动态扭矩的测量

动态扭矩的测量

摘要:按照不同的测量原理,将扭矩测量方法分为平衡力法、能量转换法和传递法三大类。应用最为广泛的是传递法扭矩测量方法,阐述了具体测量方法的原理、特点和适用范围。并且简单介绍了采用磁栅转矩传感器和一种新的微机辅助相位差检测方法,并归纳出扭矩测量方法的主要发展趋势。

关键词:传感器 扭矩 相位差 转矩测量技术 相位差检测 磁栅

在扭矩作用下,机械构件将产生一定程度的扭转变形。因此,扭转力矩又被

称为转动力矩,简称扭矩.扭矩是能够反映机械传动系统性能的典型机械量,扭矩测量具有非常广泛的应用。动态转矩是转矩值随时间变化很大、很快的转矩其中包括:①振动转矩:起因于机械传动系统的扭转振动,转矩值的波动具有一定周期,特征参数有转矩平均值Tm、最大振幅ΔTmax、基波及各次谐波频率fi、振幅Ti;②过渡转矩:反映传动系统工作状况转换时的转矩变化过程,其特征参数有最大转矩值Tmax、最小转矩值Tmin和转矩变化率ΔT∕Δt;③随机转矩:这是一种不确定的、无规律的变化转矩,其统计特征有均方值、概率密度函数、自相关函数及功率谱密度函数。可见动态转矩充分表征了机械传动系统的特性,对它的测量和分析是各种机械产品的开发研究、性能分析、质量检验、型式鉴定、优化控制等工作中必不可少的。

1 扭矩测量方法分类

按测量原理分类,扭矩测量方法可分为平衡力法、能量转换法和传递法三大

类,其中传递法的应用最为广泛。

1.1平衡力法

处于匀速工作状态的传动机械构件,其主轴和机体上一定同时存在一对扭矩 T 和 T′,并且二者大小相等、方向相反。通过测量机体上的 T′来测量主轴上 T 的方法称为平衡力法。设 F 为力臂上的作用力,L 为力臂长度,则 T′=LF。可见,测得 F 和 L,即可得出 T′和 T。平衡力法的优点是不存在传递扭矩信号的问题,力臂上的作用力 F 容易测得;缺点是测量范围仅局限为匀速工作状态,无法完成动态扭矩的测量。

1.2能量转换法

能量转换法是指根据能量守恒定律,利用热能、电能等其他参数来测量扭矩

的一种间接测量方法。这种方法并不常用,其测量误差相对较高,一般为±(10~

15)%,只有当直接测量无法进行时才考虑采用该种方法。

1.3 传递法

传递扭矩时弹性元件的物理参数会发生某种程度的变化,利用这种变化与扭

矩的对应关系来测量扭矩的方法被称为传递法。按照不同的物理参数,可将传递法进一步划分为磁弹性式、应变式、振弦式、光电式、磁电式、电容式、光纤式、无线声表面波式、磁敏式、激光多普勒式、软测量式、激光衍射式等多种扭矩测量方法。目前,国内外扭矩测量所应用的方法绝大多数是传递法。

在测试扭矩和转速的场合中通常,要将扭矩和转速信号转换成电信号进行测

量。最常用的测量方案有(1)采用磁电式相位差型传感器其工作原理是当输入、

输出轴未施加扭矩时,传感器输出两路正弦信号彼此相差180°;当施加扭矩时,

两路正弦信号彼此相差会发生变化,根据相差即可计算出扭矩大小,根据某路正

弦信号频率即可计算出转速大小。可以同时获得扭矩、转速信号,且工作稳定可

靠;(2)采用电阻应变式传感器,这种传感器的工作原理是力 →应变 →电阻变化

→电压输出。它的优点在于体积小但它的输出信号是基于电阻的变化而得到的,

受温度、电源电压等环境参数的影响较大由于它输出电压值只有毫伏级,使用它

必须对其信号进行放大,需要高精度的放大电路。

2.采用磁栅转矩传感器和微机辅助相位差检测方法

2.1磁电式扭矩测量法介绍

2.1.1工作原理

在弹性轴上安装两个相同的齿轮,磁芯和线圈组成信号采集系统,齿顶与磁

芯之间预留出微小间隙,当轴转动时,两个线圈中分别感应出两个交变电动势,

而且交变电动势仅与两个齿轮的磁芯相对位置和相交位置有关,通过检测电动势

的大小即可得到相应的扭矩值,这种扭矩测量方法被称为感应式扭矩测量法或磁

电式扭矩测量法,其工作原理如图1所示

图1 磁电式扭矩测量法工作原理

磁电式扭矩测量法的优点是精度高,成本较低,性能可靠,其为非接触测量,

即不需要电源和中间传输环节;其缺点是结构复杂,频响有限,难以制造,响应

时间较长,相应的传感器尺寸和质量较大,低速时信号小而高速时动平衡困难。

磁电式扭矩测量法适用于测量能够产生较大转角位移的扭矩,能够测量启动和低

速转矩。由于其动态特性不好,所以不适于高速转动轴的扭矩测量。

2.1.2输出信号处理

当输入、输出轴未施加转矩时,传感器输出两路正弦信号,彼此相差180°;

