三角形射影定理

几何证明

射影就是正投影,从一点到过顶点垂线垂线的垂足,叫做这点在这条直线上的正投影。一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影,即射影定理。

直角三角形射影定理

直角三角形射影定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

公式 如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:

(1)(AD)=BD·DC,

(2)(AB)=BD·BC ,

(3)(AC)=CD·BC 。

证明:在 △BAD与△ACD中,∠B+∠C=90°,∠DAC+∠C=90°,∴∠B=∠DAC,又∵∠BDA=∠ADC=90°,∴△BAD∽△ACD相似,∴ AD/BD=CD/AD,即(A

D)^2=BD·DC。其余类似可证。

注:由上述射影定理还可以证明勾股定理。由公式(2)+(3)得: (AB)+(AC)=BD·BC+CD·BC =(BD+CD)·BC=(BC)

即 (AB)+(AC)=(BC)。 222222222

任意三角形射影定理

任意三角形射影定理又称“第一余弦定理”:

设⊿ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有 a=b·cosC+c·cosB,

b=c·cosA+a·cosC,

c=a·cosB+b·cosA。

注:以“a=b·cosC+c·cosB”为例,b、c在a上的射影分别为b·cosC、c·cosB,故名射影定理。

证明1:设点A在直线BC上的射影为点D,则AB、AC在直线BC上的射影分别为BD、CD,且

BD=c·cosB,CD=b·cosC,∴a=BD+CD=b·cosC+c·cosB. 同理可证其余。

1.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.

2.圆周角定理的推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.

弦切角定理:弦切角的度数等于它所夹的弧的度数的一半.

2.弦切角定理推论:弦切角等于它所夹的弧所对的圆周角.

切线的性质定理:圆的切线垂直于过切点的半径.

进一步指出:由于过已知点有且只有一条直线与已知直线垂直,所以经过圆心垂直于切线的直线一定过切点;反过来,过切点垂直于切线的直线一定经过圆心,因此可以得到两个推论:

推论1 经过圆心且垂直于切线的直线必经过切点.

推论2 经过切点且垂直于切线的直线必经过圆心.

引导学生分析性质定理及两个推论的条件和结论间的关系,总结出如下结论: 如果一条直线具备下列三个条件中的任意两个,就可推出第三个.

(1)垂直于切线; (2)过切点; (3)过圆心.

相交弦定理

:圆内的两条相交弦,被交点分成的两条线

段长的积相等

几何语言:

若弦AB、CD交于点P

则PA·PB=PC·PD(相交弦定理)

推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

几何语言:

若AB是直径,CD垂直AB于点P,

则PC=PA·PB(相交弦定理推论)

2

割线定理:

割线定理:从圆外一点引圆的两条割线则有这点到割线与圆交点的两条线段的积相等.

要证PT2=PA·PB, 可以证明 ,为此可证以 PA·PT为边的三角形与以PT,BP为边的三角形相似,于是考虑作辅助线TP,PB。容易证明∠PTA=∠B又∠P=∠P,因此△BPT∽△TPA,于是问题可证:

直线ABP和CDT是自点P引的⊙O的两条割线,则PA·PB=PC·PD

证明:连接AD、BC

∵∠A和∠C都对弧BD

∴由圆周角定理,得 ∠A=∠C

又∵∠APD=∠CPB

∴△ADP∽△CBP

∴AP:CP=DP:BP, 也就是AP·BP=CP·DP

切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.

圆内接四边形的判断定理定理1:圆内接四边形的对角互补;定理2:圆内接四边形的外角等于它的内角的对角。

圆幂定理

圆幂的定义:一点P对半径R的圆O的幂定义如下:OP-R

所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。

圆幂定理是相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们推论的统称。

(1) 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

22

如图,AB、CD为圆O的两条任意弦。相交于点P,连接AD、BC,则∠D=∠B, ∠A=∠C。所以△APD∽△BPC。所以 APPD=⇒AP⋅BP=PC⋅PD PCBP

(2) 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点

的两条线段长的比例中项。

如图,PT为圆切线,PAB为割线。连接TA,TB,则∠PTA=∠B(弦切角等于同弧圆周角)所以△PTA∽△PBT,所以

PTPA=⇒PT2=PA⋅PB PBPT

(3) 割线定理:从圆外一点P引两条割线与圆分别交于A.B.C.D 则有

PA·PB=PC·PD。

这个证明就比较简单了。可以过P做圆的切线,也可以连接CB和AD。证相似。 存在:PA⋅PB=PC⋅PD

进一步升华(推论):

