中很常见,但关于定积分不等式的证明却一直是一个难点.要证明定积分不等式,首先要看被积函数,其性质确定证明方法.本文根据被积函数的连续性.单调 ...

  • 不等式证明的常用方法
  • 不等式证明的常用方法 不等式是高中数学的重要内容,它几乎涉及整个高中数学的各个部分,因此,通过不等式这条纽带,可把中学数学的各部分内容有机地联系起来.而不等式的证明是高中数学的一个难点,加之题型广泛.方法灵活.涉及面广,常受各类考试命题者的青睐,亦成为历届高考中的热点问题. 本节通过一些实例,归纳一 ...

  • 含有绝对值的不等式 案例
  • 教学目标 (1)掌握绝对值不等式的基本性质,在学会一般不等式的证明的基础上,学会含有绝对值符号的不等式的证明方法: (2)通过含有绝对值符号的不等式的证明,进一步巩固不等式的证明中的由因导果.执要溯因等数学思想方法: (3)通过证明方法的探求,培养学生勤于思考,全面思考方法: (4)通过含有绝对值符 ...

  • 利用导数证明不等式的四种常用方法
  • 利用导数证明不等式的四种常用方法 杨玉新 (绍兴文理学院 数学系, 浙江 绍兴 312000) 摘 要: 通过举例阐述了用导数证明不等式的四种方法, 由此说明了导数在不等式证明中的重要作用. 关键词: 导数; 单调性; 中值定理; 泰勒公式; Jensen不等式 在初等数学中证明不等式的常用方法有比 ...

  • 中学数学不等式证明方法
  • 中学不等式证明方法探究 摘 要 不等式,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性.灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设与结论的结构特点.内在联系.选择适当的解决方案,最终归结为不等式的求解或证明.而不等式的证明 ...

  • 考研数学:高数中不等式证明的六种方法(Ⅰ)
  • 考研数学:高数中不等式证明的六种方法(Ⅰ) 来源:文都教育 不等式证明是考研数学高数中的重要内容,也是考研数学的常考知识点,但也是学生很难掌握牢固的内容.只要方法和技巧掌握得恰当,同学们攻克不等式的证明不在话下.下面文都考研数学教研老师介绍六种常见的证明方法,希望帮助广大考生掌握不等式证明.首先,介 ...