当施加扭矩时,两路正弦信号彼此相差会发生变化。将变化的信号送入单片机,

计算出相位差,根据相差即可计算出扭矩大小,根据某路正弦信号频率即可计算

出转速大小。信号处理框图如图2所示。

图2相位差测量电路原理框图

(1)信号处理电路的设计

磁电式相位差型扭矩传感器输出两路近似正弦的信号,由于其幅值小且频率

较高 (转速一般为0~4 000 r/m in) ,必须采用高精度、高速电压比较器检测

其过零点。输入的正弦信号Va及Vb经零交叉比较器后整形为方波,由微分电路

取出边沿脉冲加到R2S触发器上,一路使R2S触发器置位,另一路使R2S触发器复

位,故R2S触发器输出的脉冲宽度即代表两路信号的相位差 (初始相位角一般为

180°),而该方波的频率就是转速。将该信号送入单片机处理,可获得扭矩及转速

参数值。相位差检测电路原理如图3。

图3相位差信号检测电路原理图

(2)信号处理算法设计

相位差测量方法通常采用相位差测量转换为固定时间间隔测量。该方法存在

明显缺陷:测量精度会随测量信号频率变化而改变。扭矩、转速大小分别转换成

了方波的高电平的宽度和方波的频率大小。当转速变化时,在相同脉冲数下高电

平和整个脉冲的宽度计数值也是变化的。所以,在相同脉冲数下计算扭矩大小,

不同转速时,扭矩的测量精度是不同的。为了达到等精度测量的效果,本系统在相

同计数值下计算扭矩值。

2.2磁栅转矩传感器测量系统构成与测量原理

2.2.1系统构成

如图4所示。磁栅转矩传感器的主要设计参数:额定量程10kg²m ;满量程

转矩作用下,两磁栅的相对扭转角0.61°;磁栅外径D = 120mm。磁栅1上有双磁

道和,磁栅2上有单磁道 。磁道 和 上所录的波数Z1 = 1200个波 周,磁道 上

所录的波数Z 2 = 3000个波 周。扭轴旋转时,磁头1, 2, 3和4分别拾磁输出

正弦信号S1, S2, S3和S4。其中S1和S2经分频后形成转矩测量所需的两路比

相信号; S3和 S4经倍频后,形成相位差辅助测量和转矩的判向信号。

图4系统构成简图

2.2.2.相位转矩测量原理

同频正弦信号S1和S2之间的相位关系反映了扭轴传递的转矩信息,将它们

进行分频,而后测量两分频信号的相位关系,即可测知转矩。分频的原因是:①磁

道、上的录磁波数Z1= 1200,这是为了保证拾磁信号的质量。若不经分频,而直

接测S1和S2之间的相位关系,则在额定的工作转矩范围内,会造成S1和S2之间

发生2Π相位翻转,这是不允许的。②经适当分频,减少磁栅每转一周的比相测量

次数(即降低测量采样的频率),以满足动态测量过程中微机进行数据预处理(必

要的计算、存储)对时间的要求。设A、B分别为S1和S2经K1= 4分频后得到的

信号。当扭轴空载旋转时,信号A、B的频率随转速而改变,两者间的相位关系一

定。调整磁头1 (或2) ,使A、B之间的初始相位差为零。当扭轴传递动态转矩

T( t)时,由于扭轴的扭转变形,磁栅1和2发生相对扭转,使A , B间的相位关系

发生了θ(t)的变化, T(t)和θ(t)均是时间的连续函数。实际测量则是对它们的

离散采样,采样频率(Z1∕K1) 次 转。设对θ(t)的第i次采样测量结果为θ( i) ,

理论上, T(t)的采样结果T(i)和θ(i)之间有如下关

式中, G为扭轴材料的切变弹性模量, d、L

分别为扭轴的直径和有效长度。可见,T(i)的测量归结为准确地测定随时间变化

的相位差θ( i)。

2.3相位差θ(i)的测量

θ(i)的测量包括两方面:一是测其大小,二是判向,即判别扭轴的旋转方向。

对θ(i)的大小进行测量是基于两路辅助测量信号:一路是高频时钟脉冲CP;另一

路则由正弦信号S3和S4产生。同时, S3和S4也用于判向。

2.3.1.基于S3和S4的辅助测量脉冲与判向

图5辅助测量及判向脉冲P +、P -的形成

调整磁头3与4之间的相对位置,使S3和S4相位互差90°。以S3、S4为

原始信号,经电阻链移相细分,获得相位分别为0, ∏∕6,2∏∕6,3Π∕6, 4Π∕6, 5Π∕6

的输出信号,它们经过零整形,产生六路1∶1占空比的方波,分为二组: F(0) , F

(Π∕3) , F (2Π∕3) ; F (Π∕6), F(3Π∕6) ,F(5Π∕6)。这两组方波分别经异或门

组合处理,得到细分的新方波C和D ,见图5(a)。它们的周期是原信号周期的三

分之一,相位互差90°。至于C超前D ,还是D超前C ,则取决于扭轴的旋转方

向。假设当扭轴正向旋转时, S3超前S4 90°,则有C超前D 90°。而当扭轴反

向旋转时,S3滞后S4 90°,亦有C滞后D90°。利用方波C、D产生辅助测量脉

冲及判向的原理示于图5(b)。图中C1, C2, D1, D2分别为方波C、D的上升沿

和下降沿触发的单稳脉冲。由C , D , C1, C2, D1, D2可产生辅助测量及判向

脉冲信号P +、P - ,其逻辑关系如下

:

当扭轴正向旋转(即方波C超前D 90°)时, P +处有负脉冲输出;当扭轴反向旋

转时,P-处有负脉冲输出。P+(P-) 的频率与S3(S4) 的频率之比K2=12。

2.3.2 θ( i)的测量

图6“二次细分测量”原理图

图6是假定扭轴正向旋转时,基于时钟脉冲C P的辅助测量及判向脉冲P +

对θ( i)进行“二次细分测量”的原理图。图中A′、B′是信号A、B经波形变

换后得到的脉冲信号。第一次细分:以A′为开门信号, B′为关门信号,用脉冲P

+对相位差θ( i)进行“粗分”,由可逆计数器获取(N - N0)。第二次细分:利用

时钟脉冲C P对脉冲序列P +进行内插细分,以获得ΔN。这是测量的关键。具体

方法是通过测定关门信号B′和与之前后相邻的负脉冲P +到达的时间关系ta,

tb和tc,用抛物线插值法计算出 ΔN。考虑到负脉冲P +的宽度很窄(稍大于时钟

脉冲CP的周期,由单稳触发器的调整保证),经推导,可得抛物插值公式

:

同理,扭轴反向旋转时, P-取代P +的作用。

测知(N - N0) ,ΔN后, θ( i)由下式计算

:

式中, N0为可逆计数器的预置数; N为计数器的终值;Δθp为脉冲P + (P-) 的

相位差当量。由前述参数有 Δθp= 2Π²Z1∕(K1K 2Z 2) = 3°。扭轴正向旋转时,ΔN

项前取“+”号, N > N0,故θ( i) > 0;扭轴反向旋转时,ΔN项前取“-”号, N

N 0,故θ(i)