过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于

A、B(可重合,即切线),L2与圆交于C、D。则PA·PB=PC·PD。若圆半径为r,则 PC⋅PD=(PO-R)⋅(PO+R)=PO2-R2=|PO2-R2|(一定要加绝对值,原因见下)为定值。这个值称为点P到圆O的幂。(事实上所有的过P点与圆相交的直线都满足这个值)

若点P在圆内,类似可得定值为R-PO=|PO-R|

故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差的绝 对值。(这就是“圆幂”的由来)

2222

几何证明

射影就是正投影,从一点到过顶点垂线垂线的垂足,叫做这点在这条直线上的正投影。一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影,即射影定理。

直角三角形射影定理

直角三角形射影定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

公式 如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:

(1)(AD)=BD·DC,

(2)(AB)=BD·BC ,

(3)(AC)=CD·BC 。

证明:在 △BAD与△ACD中,∠B+∠C=90°,∠DAC+∠C=90°,∴∠B=∠DAC,又∵∠BDA=∠ADC=90°,∴△BAD∽△ACD相似,∴ AD/BD=CD/AD,即(A

D)^2=BD·DC。其余类似可证。

注:由上述射影定理还可以证明勾股定理。由公式(2)+(3)得: (AB)+(AC)=BD·BC+CD·BC =(BD+CD)·BC=(BC)

即 (AB)+(AC)=(BC)。 222222222

任意三角形射影定理

任意三角形射影定理又称“第一余弦定理”:

设⊿ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有 a=b·cosC+c·cosB,

b=c·cosA+a·cosC,

c=a·cosB+b·cosA。

注:以“a=b·cosC+c·cosB”为例,b、c在a上的射影分别为b·cosC、c·cosB,故名射影定理。

证明1:设点A在直线BC上的射影为点D,则AB、AC在直线BC上的射影分别为BD、CD,且

BD=c·cosB,CD=b·cosC,∴a=BD+CD=b·cosC+c·cosB. 同理可证其余。

1.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.

2.圆周角定理的推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.

弦切角定理:弦切角的度数等于它所夹的弧的度数的一半.

2.弦切角定理推论:弦切角等于它所夹的弧所对的圆周角.

切线的性质定理:圆的切线垂直于过切点的半径.

进一步指出:由于过已知点有且只有一条直线与已知直线垂直,所以经过圆心垂直于切线的直线一定过切点;反过来,过切点垂直于切线的直线一定经过圆心,因此可以得到两个推论:

推论1 经过圆心且垂直于切线的直线必经过切点.

推论2 经过切点且垂直于切线的直线必经过圆心.

引导学生分析性质定理及两个推论的条件和结论间的关系,总结出如下结论: 如果一条直线具备下列三个条件中的任意两个,就可推出第三个.

(1)垂直于切线; (2)过切点; (3)过圆心.

相交弦定理

:圆内的两条相交弦,被交点分成的两条线

段长的积相等

几何语言:

若弦AB、CD交于点P

则PA·PB=PC·PD(相交弦定理)

推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

几何语言:

若AB是直径,CD垂直AB于点P,

则PC=PA·PB(相交弦定理推论)

2

割线定理:

割线定理:从圆外一点引圆的两条割线则有这点到割线与圆交点的两条线段的积相等.

要证PT2=PA·PB, 可以证明 ,为此可证以 PA·PT为边的三角形与以PT,BP为边的三角形相似,于是考虑作辅助线TP,PB。容易证明∠PTA=∠B又∠P=∠P,因此△BPT∽△TPA,于是问题可证:

直线ABP和CDT是自点P引的⊙O的两条割线,则PA·PB=PC·PD

证明:连接AD、BC

∵∠A和∠C都对弧BD

∴由圆周角定理,得 ∠A=∠C

又∵∠APD=∠CPB

∴△ADP∽△CBP

∴AP:CP=DP:BP, 也就是AP·BP=CP·DP

切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.