方法的不足。常用的测量方法亦是以A′为开门信号, B′为关门信号,在门电路

的开启时间内直接计数CP脉冲,测得A′与B′的时间间隔 Δti,而后由式θ(t) =

2Π²Δti∕ti计算相位差。显然,这种测量方法的精度受到扭轴转速波动的剧烈影

响,因为Δti及ti均与转速有关。而对于“二次细分测量”法,由于每个脉冲P +

(P-) 的相位差当量 Δθp与扭轴转速无关,所以,计数值(N - N0) 仅取决于θ( i) ,

此时,只有ΔN的测量受到转速波动的影响。

3.其他测量方法

3.1应变式扭矩测量法

扭矩会使传动轴产生一定的应变,而且这种应变与扭矩的大小存在着比例

关系,因此可以通过电阻应变片来检测相应扭矩的大小。当传动轴受到扭矩作用

时会发生扭转变形,最大剪应变产生在与轴线成 45°角的方向上,在此方向上

粘贴电阻应变片能够检测到传动轴所受扭矩的大小,其工作原理如图7 所示

图 7 应变式扭矩测量法工作原理

应变式扭矩测量法的优点是结构简单、灵敏度高、适应性强、成本低廉、操作简

便、技术成熟、应用范围广、测量精度高、响应速度快、性能稳定可靠、温度补

偿性能好、能适应恶劣环境;其缺点是湿度、温度、粘结剂等因素都会影响到测

量的准确度,而且抗干扰能力差,这种方法不适用于高速转轴的扭矩测量.

3.2磁弹性式扭矩测量法

磁弹性式扭矩测量法是指利用铁磁材料及其他合金材料的磁弹性效应来实

现扭矩测量的一种方法。在扭矩或外力作用下,铁磁材料的内部晶格发生畸变,

产生应力,使铁磁材料内部磁畴之间的界限发生移动,磁畴磁化强度矢量发生旋

转,使材料的磁化强度产生相应的变化,这种现象被称为磁弹性效应或磁致伸缩

特性。铁磁性材料可分为正磁致伸缩和负磁致伸缩两类。正磁致伸缩材料的磁化

强度随机械拉伸应力的增加而增加,而材料本身在这种情况下是伸长的;负磁致

伸缩材料的磁化强度则随拉伸应力的增加而减小,材料本身在这种情况下是缩短

的。在磁场中对铁磁材质的弹性轴施加扭矩,磁导率的变化将反映出铁磁材料磁

化强度的变化,因此可以通过测量磁导率的变化来获得扭矩信号.这种测量方法

的优点是灵敏度高、稳定性好、非接触测量、输出功率大、响应速度快、过载能

力好、安装使用方便、抗干扰能力强、结构与电路简单、能在恶劣环境下工作。

磁弹性式扭矩测量法的缺点是存在“圆弧调制”误差,使其应用受到限制;沿扭

轴圆周分布的磁导率存在固有偏差,其测量准确度比较低,测得的只是磁致伸缩

层材料的应力值,与所需扭矩值尚存在误差。磁弹性式扭矩测量法被广泛应用于

船舶动力装置、轧钢、石油钻机及数控机车等领域。

3.3 振弦式扭矩测量法

利用振动弦固有频率与张力间的函数关系,将力转换成电量,先测出电量值

转换成力的大小,再计算出相应扭矩值的方法称为振弦式扭矩测量法,其工作原

理如图 8所示。

图8 振弦式扭矩测量法工作原理

振弦式扭矩测量法的优点是可以直接利用传动轴作为扭轴进行测量;采用频率信

号传输方式,抗干扰性能好;传感器部分与测力轴分开,便于在船舶或车辆上进

行测量;其缺点是结构复杂、灵敏度较低、测量准确度较低、对弹性轴的弹性变

形要求高。振弦式扭矩测量法适用于大型转轴的扭矩测量而不适用于高速转轴的

测量。

3.4光电式扭矩测量法

将开孔数完全相同的两片圆盘形光栅固定在转轴上,并将光电元件和固定光

源分别固定在光栅两侧,转轴无扭矩作用时两片光栅的明暗条纹错开,完全遮挡

光路,无光线照到光敏元件上不输出电信号;有扭矩作用时两个圆盘形光栅的截

面产生相对转角,明暗条纹部分重合,部分光线透过光栅照到光敏元件上,输出

电信号。扭矩值越大扭转角越大,照到光敏元件上的光线强度越大,输出电信号

也就越大,通过测量输出的电信号能够测得外加扭矩的大小,其工作原理如图 9

所示

图 9 光电式扭矩测量法工作原理

光电式扭矩测量法的优点是响应速度快,能实现扭矩的实时监测;其缺点是结构

复杂、静标困难、可靠性较差、抗干扰能力差,测量精度受温度变化的影响较

大。该方法不适用于刚启动和低转速轴的扭矩测量,目前应用较少。

3.5电容式扭矩测量法

这种扭矩测量方法可以用来连续监测齿轮箱传动轴或汽车发动机轴的扭矩,

主要是在轴上安装由不变电感和可变电容组成的振荡电路,其工作原理如图10

所示。电容式扭矩测量法的优点是成本低廉,原理简单,不受转速影响;其缺点

是对套管的刚度要求高,必须保证套管与轴的同轴度。其不适合转轴尺寸过大的

扭矩测量。

图 10 电容式扭矩测量法工作原理

3.6 光纤式扭矩测量法

新兴的光纤技术为扭矩测量方法提供了新的思路,目前国内外已研制出很多

种类的光纤式扭矩传感器,利用这种扭矩传感器实现扭矩测量的方法被称为光纤

式扭矩测量法,其工作原理如图 11 所示。光纤扭矩测量法不受电磁干扰,电气

绝缘性好,但测试环境中的尘埃、气雾等因素都将干扰光路,而且调试困难。其

主要应用于飞行器的涡轮发动机测量。

图11 光纤式扭矩测量法工作原理

3.7无线声表面波式扭矩测量法

无线声表面波式扭矩测量法是近期发展起来的一种新型扭矩测量方法,这种

方法将雷达技术与无线声表面波(SAW)技术相结合,利用压电基片、叉指换能

器(IDT)、反射栅(R1-R3)所组成的 SAW 传感器,通过测量与转轴成 45°方

向上的应变来实现转轴扭矩的测量。SAW传感器接收到由天线发出的高频电磁

波;与天线相连的 IDT 把接收到的信号转换成 SAW;SAW 在压电晶片上传播,

部分SAW 被声波传播路径上的反射器反射回来,被反射回来的 SAW 包含被测量

信息;通过 IDT转化成电磁脉冲序列,由天线发射出去并被雷达装置接收;传

感器信号经信号处理器分析后将最好的测量结果送到计算机进行数据处理和存

储,其工作原理如图12所示。

图12无线声表面波式扭矩测量法工作原理

无线声表面波式扭矩测量法的优点是可以达到无源化测量和无线测量;SAW传感

器几乎不老化,可以节约成本;能适应恶劣环境,例如在被污染的地方、高压电

厂、高真空内、混凝土下、高温及强辐射的环境下进行测量。尽管无线声表面波

式扭矩测量法的应用前景广阔,但技术尚不成熟,还有待于进一步完善。

3.8软测量式扭矩测量法

软测量式扭矩测量法是应用RBF神经网络和 BP神经网络分别建立电机扭矩

的软测量模型;利用改进的Levenberg-Marquardt 算法对两种神经网络进行学

习和训练;对电机扭矩的预测效果进行对比,发现由 RBF神经网络观测到的扭

矩具有更好的动态跟随性能. 软测量式扭矩测量法只需要电流信息,辨识方法简

单,为扭矩测量提供了一种新的思路.

3.9激光衍射式扭矩测量法

将大小和形状完全相同的两个钢质圆盘安装在弹性轴两端,在圆盘表面开设

两条细小缝隙,且大小和角度完全相同,在弹性轴一端安装激光源,所发出的激

光通过两条缝隙后发生衍射。当弹性轴发生扭转变形时两条缝隙的公共区域变

窄,激光通过的缝隙变小,根据光的衍射原理,衍射产生的圆斑大小与激光通过

的缝隙大小相关;缝隙变小后,衍射产生的圆斑直径变大,在弹性轴的另一端用

CCD 传感器接收衍射图像,将成像数据传至计算机;通过测量衍射圆斑的直径可

以得到弹性轴所承受的扭矩大小,其工作原理如图13所示。

图 13 激光衍射式扭矩测量法工作原理

1.激光源;2.缝隙;3.圆盘;4.成像数据;5.CCD 传感器;6.弹性轴;7.计算机;

8.激光;9.外壳

4.扭矩测量方法的发展趋势

随着各种被测系统复杂性和自动化程度的不断提高,扭矩测量方法也在不断

地推陈出新,目前扭矩测量方法的发展趋势主要体现在以下几个方面:

①向直接测量扭矩的方向发展;

②向动态在线扭矩测量的方向发展;

③向多功能扭矩测量的方向发展;

④向扭矩优化测量的方向发展;

⑤向数字化、智能化、网络化扭矩测量的方向发展;

⑥扭矩传感器新技术的不断涌现为扭矩测量方法的适时更新提供了新途径,例如

扭矩传感器逐步向微型化和巨型化方向发展;从单件单品种向成套系列化方向发

展;由介入式逐渐发展为非介入式;向原器件集成化和信号处理智能化的方向发

展;出现了非接触式和光电结合式扭矩传感器;利用非晶材料的优良性能研制新

型扭矩传感器等等。

5.参考文献

【1】汪诤,潘丽华.扭矩测量技术浅析[J].甘肃科技,2005,21(3):99-100.

【2】王雁,郭华,王岐山.磁弹性扭矩传感器原理与误差[J].机械工程师,

1998(3):11-12.

【3】文西芹,张永忠,刘成文.基于磁弹性效应的磁头型扭矩传感器[J].化

工矿物与加工,2003(8):17-20.

【4】张有颐,转矩测量技术,计量出版社, 1986;

【5】万德安,章阳宁.一种新型扭矩传感器的研制[J].传感器技术,2003,

22(11):27-28

【6】秦树人,磁栅及其测量系统,重庆出版社, 1984;

【7】于丙强.磁致伸缩式扭矩测量仪的研制及应用[J].计量技术,2004(12):

22-24.

【8】汪 诤,潘丽华.扭矩测量技术浅析[J].甘肃科技,2005,21(3):99-100.

【9】张凤生,师忠秀,徐志良.相位式磁栅转矩传感器[J].仪表技术与传感 器,1998(9):4-6.

【10】万德安,章阳宁.一种新型扭矩传感器的研制[J].传感器技术,2003,

22(11):27-28.

动态扭矩的测量

摘要:按照不同的测量原理,将扭矩测量方法分为平衡力法、能量转换法和传递法三大类。应用最为广泛的是传递法扭矩测量方法,阐述了具体测量方法的原理、特点和适用范围。并且简单介绍了采用磁栅转矩传感器和一种新的微机辅助相位差检测方法,并归纳出扭矩测量方法的主要发展趋势。

关键词:传感器 扭矩 相位差 转矩测量技术 相位差检测 磁栅

在扭矩作用下,机械构件将产生一定程度的扭转变形。因此,扭转力矩又被

称为转动力矩,简称扭矩.扭矩是能够反映机械传动系统性能的典型机械量,扭矩测量具有非常广泛的应用。动态转矩是转矩值随时间变化很大、很快的转矩其中包括:①振动转矩:起因于机械传动系统的扭转振动,转矩值的波动具有一定周期,特征参数有转矩平均值Tm、最大振幅ΔTmax、基波及各次谐波频率fi、振幅Ti;②过渡转矩:反映传动系统工作状况转换时的转矩变化过程,其特征参数有最大转矩值Tmax、最小转矩值Tmin和转矩变化率ΔT∕Δt;③随机转矩:这是一种不确定的、无规律的变化转矩,其统计特征有均方值、概率密度函数、自相关函数及功率谱密度函数。可见动态转矩充分表征了机械传动系统的特性,对它的测量和分析是各种机械产品的开发研究、性能分析、质量检验、型式鉴定、优化控制等工作中必不可少的。

1 扭矩测量方法分类

按测量原理分类,扭矩测量方法可分为平衡力法、能量转换法和传递法三大

类,其中传递法的应用最为广泛。

1.1平衡力法

处于匀速工作状态的传动机械构件,其主轴和机体上一定同时存在一对扭矩 T 和 T′,并且二者大小相等、方向相反。通过测量机体上的 T′来测量主轴上 T 的方法称为平衡力法。设 F 为力臂上的作用力,L 为力臂长度,则 T′=LF。可见,测得 F 和 L,即可得出 T′和 T。平衡力法的优点是不存在传递扭矩信号的问题,力臂上的作用力 F 容易测得;缺点是测量范围仅局限为匀速工作状态,无法完成动态扭矩的测量。