圆内接四边形的判断定理定理1:圆内接四边形的对角互补;定理2:圆内接四边形的外角等于它的内角的对角。

圆幂定理

圆幂的定义:一点P对半径R的圆O的幂定义如下:OP-R

所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。

圆幂定理是相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们推论的统称。

(1) 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

22

如图,AB、CD为圆O的两条任意弦。相交于点P,连接AD、BC,则∠D=∠B, ∠A=∠C。所以△APD∽△BPC。所以 APPD=⇒AP⋅BP=PC⋅PD PCBP

(2) 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点

的两条线段长的比例中项。

如图,PT为圆切线,PAB为割线。连接TA,TB,则∠PTA=∠B(弦切角等于同弧圆周角)所以△PTA∽△PBT,所以

PTPA=⇒PT2=PA⋅PB PBPT

(3) 割线定理:从圆外一点P引两条割线与圆分别交于A.B.C.D 则有

PA·PB=PC·PD。

这个证明就比较简单了。可以过P做圆的切线,也可以连接CB和AD。证相似。 存在:PA⋅PB=PC⋅PD

进一步升华(推论):

过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于

A、B(可重合,即切线),L2与圆交于C、D。则PA·PB=PC·PD。若圆半径为r,则 PC⋅PD=(PO-R)⋅(PO+R)=PO2-R2=|PO2-R2|(一定要加绝对值,原因见下)为定值。这个值称为点P到圆O的幂。(事实上所有的过P点与圆相交的直线都满足这个值)

若点P在圆内,类似可得定值为R-PO=|PO-R|

故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差的绝 对值。(这就是“圆幂”的由来)

2222


相关内容

  • 9.4直线与平面垂直的判定与性质
  • 9.4直线和平面垂直(共4课时) 第一课时:直线和平面垂直的判定定理 第二课时:直线和平面垂直的性质定理 第三课时:直线与平面所成角 第四课时:三垂线定理 1.直线和平面垂直的定义 教学目的:(1)能准确叙述直线和平面垂直的定义,并能画图予以表示:(2)能准确说出直线与平面垂直的判定定理的条件和结论 ...

  • 高二数学_立体几何的概念.公理.定理
  • 立体几何的概念.公理.定理 公理.定理,并根据图形写出它们的条件与结论. (一)立体几何三公理 公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内. 公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. P ∈α,且P ∈β推出α交β=l ...

  • 斜线在平面上的射影,直线和平面所成的角
  • 斜线在平面上的射影,直线和平面所成的角 一.素质教育目标(一)知识教学点1.点在平面上的射影,点到平面的垂线段.2.有关平面的斜线的几个概念.3.有关射影的几个概念.4.射影定理.5.有关直线和平面成角的几个概念.(二)能力训练点1.加深对数学概念的理解掌握.2.初步学会依据直线与平面成角的定义用于 ...

  • 笛沙格定理在初等几何中的应用
  • 天 津 师 范 大 学 号:09505011 专 业:数学与应用数学 级:2009级 完成日期:2013年5月13日 指导教师:武猛 笛沙格定理在初等几何中的应用 摘要:笛沙格定理是射影平面上的重要定理.许多定理以它为依据,利用它也可以证明初等几何中一些共线或共点问题.本文将抓住笛沙格定理的精髓:两 ...

  • 高考立体几何知识点详细总结
  • 八.立体几何 一.立体几何网络图: (1)线线平行的判断: ⑴平行于同一直线的两直线平行. ⑶如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行. ⑹如果两个平行平面同时和第三个平面相交,那么它们的交线平行. ⑿垂直于同一平面的两直线平行. (2)线线垂直的判断: ...

  • 高一升高二.暑假数学三垂线定理doc
  • 第一讲 三垂线定理及其逆定理 要点 1.三垂线定理及其逆定理的形成和论证. 2.三垂线定理及其逆定理的简单应用. 教学过程 (一)温故知新,引入课题 我们已经学习了直线和平面的垂直关系,学新课之前,让我们作个简单的回顾: 1.直线和平面垂直的定义? 2.直线和平面垂直的判定定理. 3.什么叫做平面的 ...

  • 平面几何中的射影定理
  • 平面几何中的射影定理 例6 如图3.1-12,在直角三角形ABC 中,ÐBAC 为直角,AD ^BC 于D . 求证:(1)AB 2=BD BC ,AC 2=CD CB : (2)AD 2=BD CD 证明 (1)在R t V B A C 与Rt V BDA 中,? B B , \V BAC ∽V ...

  • 高中公式大全
  • 公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内. 公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3: 过不在同一条直线上的三个点,有且只有一个平面.推论1: 经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线, ...

  • 五法求二面角
  • 二面角 一. 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角. 本定义为解题提供了添辅助线的一种规律.如例1中从二面角S-AM-B中半平面ABM ...