1.2能量转换法

能量转换法是指根据能量守恒定律,利用热能、电能等其他参数来测量扭矩

的一种间接测量方法。这种方法并不常用,其测量误差相对较高,一般为±(10~

15)%,只有当直接测量无法进行时才考虑采用该种方法。

1.3 传递法

传递扭矩时弹性元件的物理参数会发生某种程度的变化,利用这种变化与扭

矩的对应关系来测量扭矩的方法被称为传递法。按照不同的物理参数,可将传递法进一步划分为磁弹性式、应变式、振弦式、光电式、磁电式、电容式、光纤式、无线声表面波式、磁敏式、激光多普勒式、软测量式、激光衍射式等多种扭矩测量方法。目前,国内外扭矩测量所应用的方法绝大多数是传递法。

在测试扭矩和转速的场合中通常,要将扭矩和转速信号转换成电信号进行测

量。最常用的测量方案有(1)采用磁电式相位差型传感器其工作原理是当输入、

输出轴未施加扭矩时,传感器输出两路正弦信号彼此相差180°;当施加扭矩时,

两路正弦信号彼此相差会发生变化,根据相差即可计算出扭矩大小,根据某路正

弦信号频率即可计算出转速大小。可以同时获得扭矩、转速信号,且工作稳定可

靠;(2)采用电阻应变式传感器,这种传感器的工作原理是力 →应变 →电阻变化

→电压输出。它的优点在于体积小但它的输出信号是基于电阻的变化而得到的,

受温度、电源电压等环境参数的影响较大由于它输出电压值只有毫伏级,使用它

必须对其信号进行放大,需要高精度的放大电路。

2.采用磁栅转矩传感器和微机辅助相位差检测方法

2.1磁电式扭矩测量法介绍

2.1.1工作原理

在弹性轴上安装两个相同的齿轮,磁芯和线圈组成信号采集系统,齿顶与磁

芯之间预留出微小间隙,当轴转动时,两个线圈中分别感应出两个交变电动势,

而且交变电动势仅与两个齿轮的磁芯相对位置和相交位置有关,通过检测电动势

的大小即可得到相应的扭矩值,这种扭矩测量方法被称为感应式扭矩测量法或磁

电式扭矩测量法,其工作原理如图1所示

图1 磁电式扭矩测量法工作原理

磁电式扭矩测量法的优点是精度高,成本较低,性能可靠,其为非接触测量,

即不需要电源和中间传输环节;其缺点是结构复杂,频响有限,难以制造,响应

时间较长,相应的传感器尺寸和质量较大,低速时信号小而高速时动平衡困难。

磁电式扭矩测量法适用于测量能够产生较大转角位移的扭矩,能够测量启动和低

速转矩。由于其动态特性不好,所以不适于高速转动轴的扭矩测量。

2.1.2输出信号处理

当输入、输出轴未施加转矩时,传感器输出两路正弦信号,彼此相差180°;

当施加扭矩时,两路正弦信号彼此相差会发生变化。将变化的信号送入单片机,

计算出相位差,根据相差即可计算出扭矩大小,根据某路正弦信号频率即可计算

出转速大小。信号处理框图如图2所示。

图2相位差测量电路原理框图

(1)信号处理电路的设计

磁电式相位差型扭矩传感器输出两路近似正弦的信号,由于其幅值小且频率

较高 (转速一般为0~4 000 r/m in) ,必须采用高精度、高速电压比较器检测

其过零点。输入的正弦信号Va及Vb经零交叉比较器后整形为方波,由微分电路

取出边沿脉冲加到R2S触发器上,一路使R2S触发器置位,另一路使R2S触发器复

位,故R2S触发器输出的脉冲宽度即代表两路信号的相位差 (初始相位角一般为

180°),而该方波的频率就是转速。将该信号送入单片机处理,可获得扭矩及转速

参数值。相位差检测电路原理如图3。

图3相位差信号检测电路原理图

(2)信号处理算法设计

相位差测量方法通常采用相位差测量转换为固定时间间隔测量。该方法存在

明显缺陷:测量精度会随测量信号频率变化而改变。扭矩、转速大小分别转换成

了方波的高电平的宽度和方波的频率大小。当转速变化时,在相同脉冲数下高电

平和整个脉冲的宽度计数值也是变化的。所以,在相同脉冲数下计算扭矩大小,

不同转速时,扭矩的测量精度是不同的。为了达到等精度测量的效果,本系统在相

同计数值下计算扭矩值。

2.2磁栅转矩传感器测量系统构成与测量原理

2.2.1系统构成

如图4所示。磁栅转矩传感器的主要设计参数:额定量程10kg²m ;满量程

转矩作用下,两磁栅的相对扭转角0.61°;磁栅外径D = 120mm。磁栅1上有双磁

道和,磁栅2上有单磁道 。磁道 和 上所录的波数Z1 = 1200个波 周,磁道 上

所录的波数Z 2 = 3000个波 周。扭轴旋转时,磁头1, 2, 3和4分别拾磁输出

正弦信号S1, S2, S3和S4。其中S1和S2经分频后形成转矩测量所需的两路比

相信号; S3和 S4经倍频后,形成相位差辅助测量和转矩的判向信号。

图4系统构成简图

2.2.2.相位转矩测量原理

同频正弦信号S1和S2之间的相位关系反映了扭轴传递的转矩信息,将它们

进行分频,而后测量两分频信号的相位关系,即可测知转矩。分频的原因是:①磁

道、上的录磁波数Z1= 1200,这是为了保证拾磁信号的质量。若不经分频,而直

接测S1和S2之间的相位关系,则在额定的工作转矩范围内,会造成S1和S2之间

发生2Π相位翻转,这是不允许的。②经适当分频,减少磁栅每转一周的比相测量

次数(即降低测量采样的频率),以满足动态测量过程中微机进行数据预处理(必

要的计算、存储)对时间的要求。设A、B分别为S1和S2经K1= 4分频后得到的

信号。当扭轴空载旋转时,信号A、B的频率随转速而改变,两者间的相位关系一

定。调整磁头1 (或2) ,使A、B之间的初始相位差为零。当扭轴传递动态转矩

T( t)时,由于扭轴的扭转变形,磁栅1和2发生相对扭转,使A , B间的相位关系

发生了θ(t)的变化, T(t)和θ(t)均是时间的连续函数。实际测量则是对它们的

离散采样,采样频率(Z1∕K1) 次 转。设对θ(t)的第i次采样测量结果为θ( i) ,

理论上, T(t)的采样结果T(i)和θ(i)之间有如下关

式中, G为扭轴材料的切变弹性模量, d、L

分别为扭轴的直径和有效长度。可见,T(i)的测量归结为准确地测定随时间变化

的相位差θ( i)。

2.3相位差θ(i)的测量

θ(i)的测量包括两方面:一是测其大小,二是判向,即判别扭轴的旋转方向。

对θ(i)的大小进行测量是基于两路辅助测量信号:一路是高频时钟脉冲CP;另一

路则由正弦信号S3和S4产生。同时, S3和S4也用于判向。

2.3.1.基于S3和S4的辅助测量脉冲与判向

图5辅助测量及判向脉冲P +、P -的形成

调整磁头3与4之间的相对位置,使S3和S4相位互差90°。以S3、S4为

原始信号,经电阻链移相细分,获得相位分别为0, ∏∕6,2∏∕6,3Π∕6, 4Π∕6, 5Π∕6

的输出信号,它们经过零整形,产生六路1∶1占空比的方波,分为二组: F(0) , F

(Π∕3) , F (2Π∕3) ; F (Π∕6), F(3Π∕6) ,F(5Π∕6)。这两组方波分别经异或门

组合处理,得到细分的新方波C和D ,见图5(a)。它们的周期是原信号周期的三

分之一,相位互差90°。至于C超前D ,还是D超前C ,则取决于扭轴的旋转方

向。假设当扭轴正向旋转时, S3超前S4 90°,则有C超前D 90°。而当扭轴反

向旋转时,S3滞后S4 90°,亦有C滞后D90°。利用方波C、D产生辅助测量脉

冲及判向的原理示于图5(b)。图中C1, C2, D1, D2分别为方波C、D的上升沿

和下降沿触发的单稳脉冲。由C , D , C1, C2, D1, D2可产生辅助测量及判向

脉冲信号P +、P - ,其逻辑关系如下

:

当扭轴正向旋转(即方波C超前D 90°)时, P +处有负脉冲输出;当扭轴反向旋

转时,P-处有负脉冲输出。P+(P-) 的频率与S3(S4) 的频率之比K2=12。

2.3.2 θ( i)的测量

图6“二次细分测量”原理图

图6是假定扭轴正向旋转时,基于时钟脉冲C P的辅助测量及判向脉冲P +

对θ( i)进行“二次细分测量”的原理图。图中A′、B′是信号A、B经波形变

换后得到的脉冲信号。第一次细分:以A′为开门信号, B′为关门信号,用脉冲P

+对相位差θ( i)进行“粗分”,由可逆计数器获取(N - N0)。第二次细分:利用

时钟脉冲C P对脉冲序列P +进行内插细分,以获得ΔN。这是测量的关键。具体

方法是通过测定关门信号B′和与之前后相邻的负脉冲P +到达的时间关系ta,

tb和tc,用抛物线插值法计算出 ΔN。考虑到负脉冲P +的宽度很窄(稍大于时钟

脉冲CP的周期,由单稳触发器的调整保证),经推导,可得抛物插值公式

:

同理,扭轴反向旋转时, P-取代P +的作用。

测知(N - N0) ,ΔN后, θ( i)由下式计算

:

式中, N0为可逆计数器的预置数; N为计数器的终值;Δθp为脉冲P + (P-) 的

相位差当量。由前述参数有 Δθp= 2Π²Z1∕(K1K 2Z 2) = 3°。扭轴正向旋转时,ΔN

项前取“+”号, N > N0,故θ( i) > 0;扭轴反向旋转时,ΔN项前取“-”号, N

N 0,故θ(i)

方法的不足。常用的测量方法亦是以A′为开门信号, B′为关门信号,在门电路

的开启时间内直接计数CP脉冲,测得A′与B′的时间间隔 Δti,而后由式θ(t) =

2Π²Δti∕ti计算相位差。显然,这种测量方法的精度受到扭轴转速波动的剧烈影

响,因为Δti及ti均与转速有关。而对于“二次细分测量”法,由于每个脉冲P +

(P-) 的相位差当量 Δθp与扭轴转速无关,所以,计数值(N - N0) 仅取决于θ( i) ,

此时,只有ΔN的测量受到转速波动的影响。

3.其他测量方法

3.1应变式扭矩测量法

扭矩会使传动轴产生一定的应变,而且这种应变与扭矩的大小存在着比例

关系,因此可以通过电阻应变片来检测相应扭矩的大小。当传动轴受到扭矩作用

时会发生扭转变形,最大剪应变产生在与轴线成 45°角的方向上,在此方向上

粘贴电阻应变片能够检测到传动轴所受扭矩的大小,其工作原理如图7 所示

图 7 应变式扭矩测量法工作原理

应变式扭矩测量法的优点是结构简单、灵敏度高、适应性强、成本低廉、操作简

便、技术成熟、应用范围广、测量精度高、响应速度快、性能稳定可靠、温度补

偿性能好、能适应恶劣环境;其缺点是湿度、温度、粘结剂等因素都会影响到测

量的准确度,而且抗干扰能力差,这种方法不适用于高速转轴的扭矩测量.

3.2磁弹性式扭矩测量法

磁弹性式扭矩测量法是指利用铁磁材料及其他合金材料的磁弹性效应来实

现扭矩测量的一种方法。在扭矩或外力作用下,铁磁材料的内部晶格发生畸变,

产生应力,使铁磁材料内部磁畴之间的界限发生移动,磁畴磁化强度矢量发生旋

转,使材料的磁化强度产生相应的变化,这种现象被称为磁弹性效应或磁致伸缩

特性。铁磁性材料可分为正磁致伸缩和负磁致伸缩两类。正磁致伸缩材料的磁化

强度随机械拉伸应力的增加而增加,而材料本身在这种情况下是伸长的;负磁致

伸缩材料的磁化强度则随拉伸应力的增加而减小,材料本身在这种情况下是缩短

的。在磁场中对铁磁材质的弹性轴施加扭矩,磁导率的变化将反映出铁磁材料磁

化强度的变化,因此可以通过测量磁导率的变化来获得扭矩信号.这种测量方法

的优点是灵敏度高、稳定性好、非接触测量、输出功率大、响应速度快、过载能

力好、安装使用方便、抗干扰能力强、结构与电路简单、能在恶劣环境下工作。

磁弹性式扭矩测量法的缺点是存在“圆弧调制”误差,使其应用受到限制;沿扭

轴圆周分布的磁导率存在固有偏差,其测量准确度比较低,测得的只是磁致伸缩

层材料的应力值,与所需扭矩值尚存在误差。磁弹性式扭矩测量法被广泛应用于

船舶动力装置、轧钢、石油钻机及数控机车等领域。

3.3 振弦式扭矩测量法

利用振动弦固有频率与张力间的函数关系,将力转换成电量,先测出电量值

转换成力的大小,再计算出相应扭矩值的方法称为振弦式扭矩测量法,其工作原

理如图 8所示。

图8 振弦式扭矩测量法工作原理

振弦式扭矩测量法的优点是可以直接利用传动轴作为扭轴进行测量;采用频率信

号传输方式,抗干扰性能好;传感器部分与测力轴分开,便于在船舶或车辆上进

行测量;其缺点是结构复杂、灵敏度较低、测量准确度较低、对弹性轴的弹性变

形要求高。振弦式扭矩测量法适用于大型转轴的扭矩测量而不适用于高速转轴的

测量。

3.4光电式扭矩测量法

将开孔数完全相同的两片圆盘形光栅固定在转轴上,并将光电元件和固定光

源分别固定在光栅两侧,转轴无扭矩作用时两片光栅的明暗条纹错开,完全遮挡

光路,无光线照到光敏元件上不输出电信号;有扭矩作用时两个圆盘形光栅的截

面产生相对转角,明暗条纹部分重合,部分光线透过光栅照到光敏元件上,输出

电信号。扭矩值越大扭转角越大,照到光敏元件上的光线强度越大,输出电信号

也就越大,通过测量输出的电信号能够测得外加扭矩的大小,其工作原理如图 9

所示

图 9 光电式扭矩测量法工作原理

光电式扭矩测量法的优点是响应速度快,能实现扭矩的实时监测;其缺点是结构

复杂、静标困难、可靠性较差、抗干扰能力差,测量精度受温度变化的影响较

大。该方法不适用于刚启动和低转速轴的扭矩测量,目前应用较少。

3.5电容式扭矩测量法

这种扭矩测量方法可以用来连续监测齿轮箱传动轴或汽车发动机轴的扭矩,

主要是在轴上安装由不变电感和可变电容组成的振荡电路,其工作原理如图10

所示。电容式扭矩测量法的优点是成本低廉,原理简单,不受转速影响;其缺点

是对套管的刚度要求高,必须保证套管与轴的同轴度。其不适合转轴尺寸过大的

扭矩测量。

图 10 电容式扭矩测量法工作原理

3.6 光纤式扭矩测量法

新兴的光纤技术为扭矩测量方法提供了新的思路,目前国内外已研制出很多

种类的光纤式扭矩传感器,利用这种扭矩传感器实现扭矩测量的方法被称为光纤

式扭矩测量法,其工作原理如图 11 所示。光纤扭矩测量法不受电磁干扰,电气

绝缘性好,但测试环境中的尘埃、气雾等因素都将干扰光路,而且调试困难。其

主要应用于飞行器的涡轮发动机测量。

图11 光纤式扭矩测量法工作原理

3.7无线声表面波式扭矩测量法

无线声表面波式扭矩测量法是近期发展起来的一种新型扭矩测量方法,这种

方法将雷达技术与无线声表面波(SAW)技术相结合,利用压电基片、叉指换能

器(IDT)、反射栅(R1-R3)所组成的 SAW 传感器,通过测量与转轴成 45°方

向上的应变来实现转轴扭矩的测量。SAW传感器接收到由天线发出的高频电磁

波;与天线相连的 IDT 把接收到的信号转换成 SAW;SAW 在压电晶片上传播,

部分SAW 被声波传播路径上的反射器反射回来,被反射回来的 SAW 包含被测量

信息;通过 IDT转化成电磁脉冲序列,由天线发射出去并被雷达装置接收;传

感器信号经信号处理器分析后将最好的测量结果送到计算机进行数据处理和存

储,其工作原理如图12所示。

图12无线声表面波式扭矩测量法工作原理

无线声表面波式扭矩测量法的优点是可以达到无源化测量和无线测量;SAW传感

器几乎不老化,可以节约成本;能适应恶劣环境,例如在被污染的地方、高压电

厂、高真空内、混凝土下、高温及强辐射的环境下进行测量。尽管无线声表面波

式扭矩测量法的应用前景广阔,但技术尚不成熟,还有待于进一步完善。

3.8软测量式扭矩测量法

软测量式扭矩测量法是应用RBF神经网络和 BP神经网络分别建立电机扭矩

的软测量模型;利用改进的Levenberg-Marquardt 算法对两种神经网络进行学

习和训练;对电机扭矩的预测效果进行对比,发现由 RBF神经网络观测到的扭

矩具有更好的动态跟随性能. 软测量式扭矩测量法只需要电流信息,辨识方法简

单,为扭矩测量提供了一种新的思路.

3.9激光衍射式扭矩测量法

将大小和形状完全相同的两个钢质圆盘安装在弹性轴两端,在圆盘表面开设

两条细小缝隙,且大小和角度完全相同,在弹性轴一端安装激光源,所发出的激

光通过两条缝隙后发生衍射。当弹性轴发生扭转变形时两条缝隙的公共区域变

窄,激光通过的缝隙变小,根据光的衍射原理,衍射产生的圆斑大小与激光通过

的缝隙大小相关;缝隙变小后,衍射产生的圆斑直径变大,在弹性轴的另一端用

CCD 传感器接收衍射图像,将成像数据传至计算机;通过测量衍射圆斑的直径可

以得到弹性轴所承受的扭矩大小,其工作原理如图13所示。

图 13 激光衍射式扭矩测量法工作原理

1.激光源;2.缝隙;3.圆盘;4.成像数据;5.CCD 传感器;6.弹性轴;7.计算机;

8.激光;9.外壳

4.扭矩测量方法的发展趋势

随着各种被测系统复杂性和自动化程度的不断提高,扭矩测量方法也在不断

地推陈出新,目前扭矩测量方法的发展趋势主要体现在以下几个方面:

①向直接测量扭矩的方向发展;

②向动态在线扭矩测量的方向发展;

③向多功能扭矩测量的方向发展;

④向扭矩优化测量的方向发展;

⑤向数字化、智能化、网络化扭矩测量的方向发展;

⑥扭矩传感器新技术的不断涌现为扭矩测量方法的适时更新提供了新途径,例如

扭矩传感器逐步向微型化和巨型化方向发展;从单件单品种向成套系列化方向发

展;由介入式逐渐发展为非介入式;向原器件集成化和信号处理智能化的方向发

展;出现了非接触式和光电结合式扭矩传感器;利用非晶材料的优良性能研制新

型扭矩传感器等等。

5.参考文献

【1】汪诤,潘丽华.扭矩测量技术浅析[J].甘肃科技,2005,21(3):99-100.

【2】王雁,郭华,王岐山.磁弹性扭矩传感器原理与误差[J].机械工程师,

1998(3):11-12.

【3】文西芹,张永忠,刘成文.基于磁弹性效应的磁头型扭矩传感器[J].化

工矿物与加工,2003(8):17-20.

【4】张有颐,转矩测量技术,计量出版社, 1986;

【5】万德安,章阳宁.一种新型扭矩传感器的研制[J].传感器技术,2003,

22(11):27-28

【6】秦树人,磁栅及其测量系统,重庆出版社, 1984;

【7】于丙强.磁致伸缩式扭矩测量仪的研制及应用[J].计量技术,2004(12):

22-24.

【8】汪 诤,潘丽华.扭矩测量技术浅析[J].甘肃科技,2005,21(3):99-100.

【9】张凤生,师忠秀,徐志良.相位式磁栅转矩传感器[J].仪表技术与传感 器,1998(9):4-6.

【10】万德安,章阳宁.一种新型扭矩传感器的研制[J].传感器技术,2003,

22(11):27-28.


相关内容

  • 动态扭矩传感器的分类及功能
  • 目前,动态扭矩传感器已成为汽车EPS系统中的关键部件之一.它也是一种测量各种扭矩.转速及机械功率的精密测量仪器,它的应用范围很广泛.那 么常用的动态扭矩传感器主要有以下形式:首先是电感式扭矩传感器:该种类型的传感器主要是采用了一种非接触的测量方式,这种扭矩传感器的寿命较长,可靠性 高,不易受到磨损. ...

  • 新型压电扭矩传感器的结构与标定
  • 2006年 第5期 仪表技术与传感器 Instrument Technique and Sensor2006 No15 新型压电扭矩传感器的结构与标定 高长银1,赵 辉1,马龙梅1,王金凤1,孙宝元2 (1.郑州航空工业管理学院机电工程系,河南 郑州,450015;2.大连理工大学机械工程学院,辽宁 ...

  • 扭矩测试的几种方法对比及概念介绍
  • 紧固件扭矩测试方法(拆车) 残余扭矩值是再继续拧紧螺栓/螺母时旋紧一个小角度测得的最小扭矩值. 起动扭矩不能作为残余扭矩. 动态扭矩:当紧固件再被固定的过程中测量得到的最大峰值.扭力扳手和动力工具都可以施加动态扭矩,动态扭矩不能在紧固件被紧固完之后测量.动态扭矩加载时进行在线测量得到的扭矩值. 静态 ...

  • 检定扭矩扳子时应注意的问题_郑培松
  • 技术 TECHNOLOGY 检定.使用与调修 检定扭矩扳子时应注意的问题 □郑培松 钱斌 黄智渊 一.缓冲器 由于动态检测时扭矩扳子的加载方式均为旋转动态加载,在实际工作中通过旋转螺母或螺栓,逐渐加大扭矩直至螺母或螺栓拧紧.因此,在检定时,如果按照常规手动扭矩扳子检测,将会与其工作状态产生很大差异, ...

  • 直流无刷电机原理详解
  • 1.简介 本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC).BLDC被广泛的用于日常生活用具.汽车工业.航空.消费电子.医学电子.工业自动化等装置和仪表. 顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如: ·能获 ...

  • 论文传感器的迟滞性分析与补偿
  • 2009届本科毕业设计 姓 名: 系 别: 物理与信息工程系 专 业: 学 号: 指导教师: xxxx 年xx 月xx 日 目 录 0 引言 . ............................................................................. ...

  • 扭矩分析仪.扭矩传感器
  • 介绍 – 拧紧质量保障 质量保障让您放心 与拧紧相关的问题在总的保修成本中占据的比例正呈现出日益增长的趋 势.任何装配操作中的松动或不正确拧紧连接都会导致出现严重问题, 并对最终用户造成严重后果,致使制造商品牌形象受损.为能够消除这 些问题,阿特拉斯·科普柯为此特别研发了综合质量保障系统. 通过残余 ...

  • 测试与传感技术作业三答案
  • 测试与传感技术作业三答案 一.单项选择题(每题2分,共20分) 1.在光的作用下,电子吸收光子能量从键合状态过渡到自由状态,引起物体电阻率的变化,这种现象称为( D ) A磁电效应 B声光效应 C光生伏特效应 D光电导效应 2.码盘式传感器是建立在编码器的基础上的,它能够将角度转换为数字编码,是一种 ...

  • 传感器课后作业3
  • 1.什么是应变效应?什么是压阻效应?什么是横向效应? 解:应变效应,是指在金属导体受力产生机械变形时,它的电阻值相应发生变化. 压阻效应,是指半导体材料在某一轴向受外力作用时,其电阻率ρ发生变化的现象. 横向效应,是指将直的电阻丝绕成敏感栅后,虽然长度不变,应变状态相同,但由于应变片敏感栅的电阻变化 ...